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Abstract

We study the approximation problem for C* functions f : [0,1] — R with respect
to a W)™-norm. The optimal order of convergence is infinite, hence excellent, but the
problem is still intractable for m > 1. This means that the order of convergence supplies
incomplete information concerning the computational difficulty of a problem. For m =0
and p = 2, we prove that the problem is not polynomially tractable, but weakly tractable.

1 Introduction

The (optimal) order of convergence, or rate of convergence, is an important concept of nu-
merical analysis and approximation theory. The order of convergence measures how fast the
minimal error e(n) of algorithms using n function values or linear functionals goes to zero.
Roughly speaking, if e(n) = O(n~%) then to guarantee that the error is e, we must take
n = @(5*1/ @) for ¢ — 0. Hence, asymptotically in e, the larger the order of convergence the
easier the problem. It is however not clear what this means for a fixed € > 0 and how long
we have to wait for the asymptotic behaviour.

In this paper we assume that the functions f : [0,1] — R are infinitely many times
differentiable with respect to all variables and that the sum of all normalized derivatives is
bounded in the Ly-norm, p € [1,00]. We approximate such functions with respect to the

*This author was partially supported by the National Science Foundation under Grant DMS-0608727 and
by the Humboldt Research Award at the University of Jena.



Sobolev norm W;?([0, 1]¢) for a non-negative integer m. We consider the worst case setting
and algorithms that can use arbitrary linear functionals as information operations on f. Here,
d can be arbitrarily large. To stress the importance of d, we denote the minimal error e(n)
by e(n,d).

The optimal rate of convergence of this multivariate approximation problem is infinite
due to the unbounded smoothness of the functions. That is, for any d and arbitrarily large r
we have

e(n,d) = O(n™") as n — oo,

Despite this excellent asymptotic speed of convergence, we prove that
e(n,d) =1 forall n=0,1,...,(m+1)%—1

Let n(e, d) denote the smallest number of linear functionals that is needed to find an algorithm
with error at most €. The last result means that

n(e,d) > (m+1)? forall ¢ € (0,1) and d € N.

For m > 1, we have an exponential dependence on d which is called the curse of dimension-
ality. Hence, for m > 1, the multivariate approximation problem is intractable.

The only case for which we may not have the exponential dependence on d is m = 0. In
this case, we restrict ourselves to p = 2 and study multivariate approximation simply in the
Lo-norm. Now the multivariate approximation problem is weakly tractable, i.e., n(e,d) does
not depend exponentially on e~! + d. More precisely, we have

lim In n(e,d)

= 0.
e-1td—oo €1 4+d

However, the problem remains polynomially intractable, i.e., no matter how large we choose
C, p and ¢, the inequality

n(e,d) < CePd1
does not hold for some € € (0,1) and d € N.

These results illustrate that the optimal order of convergence does not tell us everything
about the difficulty of solving the problem. We may have an excellent order of convergence
and exponential dependence on d. Or equivalently, we must wait exponentially long to enjoy
the excellent asymptotic behaviour.

We add in passing that similar results hold also for some other multivariate problems.
For example, consider multivariate integration studied in [3] for the Korobov space with the
smoothness parameter a > 1. In this case, algorithms can use only function values. Then

e(n,d) = O(n7?) as n— oo, forall p < a.

However,
e(n,d) =1 for n=0,1,...,27 -1, (1)
which implies that
n(e,d) > 2% for all e € (0,1).

That is, even for arbitrarily large «, despite an excellent order of convergence, this integration
problem is intractable. Further examples can be found in [7].



2 The problem

We consider functions from the class C°°([0, 1]%) of infinitely differentiable functions defined
on the d dimensional cube [0,1]%. Let f € C*°([0,1]%). Obviously for any multi-index

B = [B1,P2,---,04) € N¢  with Ng = {0,1,2,...},

the function
§B1+Bat+Ba

- 6ﬂ11‘1862.%'2 e 6ﬂd1‘d

also belongs to C*°([0,1]%). For any p € [1, 0] we also have |[DPf||, < oo, where L, is the
classical space of functions defined on [0, 1]¢, i.e., for p € [1,00) we have

1/p
171z, = ( . !f(w)!pdx> ,

)

DPf f

whereas for p = oo,

[fllze = esssup|f(z)|.
z€0,1]¢

We restrict the class C*°([0,1]?) by taking the linear space

1/p
F = Fyy = {f e C™(0,1]") \ 1flle = (Z %HDﬁfII’EJ < oo},

BeNd

with 81 = []7_, 8;!.

Hence, we deal with infinitely differentiable functions for which the sum of all normalized
derivatives is bounded in L,. This class is nonempty since f = 1 belongs to F'. Furthermore,
all multivariate polynomials belong to F' since the series with respect to § for a polynomial
consists of only finitely many positive terms. In any case, we hope the reader agrees that F
seems to be a “very small” set of functions.

For a given non-negative integer m, we consider the space G = Gg,p given by

6= {sewp@uy|ie = (¥ inDﬁfui,,)l/p <o .

!
BeN: |B;|<m 8

Hence, G is the Sobolev space W;(0, 1]%) of functions whose partial derivatives up to order
m in each variable belong to L,([0,1]¢). Note that for m = 0, the space Ggg, is just
L,([0, 119).

For any m, and for all f € F' we have ||f||¢ < ||f||r. Let Py, denote the linear space
of polynomials of d variables which are of degree at most m in each variable. Clearly,
dim(P,,) = (m + 1)¢ and

Ifllz = lIfllc forall f & Pypm.



Hence, the norms in F' and G are the same for this (m + 1)%-dimensional subspace. As we
shall see this property will be very important for our analysis.

For the classes Iy, and Gy, p, we consider the multivariate approximation problem
APP; with APPy: Fy, — Ggmp given by

APP,f = f.
This is clearly a well-defined problem. Since

|APPg|[ :=  sup  [|APPafllG,,,, = 1,
f€Fp Iflp <1

it is properly normalized. We approximate APP;f by algorithms A,, that may now use not
only function values but also arbitrary linear functionals, i.e.,

An(f) = ¥n (Ll(f)aL2(f)”Ld(f))’ (2)

where ¢, : R" — Gy, is some linear or non-linear mapping, and L; is an arbitrary
continuous linear functional whose choice may adaptively depend on the already computed
values Li(f), La(f),...,Lj—1(f). The worst case error of A, is defined by

e (A,) = sup [|APPf — A(H)llGann,
F€Fap | flr,, <1

The minimal number of information operations needed to solve the problem to within ¢ is
given by

n(e,d) = n"" (e, APPg, Fyp, Gamyp) = min{n : 3 A, such that e""(4,) < e}.

Tractability means that n(e,d) does not depend exponentially on e~! and d. More pre-
cisely, we call a problem weakly tractable if

1
lim nn(e,d)

=0
e=ltd—oo €1+ d

holds and intractable if this relation does not hold. Furthermore, a problem is polynomially
tractable if there exist non-negative numbers C', p and ¢ such that

n(e,d) < CePd? foralle € (0,1) and d € N.
If ¢ = 0 above then a problem is strongly polynomially tractable. For detailed discussion of
tractability, the reader is referred to [2].
3 On the order of convergence

We first discuss the optimal order of convergence. Let

e(n,d) = inf e"(A,)
An
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be the minimal worst case error that can be achieved by using algorithms A,, of the form (&)
based on n arbitrary linear functionals.
It is easy to see that for any d € N and any r» > 0 we have

e(n,d) = O(n") as n — oo. (3)

To prove this, consider first the spaces C* := C*([0, 1]%) of s times continuously differentiable
functions with the norm
= max max |DPf(z)].
£l = max max |0 (o)
Now take
so = d(r+m), and s; = dm.

Note that the norm of the space C*! is stronger than the norm of G, ,. That is, C*t C Gy, p
and there exists a number C' dependent on d,m and p such that || f|lc,,,, < C|/f]s, for all
feC.

Note that for any positive k, the class Fy,, is a subset of the Sobolev space W;‘([O, 1]4). 1f
the embedding condition k — sy > d/p holds then W¥([0,1]?) and Fy,, can both be regarded
as subsets of C'*2.

It is well-known that we can approximate functions from C*? in the norm of C*!, and
then in the norm of Gy, p, by algorithms using n function values with worst case error of
order n~(52751)/4 This result was probably first observed by Bakhvalov [T] for m = 0, which
gives s1 = 0. For general s1, which is needed for m > 1, this result can be found, for instance,
in the book of Triebel [6l, p. 348].

Take k = sy + 1+ d/p. Then we conclude that functions from Fj, can be approximated
in the norm of G4, ;, with worst case error of order n™", as claimed.

Since r can be arbitrarily large, the optimal order of convergence of the multivariate
approximation problem for the class Fy, is formally infinite. This implies that for a fixed d,
the minimal number of information operations goes to infinity slower then any power of .
That is, for any fixed d and any positive n we have

n"(e,APPy, Fyp,Gamp) = o(e”") as n — oo.

Again, this is very encouraging but one could say that this is possible since the class Fy,, is
so small.

4 Intractability for m > 1

But how about tractability? How long do we have to wait to see this nice convergence of
e(n,d) to zero? We claim that

e(n,d) =1 forall n=0,1,...,(m+1)%-1. (4)

First of all, observe that the zero algorithm A, (f) = 0 has worst case error at most 1 since
APP, is properly normalized. Hence, e(n,d) < 1. To prove the reverse inequality, take an



arbitrary algorithm A, (f) = ¢n(L1(f),...,Ln(f)) that uses adaptive linear functionals L;.
We now show that ewor( n) > 1.
0,1,.

For b = [by,ba,...,bq] € { .,m}?, define the functions

d 1\
fb(x) = H (xj — 5) .
7j=1
The functions f; are polynomials of at most degree m in each variable. Each b yields a new
polynomial f, and the set {f3} consists of (m 4 1)? linearly independent polynomials. Note
also that || fy||r = ||fslc since all terms D? f, are zero if there is an index B;j > m, and hence
the summation for the F-norm is the same as the summation for the G-norm. Let

gz) = Y afrl@)

be{0,1,...,m}d

for some real numbers a,. Again for any choice of a, we have ||g||r = ||gc-

We choose a;’s such that Li(g) = 0. Based on this zero value, the second linear functional
Lo is chosen, and we add the second equation for a;’s by requiring that La(g) = 0. We do
the same for all chosen linear functionals L; based on the zero information, and we have n
homogeneous linear equations for {ay},

> wLi(fy) =0 for j=1,2,...,n

be{0,1,...,m}?

Since we have (m + 1)? > n unknowns, we can choose a non-zero vector a, = a; satisfying
these n equations. The function g with a; is non-zero since the f;’s are linearly independent.
Then |[|g[|r,, is well-defined and positive. We finally define two functions

fo=(-DF —L for ke {0,1).
”gHFd,p

Note that
fi € Fap and || fillr,, = Iflce,., = 1

Furthermore, L;(fy) = 0 for all j = 1,2,...,n and therefore A, (f;) = ¢(0,...,0) does not
depend on k. Hence,

eWOr(An) > Ifna}X(HfO_ (050”0)‘|G"|f1_90(0’05aO)HG)
> 3 Hfo—@(ovo,- 0)llg + I1f1 = ¢(0,0,...,0)[c)
> Lfo— fille =

This completes the proof of H).

The essence of (@) is that the use of (m+1)? —1 arbitrary linear functionals is not enough
to reduce the error. Hence, if we want to guarantee that the error is at most € < 1, then we
have to use at least (m -+ 1)¢ linear functionals. This means that

nY (e, APPy4, Fyp, Gamyp) > (m+1)4  forall e € [0,1). (5)



Hence if m > 1 then we have the curse of dimensionality and the multivariate approximation
problem for the classes Fy, and Gy, p is intractable. This means that the set Fy,, is not so
small after all.

5 Multivariate approximation for m =0

Since for m > 1 we have the curse of dimensionality and intractability, we consider m = 0
with the hope that the curse of dimensionality is no longer present. In this case we restrict
ourselves to p = 2 and analyze the multivariate approximation problem in detail.

We will need a couple of known general results, see, for instance, the books [2, 4, B] where
these results can be found. For m = 0 and p = 2, the space G2 is just the Hilbert space
Ly = Ly(]0,1]¢) with the inner product

(f9)r, = /[0 e f(z)g(x)dz,

whereas F' = Fj 5 is the unit ball of the Hilbert space with the inner product

oy = Y 5 (D1.0%),

2
B NG

Let Wy = APP;APP, : Fyo — Fyo, where APP) : Ly — F,; is the adjoint operator of
APP,. Obviously W is a self-adjoint positive semi-definite operator. It is well-known that
lim,, . e(n,d) = 0 iff Wy is compact. Since we already know that the limit of e(n, d) is zero,
we conclude that Wy is compact. Hence, F; 2 has an orthonormal basis of the eigenfunctions
Nd,j of Wd, i.e.,

Wand,j = Ad,j Nd,;j

with (94, Nak) p = j,k- We may assume that the non-negative eigenvalues \g; are ordered,
ie.,
Ad1 = Aa2 = 2> Mg = - > 0.

Obviously lim,, .o A, = 0. Since we now allow algorithms using arbitrary linear functionals,

it is well-known that
e(n,d) = \/Agny1 foral n=0,1,...,

and that the algorithm

n

An(f) = Z <f’ nd,j>F Nd,j

J=1

has worst case error equal to e(n,d). We stress that although the algorithm A,, is linear and
uses non-adaptive information, it minimizes the worst case error in the class of all non-linear
algorithms using n arbitrary adaptive linear functionals.



5.1 Periodic case

We now restrict our attention to functions from the space F' = Fj o that are periodic. By a
periodic function f € Fyo we mean that for d = 1 we have f(%) (1) = £0)(0) for all 8 € Ny,
whereas for d > 1, we have (D°f)(z) = (DPf)(y) if |z; — yi| € {0,1} for all i. That is, the
values of all derivatives are the same if a component z; = 0 of x is changed into x; = 1.
Hence, let

Fyy = { f € Faa | f is periodic }.

The space Fp2 is equipped with the same norm as Fys. For example, for j € Ng, the
functions

Hnjk(xj) with 7, () = sin(2mjpz) or nj, (z) = cos(2mjjx)

belong to FY3. Note that the approximation problem is still properly normalized for the
=1.

The subspace F p2 is much smaller than Fy2. So if we establish a negative result for F Clla 5
then the same result will be also true for the larger class Fy; 2. Obviously, positive results for
FCIZ 5 do not have to be true for F;,.

subspace sz since HAPPdHFper*)LQ

To verify tractability of the approximation problem defined over the subspace Fé’;r, we
need to find the eigenpairs of Wy. It will be instructive to consider first the univariate case
d = 1. Define n1(z) = 1, and for k = 1,2,..., define

Mok (x) = V2 e 2Amk) sin(2nkx), mnogpr1(x) = V2 e 2Amk) cos(2m k x).

It is easy to check that the sequence {ny} is orthonormal in the subspace F: E oy ien (M, Ms) Fio =
Ok,s- Define

o0
) =Y _ni(@)n;(y) for z,y € [0,1].
We claim that K is the reproducing kernel of Fpe]r That is, in particular, K1(-,y) € FJo

for all y € [0,1], and f(y) = (f, K1(-,9)) p, , for all f e F)y and all y € [0,1]. Indeed, it is
enough to check the last property. Observe that for arbltrary G €N and k > 1, we have

<f(ﬁ)7?7§§)>L2 nok(y) + <f(ﬁ 7772k+1>L2 Nok+1(Y)

= (27Tk)2ﬁ (<f7 Mok) 1, M2k(Y) + (fsekr1)p, 772k+1(y)) .



Therefore,

KA gy = D i)y, i ZZE%QW,UJ >L 75 (y)
j=1 '

j=1p3=0 2

o0 <f(ﬁ7772k> N2k (y) + < 7?72k+1> 2772k+1(y)

= anj Lan +Z 3!
J=1

B,k=1

= (f, 771>L2 + 6(2“)2 (<f7 772k>L2 nox(y) + (f; 772k+1>L2 772k+1(y))

M8EM8

= (fi)g, + (f,sin27k-) sin(2wky) + (f, cos 2mk-) ; cos(27ky).

i
I

The last series is the Fourier series for f evaluated at y. Since f is periodic and differentiable,
this is equal to f(y).

This also proves that the sequence {ny} is an orthonormal basis of the subspace F}5 .
Indeed, it is enough to show that if f € Fy5 and (f,7;)p , = 0 for all j then f =’
Orthogonality of f to all n; implies that (f, Ki(,y))p, , = 0, and therefore f(y) = 0. Since
this holds for all y € [0, 1], we have f = 0, as claimed. ’

Note that for k # s, we have

0 = (M, ns)p, = (APPine, APPins), = (e, APPTAPP1ng) p = (i, Wins) p
This means that Win, is orthogonal to all 7 except k = s. Hence,
Wins = Asns,
and A\, = <175,778>L2. This yields
M =1 and Ay = dopy1 = ¢ @™ for k=1,2,....

For d > 2, it is easy to see that F}5 is the tensor product of d copies of FT'5" and Wy is
the d fold tensor product of Wi. This implies that the eigenpairs of Wy are

Wana; = AajNdj

where j = [j1, 72, .., ja] € N? and

d
Nd,j (@ Hn]k (zk) and Ag; = H)\jk’
k=1

Hence, the eigenvalues for the d dimensional case are given as the products of the eigenvalues
for the univariate case. To find out the nth optimal error e(n, d), we must order the sequence
{Aii Az - Ajytjena- Then the square root of the (n +1)st largest eigenvalue is e(n, d). Thus,
e(n,d) < e iff n is at least the cardinality of the set of all eigenvalues \q; > 2. If we denote



n(e,d) == n"" (e, APPy, Féjgr, L) as the minimal number of linear functionals needed to solve
the problem to within ¢, then

n(e,d) = |{j: [jl)j2)"'ajd] € Nd : )\Jl)\ ’ )\]d > 62}|

Clearly, n(e,d) = 0 for all € > 1 since the largest eigenvalue is 1. It is also easy to see that
n(e,d) =1 for all £ € (727, 1) since the second largest eigenvalue is Ay = e 4. For d = 1,
note that e~ 2™)* > ¢2 iff k < [v/2In e~ 1/(27)] — 1. This yields that

71(5,1):2{%\/211151-‘—1—£ ln—+(9() as € — 0.

For d > 1, we have the formula

n(e,d+1) in(a/ﬁ,d>_ngd +QZ ( o2(k)? )’

J=1

which relates the cases for d + 1 and d. The last two series are only formally infinite, since
for large j and k the corresponding terms are zero. More precisely, to obtain a positive
n(e e2™? d) we need to assume that € e2™)* < 1. Let

2m €
Then i
n(e,d+1) = n(e,d) + 2 Zn (6 62(”k)2,d) .
k=1

We now show by induction on d that

n(e,d) = © ((m é)dﬂ) as & — 0. (6)

This is clearly true for d = 1. If it is true for d, then using the formula for n(e,d + 1) we
casily see that we can bound n(e,d+ 1) from above by O((In1/¢)(@*1/2) since k. is of order
(In 1/¢)Y/2. We can estimate n(e,d+1) from below by taking k./2 terms and using the lower
bound on n(e 2™)* d), which again yields an estimate of order (In 1/¢)(@+1)/2,

Let us pause and ask what (@) means. From one point of view, this estimate of n(e,d)
is quite positive since we have weak dependence on € only through In 1/¢. But if d is large,
@) may suggest that we have an exponential dependence on d, and the problem may be
intractable. As we already know the factors in the big theta notation are very important and
so we can claim nothing based solely on (@). We need more information about how n(e,d)
behaves. We now prove that

n(e,d) 1

Ca = limy (In 1/6)d/2 ~ (2m)?2T(1+d/2) "

10



establishing the asymptotic behavior of n(e, d) as € tends to zero.

For d = 1, we have already shown the formula C7 = \/5/7r Assume that C, is the
asymptotic constant for d, and consider the case d + 1. For every positive § there exists
g4 = ¢eas € (0,1) such that for all € € (0,24], we have

/2
n(e,d) = Cy(1+ g(e)) <ln é) with |g(e)] < 4, and gi_r)r(l)g(&?) = 0.

k;_{f _}_1.
27 €

Note that k. — k¥ = O(1) as ¢ — 0. We have

Define

1\ 4/2
aed+y) = Cat+g(e) (1)
kx o 1 d/2
2C 1 2rk In = — 2(wk)?
+ dkzl« ra () (1 - 20
+2 Z 2(7‘(/{:) )
k=k:+1

Note that for k € [k} + 1, k.] we have n(e e2™)* d) < n(e4,d), and therefore

ke

> (™ d) < (ke — k) nleq,d) = O((In e~ H)¥?).
k=kz+1

Now consider the terms for which k € [1,k}]. Then ¢ e2(™)* < ;. For ¢ tending to zero, we
have

k*

S 1ns) (o2 3
k=1
= (1+40(1)) /f: <ln é — 2(7rx)2>d/2 dz

(d+1)/2 1
s 0

1+0(1) ( 1>(d+1)/2 ) )
= In - = B(5,14+d/2),
\/§7T . 2 ( /)

where B(z,y) is the beta function and is related to the Gamma function by B(z,y) =
I'(x)I'(y)/T'(z +y). This proves that

n(e,d+1) = Cayr(1+o(1))(In 1/)(*HD/2

11



as € goes to zero, with

B(3,1+4d/2) Cy [(1/2)T(1 +d/2)
Cap1 = =

Ver V2rT(1 4 (d+1)/2)

Solving this recurrence, we obtain

C — F(%)d F(%) O = 1
T V2mAT(+ (d+1)/2) L @o@DRT( 1 (d+1)/2)

which agrees with the asymptotic formula ().

We stress that the asymptotic constant Cy in () is super exponentially small in d due
to the presence of I'(1 + d/2) in the denominator. This property raises our hopes that we
can beat the apparent exponential dependence on d. Indeed, assume for a moment that the
limit in ([d) is uniform in d. That is, suppose that there exists a positive ¢ such that for all
e € (0,e9) and all d, we have
2 (ln afl)d/ 2
2m)42T(1+d/2)

1\ 42
n(e,d) <2Cy <ln g) = (

It can be easily checked that %2 /T'(1 + d/2) < exp(x) for all £ > 1. Therefore

2 1
n(e,d) < W -
Hence, we have strong polynomial tractability if ([[d) holds uniformly in d.

We now return to the proof of () with the new task of checking whether ¢4 can be
uniformly bounded from below. Unfortunately, this is not true. It is enough to take 2 €
[A3, A2) to realize that we can take d — 1 indices j; = 1 and the remaining index j; = 2 to
obtain the eigenvalue Ay ; = A2 > €%. Hence n(e,d) > d which contradicts strong polynomial
tractability.

In fact, even polynomial tractability does not hold, i.e., there is no upper bound of the
form

n(e,d) < CePd? Vee(0,1),deN.

This follows from the general observation that as long as the largest eigenvalue is 1, and the
second largest eigenvalue Ay for d = 1 is positive then there is no polynomial tractability.
Indeed, for an arbitrary integer k£ and arbitrary d > k , consider the eigenvalues A\j, Aj, - - A,
with d — k indices j; equal to 1 and k indices j; equal to 2. Then we have at least (z) = 0(d")

eigenvalues equal to \5. Tt is enough to take now, say, €2 = A5 /2 to realize that n(1/\5/2,d)

is at least of order d*. Since k can be arbitrary, this contradicts not only strong polynomial
tractability but also polynomial tractability.

Well, we are back to square one. Despite the exponentially small asymptotic constants,
we have polynomial intractability of the multivariate problem for m = 0. Hence, the only
remaining hope for a positive result is weak tractability. Here we will finally report good
news.

12



As in [§], let Aj,A\j, -+ Aj, > €2 and let k be the number of indices j; > 2. Then (d — k)
indices are equal to 1. Note that )\12“ > £2 implies that

~1
k<a(e) = Flln%-‘ - 1.
LAy

So we have at least (d — a(¢))4+ indices equal to 1. Observe also that j; < n(e,1). Thus

d d
< n(e,d) < ( >n5,1a(€).
((a—sie.) "= - atey,) "V
For a fixed € and for d tending to infinity, we have
n(e,d) = © (a2 e/ x )

with the factors in the big theta notation depending now on e~1.

For arbitrary d and € € (0,1) we conclude that
a(e)
a(e)
n(s,d)§M 2 i\/211&1 -1 .
a(e)! 27 £

i In n(e,d)
im _
e ltd—oo e 14d

This implies that
=0
which means that weak tractability indeed holds.
Hence, we have mixed news for the periodic case of the approximation problem. We have
polynomial intractability, which obviously implies polynomial intractability for the original

non-periodic case. But we have weak tractability for the periodic case, and it is not yet clear
whether this good property extends to the non-periodic case.

5.2 Weak tractability

We now show that weak tractability holds not only for the original non-periodic case but it
also holds for a much larger space of less smooth functions. Namely, define

Fjy = Gg12 = W3 ([0,1]%)

as the Sobolev space of functions whose partial derivatives up to order one in each variable
belong to Ly = Ly([0,1]%). The norm in F}, is defined as in G 2. Clearly

Fyp € Fjy and |[fllg, < [fllr,, forall f e Fyo.

Again, consider first the case d = 1, and the subspace 13’1172 of periodic functions from FC}2.
Now periodicity means that f(1) = f(0). Proceeding as before, it is easy to check that the
functions n; = 1, and

nok(x) = L sin(2mkx), Mopy1(x) = L cos(2mkx)

1+ (27k)? 1+ (27k)?
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are orthonormal in F1172’ and the function
o0
Ki(z,y) = > _ni(z)n;(y)
j=1

is the reproducing kernel of FLQ. Ther~ef0re tl}e sequence {n;} forms a basis of FLQ. The
eigenvalues )\?er of W1 = APP{APP; : F1172 — F1172 are

T T T 1
)\Il)e =1 and )\SZ = )\gz+1 = Wfor k = 1’27... .

We now turn to the space Fi2 of non-periodic functions. Define

o 1
— 1 ;
g(z)=z—5 + kg_l TR+ 2rh)7) sin(2rkz) for x € [0,1].
It is easy to check that g belongs to Fll’2 and is orthogonal to all n;. Note that g(1) =

—g(0) = 3, hence g ¢ Fig- For f € Fll,zv let

hi(x) = f(z) = [f(1) = F(O)] 9(2).
Then hy € F11,2’ Hence,

f=1f1)=f(0)]g + hy forall feF,.

This decomposition suggests that we first compute Li(f) = f(1) — f(0) and then approx-
imate the function hy = f — L1(f)g. Note that

Fonidpr, = Li(F) g midpy, + (hpsng)p,, = (hpsnidp,

and
17122, = La(HPlalZy, + lngls

Hence, approximation of functions from the unit ball of Fll’2 with n information evaluations

is not harder than approximation of periodic functions from the unit ball of Fllg with n —
1 information evaluations, and not easier than the periodic case with n evaluations. Let
AJ7"7P denote the ordered sequence of eigenvalues of Wi = APP{APP, : F|, — F|, for

the non-periodic case. It is easy to check that A\{*" P =1, and A3" P < \{”"" P as well
as
)\?er < )\?Onfper < A?irl for all j > 2.

Hence, N} P = ©(;71).
We turn to the case d > 2. Since F}, is the d fold tensor product of Fll’2, the eigenvalues

of Wy = APPSAPP, : F}, — F}, are products of AP NP for j; € N. In
Chapter 5 of [2] we prove that linear tensor product problems are weakly tractable as long

as the eigenvalues for d = 1 satisfy the following two conditions:
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e the second largest eigenvalue is smaller than the largest eigenvalue,
e the nth largest eigenvalue goes to zero faster than (In n)~2(In In n)~2.

These two assumptions hold in our case, and therefore the approximation problems for the
space Fde as well as for the smaller space Fy; o are weakly tractable.

6 Summary
We summarize our results for the multivariate approximation problem

APP, : Fd,p — Gd,m,pa deN.

Theorem 1

e The order of convergence is infinite for any p and m, see ().
e For m > 1 and any p, the problem is intractable, see (H).

e For m =0 and p = 2, the problem is not polynomially tractable but weakly tractable.

We end this paper with an open problem which is also presented in [2]: For m > 1, we
have intractability for any p, whereas for m = 0 and p = 2 we have weak tractability but
polynomial intractability. This leaves the case m = 0 and p # 2.

Furthermore, the partially positive result for m = 0 and p = 2 was obtained by assuming
that algorithms use arbitrary linear functionals. It is not clear what happens if we allow
algorithms that can only use function values.

e Consider multivariate approximation as before with m = 0 and p # 2, and algorithms
using arbitrary linear functionals. Verify whether weak or polynomial tractability hold.

e Consider multivariate approximation as before with m = 0 and arbitrary p € [1, o],
and algorithms using only function values. Verify whether weak tractability holds.
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