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January 9, 2009

Abstract

This paper is concerned with the numerical treatment of inverse heat conduction prob-
lems. In particular, we combine recent results on the regularization of ill-posed problems
by iterated soft shrinkage with adaptive wavelet algorithms for the forward problem. The
analysis is applied to an inverse parabolic problem that stems from the industrial process of
melting iron ore in a steel furnace. Some numerical experiments that confirm the applicability
of our approach are presented.

AMS Subject classification: 46N10, 47A52, 49M99, 65F20, 65F50, 65M32, 65M60, 65N12,
65T60

Keywords: Regularization of ill-posed problems, sparsity, adaptive numerical schemes, parabolic
partial differential equations, iterated soft shrinkage.

1 Introduction

Typical applications in medical imaging (computer tomography), geophysics (analysis of seismic
waves) or industrial production processes require to determine some critical parameters which
cannot be measured directly, so that we are faced with an inverse problem. In its most general
sense, an inverse problem amounts to solving an operator equation

Ax = y (1)

with measured noisy data yδ, ‖y − yδ‖ ≤ δ where A denotes a linear or non-linear operator
between Hilbert spaces X and Y . Typical operator equations, such as parameter identification
problems for partial differential equations or integral equations with compact operators are ill-
posed in the sense that the operator A is not boundedly invertible. For an introduction to
regularization techniques for such ill-posed problems see [18,25].

We will investigate an inverse heat conduction problem, see Section 2, which arises from
monitoring a steel furnace. The critical structures are localized hot spots on the inner wall
of the furnace. Hence, the evaluation of the operator A, which is called the forward problem,
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requires to solve a parabolic partial differential equation. In this paper we combine an adaptive
forward solver for the underlying PDE with an iterated soft shrinkage approach for obtaining a
sparse approximation of the searched for quantity.

Sparsity concepts are successful if the generalized solution of (1) has a sparse expansion with
respect to a given basis, i.e. if the solution can be approximated well by a small selection of
basis elements. In our present application, due to the particular shape of the hot spots, the
generalized solution is a smooth function with isolated singularities in space-time. Therefore,
the sparsity assumption is satisfied with respect to wavelet bases. The mathematical formulation
leads to minimizing Tikhonov functionals with ℓp-penalty term, 1 ≤ p < 2,

J(x) = ‖Ax − yδ‖2 + α‖x‖p
w,p,

see Section 3 for details. The regularization properties of such an approach for linear operator
equations as well as numerical schemes for minimizing such Tikhonov functionals by iterated
soft shrinkage methods have been introduced in the pioneering paper [16].

This concept has been generalized in various directions, e.g. to non-linear operators or general
Banach spaces. Moreover, a regularization theory for sparsity constraints in connection with
inexact, adaptive operator evaluations has been recently developed, see [1, 30]. These papers
give theoretical results on how to choose the accuracy of the adaptive forward solver in order to
obtain optimal convergence rates. The numerical results of these papers are restricted to some
rather straight forward academic problems and the adaptive solver is treated as a black box. In
this paper, we exemplify the use of an adaptive wavelet solver for an inverse heat conduction
problem. Hence, we will assume, that the operator A will be evaluated only approximately. The
adaptive forward solver [Ax]ε will obey a pointwise error estimate

‖[Ax]ε − Ax‖ ≤ ε.

Let us emphasize, that we do not assume an error bound for the operator norm ‖[A]ε − A‖ or
similar.

Adaptive schemes are designed for the constructive approximation of objects that are im-
plicitly given by a linear or non-linear operator equation. Essentially, an adaptive scheme is an
updating strategy. Based on an a posteriori error estimator, an underlying grid or an underly-
ing function space is only refined in regions where the local error is quite large. By now, the
most powerful results concerning adaptive schemes have been derived for boundedly invertible
operator equations, see, e.g., [8, 9]. Unfortunately, as already outlined above, this assumption
is usually violated for inverse problems. Nevertheless, the realization of a regularization scheme
requires the solution of the forward problem and its adjoint, and at least for these issues, adap-
tive strategies may be employed. Adaptive wavelet schemes for the numerical treatment of the
forward problem are advantageous since the sparsity constraint for the inverse problem is defined
in a wavelet basis as well.

This paper is organized as follows. In Section 2, we present a detailed description of our
model problem. Then, in Section 3, we discuss the iterated soft shrinkage regularization scheme
including the case of adaptive operator evaluations and we briefly recall the setting of adaptive
wavelet methods as far as it is needed for our purposes. In particular, we discuss adaptive
schemes for elliptic and parabolic partial differential equations. Section 4 is devoted to the nu-
merical treatment of our model problem. Several reconstructions from noisy data are presented
for a representative subset of operating parameters. We finish with some concluding remarks in
Section 5.
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2 An Inverse Heat Conduction Problem

The inverse heat conduction problem (IHCP) investigated in this paper is motivated by an
application from monitoring steel production. The life span of a steel furnace is determined by
some critical thickness of its outer wall, which decreases continuously due to the physical and
chemical processes of the melting iron ore.

Therefore the inner shape of the wall is of specific interest. However, it is impossible to make
measurements inside the furnace. Hence, this information has to be determined via indirect
measurements on the outside of the furnace wall.

Mathematically we treat this problem as an IHCP on a ring-shaped domain, which we assume
to lay entirely inside the existing wall of the furnace. Hence, we can assume a homogeneous
conductivity on this domain. Hot spots on the inner boundary indicate some damage during the
life span of the furnace. The temperature g on the inner boundary is the searched for quantity
of this inverse problem.

The problem is modelled in the following way. We assume a ring-shaped domain Ω = {x ∈
R

2 | 0 < r0 < ‖x‖ < r1}, with inner boundary Γ0 = {x ∈ R
2 | ‖x‖ = r0} and outer boundary

Γ1 = {x ∈ R
2 | ‖x‖ = r1}, see Figure 1. Further we formulate the forward problem as:

Ω

Γ0

Γ1

Figure 1: The ring-shaped domain Ω.

∂u
∂t − κ∆u = 0 in (0, T ) × Ω

u = g on (0, T ) × Γ0

−κ∂u
∂ν = h on (0, T ) × Γ1

u(0, ·) = u0 in Ω.

(2)

We assume that the heat conductivity κ of the furnace wall is known, as well as the initial
temperature u0. We expect that κ is constant and for simplicity we set κ = 1. In addition to
this, we assume that we can measure the heat flux h through Γ1 and the temperature h̃ on Γ1

during the whole time interval (0, T ). The latter will constitute the additional input information
for the formulation of the inverse problem. Problem (2) can now be reformulated as an operator
equation

L(g; h, u0) = u, (3)

with a non-linear operator L depending on some fixed h and u0 assigning a function g on the
inner boundary Γ0 to a solution u of (2). This operator is affine-linear in g. We need to subtract
the inhomogeneous part uc := L(0; h, u0) in order to obtain a linear operator equation as follows.

We split the operator in (3) into a linear part generating a solution ul and a constant part
represented by a solution uc

L(g; h, u0) = L(g; 0, 0) + L(0; h, u0)

= ul + uc.
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Here ul indicates the solution of

∂u
∂t − ∆u = 0 in (0, T ) × Ω

u = g on (0, T ) × Γ0

−∂u
∂ν = 0 on (0, T ) × Γ1

u(0, ·) = 0 in Ω.

(4)

Defining the IHCP we have to restrict the solution u = ul + uc of (2) to the outer boundary Γ1.
Finally, we obtain

L(g; h, u0)|(0,T )×Γ1
= ul|(0,T )×Γ1

+ uc|(0,T )×Γ1
= h̃,

which allows us to define

Kg = h̃ − uc|(0,T )×Γ1
=: ĥ,

where K denotes the linear solution operator of (4) followed by the restriction to (0, T ) × Γ1.

Note, that our additional temperature measurements h̃ on the outer wall correspond to Kg
after subtracting the restriction of L(0; h, u0) on the boundary. The operator equation Kg = ĥ
can now be handled with linear regularization theory.

2.1 Mapping Properties of the Forward Operator

As a basis for the following arguments, we shall clarify first the mapping properties of the linear
forward operator K : g 7→ L(g; 0, 0)|(0,T )×Γ1

. In particular, we have to address the question
between which function spaces the boundedness of K may be expected to hold. Since the
Dirichlet data g under consideration are potentially corrupted by measurement noise, the most
attractive domain of definition for K would be L2(0, T ; L2(Γ0)). However, it turns out that the
boundedness of K on that space can not be verified by a standard approach as soon as the
spatial dimension is greater or equal to 2 and Ω is nontrivially shaped. This is related with
the fact that a variational formulation of the problem (4) will involve extensions of Dirichlet
boundary data on Γ0 into the interior of Ω which are only bounded on Hs(Γ0) for s > 0.

Remark 2.1 If the spatial domain Ω was not the ring-shaped domain but one-dimensional, i.e.,
in the case of the sideways heat equation

ut − uxx = 0 in (0, T ) × (0, 1)
u = g on (0, T ) × {0}

ux = 0 on (0, T ) × {1}
u(0, ·) = 0 in (0, 1),

it is well-known that the forward operator K : g 7→ u(·, ·; g)|x=1 would be bounded from L2(0, T )
to L2(0, T ) as a convolution operator with smooth kernel [17, 32].

It is therefore desirable to verify the boundedness of K between spaces that are only slightly
smaller than L2(0, T ; L2(Γi)). In the sequel, we will confine the discussion to the proof that K
is bounded as an operator between spaces of weakly differentiable functions. Following [24, Ch.
4], for an open set or a closed manifold S ⊂ R

n and s ≥ 0, let L2(0, T ; Hs(S)) be the space of
all measurable mappings w : (0, T ) → Hs(S) with finite norm

‖w‖L2(0,T ;Hs(S)) :=
( ∫ T

0
‖w(t, ·)‖2

Hs(S) dt
)1/2

.
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Moreover, for r ∈ N0, let Hr(0, T ; L2(S)) be the space of all mappings w ∈ L2(0, T ; L2(S))
whose r-th distributional derivative ∂rw

∂tr is also contained in L2(0, T ; L2(S)), with norm

‖w‖Hr(0,T ;L2(S)) := ‖w‖L2(0,T ;L2(S)) + ‖∂rw
∂tr ‖L2(0,T ;L2(S)).

For noninteger r ≥ 0, the space Hr(0, T ; L2(S)) shall be defined by interpolation. Given r, s ≥ 0,
let us finally set

Hr,s
(
(0, T ) × S

)
:= Hr

(
0, T ; L2(S)

)
∩ L2

(
0, T ; Hs(S)

)

with associated norm ‖w‖Hr,s((0,T )×S) := ‖w‖Hr(0,T ;L2(S)) + ‖w‖L2(0,T ;Hs(S)).

The following trace theorem for functions from Hr,s((0, T )×Ω) can be found in [24, Chapter
4, Section 2]:

Theorem 2.2 Assume that Ω ⊂ R
n is an open, bounded set with smooth boundary ∂Ω and let

Q := (0, T ) × Ω. For a given boundary part Γ ⊂ ∂Ω, let Σ := (0, T ) × Γ.

(i) For r ≥ 0, s > 1
2 and any k ∈ N0 with k < s − 1

2 , there exists a bounded surjective trace
operator

u 7→ ∂ku
∂νk |Σ : Hr,s(Q) → Hr−(k+

1
2)

r
s ,s−(k+

1
2)(Σ). (5)

(ii) For r > 1
2 , s ≥ 0 and any j ∈ N0 with j < r − 1

2 , there exists a bounded surjective trace
operator

u 7→ ∂ju
∂tj

|t=0 : Hr,s(Q) → Hs−(j+
1
2)

s
r (Ω). (6)

(iii) If r, s > 0 are such that 1
r + 1

s < 2, then the traces of u ∈ Hr,s(Q) fulfill the compatibility
conditions

∂j

∂tj
(∂ku

∂νk |Σ)|t=0 = γk(
∂ju
∂tj

|t=0), for all j, k ∈ N0 with j
r + k

s < 1 − 1
2(1

r + 1
s ), (7)

where γk : Ht(Ω) → Ht−k−1/2(Σ) is the k-th normal derivative operator, k < t − 1/2.

As an immediate consequence of Theorem 2.2(i), for all r ≥ 0 and s > 1
2 , we can derive the

existence of a bounded Dirichlet trace lifting

EΓ0
: Hr(1−1/(2s))),s−1/2((0, T ) × Γ0) → Hr,s(Q),

with (EΓ0
g)|(0,T )×Γ0

= g for all g ∈ Hr(1−1/(2s))),s−1/2((0, T )×Γ0). What is more, in the case of

a ring-shaped domain Ω and s > 3
2 , it can be assumed that the Neumann trace ∂

∂ν (EΓ0
g)|(0,T )×Γ1

completely vanishes. This property can be assured, e.g., by smoothly damping an extension of
g in the vicinity of Γ1, since Γ0 and Γ1 are separated sets.

For the analysis of the forward operator K, the special case r = 1 and s = 2 will be of
particular importance. The following theorem clarifies the mapping properties of K in that
situation.

Theorem 2.3 Assume that Ω is the ring-shaped domain and let Q := (0, T )×Ω. Moreover, let
Vi := H3/4,3/2((0, T )×Γi), i ∈ {0, 1}, and let Ṽ0 := {g ∈ V0 : g(0, ·) = 0}. Then for each g ∈ Ṽ0,
(4) has a unique solution u = u(·, ·; g) ∈ H1,2(Q) which linearly and continuously depends on g,

‖u‖H1,2(Q) ≤ C‖g‖V0
, (8)
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with a universal constant C > 0. Moreover, the operator K, mapping Dirichlet data on the
inner boundary Γ0 to Dirichlet data on the outer boundary Γ1, defines a bounded operator

K : Ṽ0 → V1.

In order to prove Theorem 2.3, we shall apply a well-known technique to transform the inhomo-
geneous Dirichlet data into a nontrivial right-hand side of the differential equation. For parabolic
initial-boundary value problems with homogeneous boundary data, existence, uniqueness and
stability of solutions are guaranteed by the following theorem, see [21, Ch. IV, §9] for details.

Theorem 2.4 Assume that Ω ⊂ R
n is an open, bounded set with smooth boundary ∂Ω = Γ0∪Γ1

and let Q := (0, T ) × Ω. Moreover, let f ∈ L2(0, T ; L2(Ω)) and u0 ∈ H1(Ω) with u0|Γ0
= 0.

Then the boundary value problem

∂ũ
∂t − ∆ũ = f in (0, T ) × Ω

ũ = 0 on (0, T ) × Γ0

−∂ũ
∂ν = 0 on (0, T ) × Γ1

ũ(0, ·) = u0 in Ω

(9)

has a unique solution ũ ∈ H1,2(Q) which depends affine linearly and continuously on the driving
term and on the initial data,

‖ũ‖H1,2(Q) ≤ C
(
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖H1(Ω)

)
. (10)

With Theorem 2.4 at hand, we are in the position to prove Theorem 2.3.

Proof of Theorem 2.3. We start by showing uniqueness and existence of a solution u ∈ H1,2(Q)
to (4) for given Dirichlet data g ∈ Ṽ0.

Concerning uniqueness, assume that u, v ∈ H1,2(Q) solve (4). Then u − v solves (9) with
f = 0 and u0 = 0, so that Theorem 2.4 implies u − v = 0.

For the existence of solutions to (4), consider a trace lifting G := EΓ0
g ∈ H1,2(Q) of g,

with continuous dependence ‖G‖H1,2(Q) ≤ C‖g‖V0
. Therefore, it holds that f := ∂

∂tG − ∆G ∈
L2(0, T ; L2(Ω)) with ‖f‖L2(0,T ;L2(Ω)) ≤ C ′‖g‖V0

, and Theorem 2.2(ii) yields that u0 := −G(0, ·) ∈

H1(Ω) with ‖u0‖H1(Ω) ≤ C ′′‖g‖V0
. Moreover, since r = 1 and s = 2 imply 1

r + 1
s = 3

2 < 2, an
application of Theorem 2.2(iii) for j = k = 0 yields u0|Γ0

= 0. Therefore, by Theorem 2.4, (9)
has a unique solution ũ ∈ H1,2(Q) with linear and continuous dependence on g, ‖ũ‖H1,2(Q) ≤
C ′′′‖g‖V0

, so that u := ũ + G ∈ H1,2(Q) solves (4) with ‖u‖H1,2(Q) ≤ C ′′′′‖g‖V0
.

Since Kg = u|(0,T )×Γ1
, the boundedness of K now follows from the boundedness of the trace

operator H1,2(Q) → V1, see Theorem 2.2(i). ¥

Remark 2.5 By the density of D(K) := Ṽ0 in L2(0, T ; L2(Γ0)), the forward operator K can also
be regarded as a linear, densely defined operator K : D(K) ⊂ L2(0, T ; L2(Γ0)) → L2(0, T ; L2(Γ1)).
However, it is not clear whether K has a bounded extension to the full space L2(0, T ; L2(Γ0)).

2.2 Mapping Properties of the Adjoint Operator

To use a classical Tikhonov regularization or, as we will do in the following, a sparsity recon-
structing shrinkage method, the adjoint operator K∗ is needed. In general, for Hilbert spaces
X and Y , the adjoint operator of a densely defined operator K : X ⊃ D(K) → Y is given via
the relation

〈x, K∗y〉X = 〈Kx, y〉Y , for all x ∈ D(K), y ∈ D(K∗), (11)
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where D(K∗) := {y ∈ Y : x 7→ 〈Kx, y〉Y is continuous on D(K)}.
In order to concretely identify the mapping properties of K∗, consider the following adjoint

boundary value problem

∂v
∂t + ∆v = 0 in (0, T ) × Ω

v = 0 on (0, T ) × Γ0

−∂v
∂ν = h on (0, T ) × Γ1

v(T, ·) = 0 in Ω

(12)

and its solution operator M : h 7→ ∂v
∂ν |(0,T )×Γ0

. In the sequel, we shall clarify the mapping
properties of M and its relation to K.

Note first that by an application of Theorem 2.2(i) for k = 1, for all r ≥ 0 and s > 3
2 , we

can deduce the existence of a bounded Neumann trace lifting

FΓ1
: Hr(1−3/(2s))),s−3/2((0, T ) × Γ1) → Hr,s(Q),

with ( ∂
∂ν FΓ1

h)|(0,T )×Γ1
= h for all h ∈ Hr(1−3/(2s))),s−3/2((0, T ) × Γ1). Moreover, similar to the

properties of EΓ0
, we can assume that the Dirichlet data (FΓ1

h)|(0,T )×Γ0
completely vanish.

Again we shall be interested in the special case r = 1 and s = 2, and the following mapping
properties of M can be shown in analogy to Theorem 2.3:

Theorem 2.6 Assume that Ω is the ring-shaped domain and let Q := (0, T ) × Ω. Moreover,
let Wi := H1/4,1/2((0, T ) × Γi), i ∈ {0, 1}. Then for each h ∈ W1, (12) has a unique solution
v = v(·, ·; h) ∈ H1,2(Q) which linearly and continuously depends on h,

‖v‖H1,2(Q) ≤ C‖h‖W1
, (13)

with a universal constant C > 0. Moreover, the operator M , mapping Neumann data on the
outer boundary Γ1 to Neumann data on the inner boundary Γ0, defines a bounded operator

M : W1 → W0.

Proof. The uniqueness of solutions v ∈ H1,2(Q) to (12) for given Neumann data h ∈ W1 can be
shown as in Theorem 2.3. For the existence of a solution v, let H := FΓ1

h(T − ·) ∈ H1,2(Q)
be a Neumann trace lifting of h(T − ·), with continuous dependence ‖H‖H1,2(Q) ≤ C‖h‖W1

.

Therefore, it holds that f := ∂
∂tH − ∆H ∈ L2(0, T ; L2(Ω)) with ‖f‖L2(0,T ;L2(Ω)) ≤ C ′‖h‖W1

,
and an application of Theorem 2.2(ii) with j = 0 yields that v0 := −H(0, ·) ∈ H1(Ω) and
‖v0‖H1(Ω) ≤ C ′′‖h‖W1

. Moreover, by the mapping properties of FΓ1
, we have v0|Γ0

= 0. Theorem
2.4 then guarantees that the auxiliary problem

∂ṽ
∂t − ∆ṽ = f in (0, T ) × Ω

ṽ = 0 on (0, T ) × Γ0

−∂ṽ
∂ν = 0 on (0, T ) × Γ1

ṽ(0, ·) = v0 in Ω

has a unique solution ṽ ∈ H1,2(Q), with linear and continuous dependence on h, ‖ṽ‖H1,2(Q) ≤
C ′′′‖h‖W1

, so that v := (ṽ + H)(T − ·) ∈ H1,2(Q) solves (12) with ‖v‖H1,2(Q) ≤ C ′′′′‖h‖W1
.

Since Mh = ∂v
∂ν |(0,T )×Γ0

, the boundedness of M follows from the boundedness of the Neumann
trace operator H1,2(Ω) → W0, see Theorem 2.2(ii). ¥
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Therefore, see Remark 2.5, also M may be regarded as a densely defined, potentially unbounded
operator from D(M) := W1 →֒ L2(0, T ; L2(Γ1)) to L2(0, T ; L2(Γ0)). We shall now verify that K
in fact coincides with M∗ on Ṽ0 = D(K) ⊂ D(M∗), readily justifying why (12) may be called
the adjoint problem.

Theorem 2.7 It holds that D(K) ⊂ D(M∗) and M∗|D(K) = K.

Proof. Abbreviate X := L2(0, T ; L2(Γ0)) and Y := L2(0, T ; L2(Γ1)). We will prove that

〈Kg, h〉Y = 〈g, Mh〉X , for all g ∈ D(K) ⊂ X, h ∈ D(M) ⊂ Y, (14)

from which it immediately follows that h 7→ 〈g, Mh〉X = 〈Kg, h〉Y is continuous on D(M) in
the topology of Y , i.e., D(K) ⊂ D(M∗). Moreover, as claimed, (14) implies that M∗ coincides
with K on D(K).

For given Dirichlet and Neumann data g ∈ Ṽ0 and h ∈ W1, Theorems 2.3 and 2.6 imply that
(4) and (12) have solutions u, v ∈ H1,2(Q), respectively. By using u(0, ·) = v(T, ·) = 0 and the
weak temporal differentiability of u and v, we compute that

0 =

∫

Ω

(
u(T, x)v(T, x) − u(0, x)v(0, x)

)
dx

=

∫

Ω

∫ T

0

∂
∂t

(
u(t, x)v(t, x)

)
dt dx

=

∫ T

0

∫

Ω

(
∂u
∂t (t, x)v(t, x) + ∂v

∂t (t, x)u(t, x)
)
dxdt,

where in the last step, we are allowed to change the order or integration since the integrand is
contained in L1(Q) due to u, v ∈ H1,2(Q). By (4), (12) and an application of Green’s formula
in space, see [24, Ch. 2], it follows that

0 =

∫ T

0

∫

Ω

(
v(t, x)∆u(t, x) − u(t, x)∆v(t, x)

)
dxdt

=

∫ T

0

∫

∂Ω

(
v(t, x)∂u

∂ν (t, x) − u(t, x)∂v
∂ν (t, x)

)
dΓ dt,

so that an insertion of the boundary data finally yields (14),

0 = −

∫ T

0

∫

Γ0

u(t, x)∂v
∂ν (t, x) dxdt −

∫ T

0

∫

Γ1

u(t, x)∂v
∂ν (t, x) dxdt

= −〈g, Mh〉X + 〈Kg, h〉Y . ¥

Remark 2.8 The Sobolev spaces introduced above are not preferable for treating the inverse
problem numerically. First of all, we need to tackle measurement noise. By using the classical
deterministic noise model we replace the image space V1 by L2(0, T ; L2(Γ1)). Moreover, we
quote [2, p. R120], which addresses a parameter identification problem for an elliptic differential
equation: ‘Working with the L2(∂Ω), norm instead of H1/2, is motivated by the high cost of
calculating fractional Sobolev space norms, as well as the possible lack of differentiability of the
operator norm.’. Hence, we will use L2-norms for our numerical applications.

These investigations show, that it will be necessary to have stable and efficient strategies
for solving the parabolic problems (4) and (12). For reasons that will be explained below, our
method of choice will be an adaptive wavelet scheme for solving these PDEs.
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3 Regularization and Adaptive Forward Solver

The considered IHCP described in Section 2 is an inverse and ill-posed parameter identification
problem. In terms of inverse problems, this can be formulated as a linear operator equation

Kx = y,

where evaluating the operator K : ℓ2 → Y requires to solve a parabolic partial differential
equation followed by a restriction to the outer boundary. Our investigation is motivated by
the need to monitor steel furnaces. High temperatures in certain regions of the furnace wall
indicate critical operating conditions. In particular we search for hot spots at a circle inside
the furnace wall. Those hot spots will appear locally at this inner circle. The shape of the
hot spot will change depending on whether it is created from a crack or a larger damaged
part on the inner surface of the furnace. Hence, it is feasible to assume that the searched for
temperature distribution has a sparse representation in a basis, which is well suited for capturing
the overall, smooth temperature distribution as well as some very localized structures with very
few coefficients. This leads to the choice of a wavelet basis.

We will apply Tikhonov regularization with a wavelet sparsity constraint. I.e. we expand
the searched for quantity g =

∑
xλψλ in a wavelet basis and determine the coefficient sequence

x ∈ ℓ2 by minimizing the functional

Γαw,p,δ(x) = ‖Kx − yδ‖2 + α‖x‖p
w,p, (15)

with

‖x‖p
w,p =

∑

λ

wλ|xλ|
p. (16)

The operator K is given by an inverse wavelet transform followed by A.
We will now summarize the basic construction of adaptive wavelet solvers for evaluating

the forward operator K and the convergence properties of iterated soft shrinkage methods with
adaptive operator evaluation.

3.1 Adaptive Iterated Soft Shrinkage

A minimizer of (15) can be obtained by iterated soft shrinkage

x0 arbitrary

xn+1 = Sαw,p(x
n − K∗(Kxn − yδ))

= {Sαwλ,p((x
n − K∗(Kxn − yδ))λ)}λ, (17)

with the shrinkage functions

Sαwλ,p(x) =

{
sgn(x)[|x| − αwλ

2 ]+ p = 1
G−1

αwλ,p(x) 1 < p ≤ 2
(18)

and

Gαwλ,p(x) = x + αwλp
2 sgn(x)|x|p−1.

The convergence of iterated soft shrinkage methods for 1 ≤ p ≤ 2 and linear operators K
to a minimizer of (15) was proved in [16]. The convergence can be shown under the following
assumptions:

9



• Γαw,p,δ as defined in (15) has a unique minimizer,

• the exponent satisfies 1 ≤ p ≤ 2,

• the weights satisfy 0 < w ≤ wλ for all λ.

In addition regularization properties of the minimizer were proved [16, Theorem 4.1]. Sub-
sequently this basic theory was extended to non-linear operators, general Banach spaces etc.,
see e.g. [3–5,11].

For complex applications, such as parameter identification problems for partial differential
equations, we need to design efficient algorithms for the evaluation of the operator K. Hence,
we will utilize adaptive operator evaluations [Kx]ε, where the theoretical results are restricted
to the choice 1 < p ≤ 2. We only present the basic facts and refer the interested reader to [1]
for details.

First of all, we want to emphasize again that an adaptive scheme does not use a fixed
operator approximation. The pointwise approximation of the solution operator may vary for
every evaluation. An adaptive scheme approximates the exact evaluation Kx within a tolerance
of ε:

‖[Kx]ε − Kx‖ ≤ ε.

The same assumption we make for the adjoint operator K∗. We assume

‖[K∗z]ε − K∗z‖ ≤ ε.

Iteration (17) reformulated for adaptive operator evaluations then looks like

x0 arbitrary

xn+1 = Sαw,p(x
n − [K∗([Kxn]ε − yδ)]ε). (19)

If we denote the minimizer of the exact iteration (17) by xδ
α,p, then we can define the distance

between this minimizer and the iterates generated by iteration (19) as

dn = ‖xn − xδ
α,p‖.

To show a decrease of these distances, we use the contraction property of the operator Sαw,p.
The basic estimate in [1] states that the iterates of the adaptive soft shrinkage method stay
within a ball of radius

R = ‖x0‖ + 2[ 1
w ( δ2

α + ‖x†‖p
w,p)]

1/p + ‖yδ‖ + 3δ,

which implies

dn ≤ 3ε
1+C + 1

1+C dn−1,

with

C = C(α,w, p, R) = αwp(p−1)
2 Rp−2.

Remark 3.1 The constant R contains the norm of the unknown solution x†. To be able to
calculate concrete values for C, it is necessary to estimate the constant R using only quantities,
which are actually available. There are at least two possibilities. Firstly, there is a coarser
estimate for R, which contains the norm of yδ instead of the norm of x†, see [1]. The second
possibility is to use some a priori knowledge on x†. For instance assume ‖x†‖w,p < ρ, with some
finite ρ.
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The decrease of the distances dn ensures that the iterates are located in a ball with radius
r(ε) = 6

C ε around xδ
α after a finite number of iterations. As proved in [1, Proposition 3.12], this

is the case after at most

N =




log

„
r(ε)
d0

«

log
“

C+2
2(C+1)

”




iterations.
So far we only considered the case of fixed parameters {α, δ}. To obtain a regularization

result for the adaptive case, we have to investigate the behavior of the iterates, in case that
δ tends to zero. For the proof of a regularization result it is crucial that the values of R are
bounded for δ tending to zero. Obviously, this is the case if limδ→0

δ2

α = 0. Coupling the
parameters δ, α and ε in a proper way finally gives the regularization result also in the adaptive
case, see [1, Theorem 4.2].

Theorem 3.2 Assume that K : ℓ2 → Y is a bounded linear operator mapping into a Hilbert
space Y with ‖K‖ < 1. Further let 1 < p ≤ 2 and 0 < w ≤ wλ. Let Kx̄ = y, with the ideal
solution x̄ and denote by x† the unique minimum-‖ · ‖w,p-solution of Kx = y. Let further the
following assumptions be valid:

• limδ→0 α(δ) = 0

• limδ→0
δ2

α(δ) = 0

and choose ε = O(ατ ) with τ > 1. Then we have

lim
δ→0

(
sup

‖Kx̄−yδ‖≤δ

‖xN(δ),δ − x†‖

)
= 0,

where xN(δ),δ = xN denotes the first iterate of iteration (19) such that dN = ‖xN − xδ
α‖ < r(ε).

3.2 Wavelets

In this section, we briefly recall the wavelet setting as far as it is needed for our purposes. In
its most general sense, a wavelet basis Ψ = {ψλ : λ ∈ J } is a Riesz basis for L2(Ω), where Ω
denotes a domain in R

d or a closed manifold. The indices λ ∈ J typically encode several types
of information, namely the scale (often denoted |λ|), the spatial location and also the type of
the wavelet. For instance, on the real line λ can be identified with (j, k), where j = |λ| denotes
the dyadic refinement level and 2−jk signifies the location of the wavelet.

We will not discuss at this point any technical description of the basis Ψ. Instead we assume
that the domain Ω under consideration enables us to construct a wavelet basis Ψ with the
following properties:

• the wavelets are local in the sense that

diam(suppψλ) ∼ 2−|λ|, λ ∈ J ;

• the wavelets satisfy the cancellation property

|〈v, ψλ〉| . 2−|λ|em‖v‖H em(supp ψλ),

where m̃ denotes some suitable parameter, and
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• the wavelet basis induces characterizations of Besov spaces of the form

‖f‖Bs
q(Lp(Ω)) ∼




∞∑

|λ|=j0

2
j(s+d(

1
2−

1
p ))q




∑

λ∈J ,|λ|=j

|〈f, ψ̃λ〉|
p




q/p



1/q

, (20)

where s > d
(

1
p − 1

)

+
and Ψ̃ = {ψ̃λ : λ ∈ J } denotes the dual basis

〈ψλ, ψ̃ν〉 = δλ,ν , λ, ν ∈ J .

Remark 3.3 i) By exploiting the norm equivalence (20) and using the fact that Bs
2(L2(Ω)) =

Hs(Ω), a simple rescaling immediately yields a Riesz basis for Hs. We shall also assume
that Dirichlet boundary conditions can be included, so that a characterization of the form
(20) also holds for Hs

0(Ω).

ii) Suitable constructions of wavelets on domains can be found, e.g., in [6, 13–15]. We also
refer to [7] for a detailed discussion.

3.3 Adaptive Wavelet Schemes for Elliptic Problems

In this section, we briefly recall how wavelets can be used to treat elliptic operator equations of
the form

Au = f, (21)

where we will assume A to be a boundedly invertible operator from some Hilbert space X into
its normed dual X ′, i.e.,

‖Au‖X′ ∼ ‖u‖X , u ∈ X.

We shall only discuss the basic ideas. For further information, the reader is referred to [8,9,12].
In our application, X will typically be a Sobolev space Hs(Ω). We shall mainly focus on the
special case where

a(v, w) := 〈Av, w〉

defines a symmetric bilinear form on X which is elliptic in the sense that

a(v, v) ∼ ‖v‖2
X . (22)

Usually, operator equations of the form (21) are solved by a Galerkin scheme, i.e., one defines an
increasing sequence of finite dimensional approximation spaces SΛl

:= span{ηµ : µ ∈ Λl}, where
SΛl

⊂ SΛl+1
, and projects the problem onto these spaces, i.e.,

〈AuΛl
, v〉 = 〈f, v〉 for all v ∈ SΛl

.

To compute the actual Galerkin approximation, one has to solve a linear system

GΛl
cΛl

= fΛl
, GΛl

= (〈Aηµ′ , ηµ〉)µ,µ′∈Λl
, (fΛ)µ = 〈f, ηµ〉, µ ∈ Λl.

Then the question arises how to choose the approximation spaces in a suitable way, for doing
that in a somewhat clumsy fashion would yield a very inefficient scheme. One natural idea
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would be to use an adaptive scheme, i.e., an updating strategy which essentially consists of the
following three steps:

solve − estimate − refine

GΛl
cΛl

= fΛl
‖u − uΛl

‖ =? add functions
a posteriori if necessary.

error estimator

Already the second step is highly nontrivial since the exact solution u is unknown, so that clever
a posteriori error estimators are needed. Then another challenging task is to show that the
refinement strategy leads to a convergent scheme and to estimate its order of convergence, if
possible. In recent years, it has been shown that both tasks can be solved if wavelets are used
as basis functions for the Galerkin scheme as we shall now explain.

The first step is to transform (21) into a discrete problem. By using the norm equivalences
(20), it is easy to see that (21) is equivalent to

Au = f ,

where

A := D−1〈AΨ, Ψ〉TD−1, u := Dc, f := D−1〈f,Ψ〉T , D = (2−s|λ| δλ,λ′)λ,λ′∈J ,

and the computation of the Galerkin approximation amounts to solving the system

AΛuΛ = fΛ := f |Λ, AΛ := (2−s(|λ|+|ν|)〈ψλ,Aψν〉)λ,ν∈Λ.

Now, ellipticity (22) and the norm equivalences (20) yield

‖u − uΛ‖ℓ2 ∼ ‖A(u − uΛ)‖ℓ2 ∼ ‖f − A(uΛ)‖ℓ2 ∼ ‖rΛ‖ℓ2 ,

so that the ℓ2-norm of the residual rΛ serves as an a posteriori error estimator. Each individual
coefficient (rΛ)λ can be viewed as a local error indicator. Therefore a natural adaptive strategy
would consist in catching the bulk of the residual, i.e., to choose the new index set Λ̂ such that

‖rΛ|Λ̂‖ℓ2 ≥ ζ‖rΛ‖ℓ2 , for some ζ ∈ (0, 1).

However, such a scheme would not be implementable since the residual involves infinitely many
coefficients. To transform this idea into an implementable scheme, the following three subrou-
tines are needed:

• RHS[ε,g] → gε: determines for g ∈ ℓ2(J ) a finitely supported gε ∈ ℓ2(J ) such that

‖g − gε‖ℓ2(J ) ≤ ε;

• APPLY[ε,N,v] → wε: determines for N ∈ L(ℓ2(J )) and for a finitely supported v ∈
ℓ2(J ) a finitely supported wε such that

‖Nv − wε‖ℓ2(J ) ≤ ε;
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• COARSE[ε,v] → vε: determines for a finitely supported v ∈ ℓ2(J ) a finitely supported
vε ∈ ℓ2(J ) with at most N significant coefficients, such that

‖v − vε‖ℓ2(J ) ≤ ε. (23)

Moreover, N . Nmin holds, Nmin being the minimal number of entries for which (23) is
valid.

Then, employing the key idea outlined above, the resulting fundamental algorithm reads as
follows:

ALGORITHM 1. SOLVE[ε,A, f ] → uε:

Fix target accuracy ε, Λ0 := ∅, rΛ0
:= f , ε0 := ‖f‖ℓ2 , j := 0

While εj > ε do
j := j + 1
εj := 2−(j+1)‖f‖ℓ2 , Λj,0 := Λj , uj,0 := uj ;
For k = 1, ..., M do

Compute Galerkin approximation uΛj,k−1
for Λj,k−1;

Compute r̃Λj,k−1
:= RHS[c1εj+1, f ] − APPLY[c1εj+1,A,uΛj,k−1

];

Compute smallest set Λj,k s.t. ‖r̃Λj,k−1
|Λj,k

‖ℓ2 ≥ 1
2‖r̃Λj,k−1

‖ℓ2 ;
od
COARSE[c2εj+1,uΛj,k

] → (Λj+1,uj+1)
od

Remark 3.4 i) We shall not discuss in detail the concrete numerical realization of the
three fundamental subroutines. The subroutine COARSE consists of a thresholding step,
whereas RHS essentially requires the computation of a best n-term approximation. The
most complicated building block is APPLY. Let us just mention that for elliptic operators
with Schwartz kernels, the cancellation property of wavelets can be used to establish its
existence. For further details, the reader is referred to [8, 9, 31].

ii) In ALGORITHM 1, c1and c2 denote some suitably chosen constants whose concrete
values depend on the problem at hand. Also the parameter M has to be chosen in a
suitable way. We refer again to [8] for details.

It can be shown that ALGORITHM 1 has the following basic properties:

• ALGORITHM 1 is guaranteed to converge for a huge class of problems, i.e.

‖u − uε‖ . ε;

• The order of convergence of ALGORITHM 1 is optimal in the sense that it asymptoti-
cally realizes the convergence order of best n-term wavelet approximation, i.e., if the best
n-term approximation satisfies O(n−s), then

‖u − uε‖ = O((#suppuε)
−s);

• The number of arithmetic operations stays proportional to the number of unknowns, that
is, the number of flops needed to compute uε satisfies O(#suppuε).

14



3.4 Adaptive Wavelet Schemes for Parabolic Problems

In this section, we turn to the development of adaptive wavelet-based numerical schemes for
linear parabolic problems of the form

∂
∂tu(t, x) = A(x, ∂)u(t, x) + f(t, x) in (0, T ] × Ω,

u(t, x) = 0 on (0, T ] × ∂Ω,
u(0, x) = u0(x) in Ω.

(24)

We assume that we are given a Gelfand triple X →֒ V →֒ X ′ of Hilbert spaces and that
A(x, ∂) : X −→ X ′ fits into the setting of Section 3.3. Moreover, we assume that the operator
A : D(A) ⊂ V → V is sectorial in the sense of [27].

The parabolic problem (24) may be considered as an abstract initial value problem

u′(t) = Au(t) + f(t), t ∈ (0, T ], u(0) = u0, (25)

for a Hilbert space–valued variable u : [0, T ] → V . For its numerical treatment, we use the Rothe
method which is also known as the horizontal method of lines. Doing so, the discretization is
performed in two major steps. Firstly, we consider a semidiscretization in time, where we will
employ an S–stage linearly implicit scheme. We shall end up with an orbit of approximations
u(n) ∈ L2(Ω) at intermediate times tn that are implicitly given via the S elliptic stage equations.
In a finite element context, this very approach has already been propagated in [22,23]. For the
realization of the increment u(n) 7→ u(n+1) and the spatial discretization of the stage equations,
we will then employ the adaptive wavelet scheme introduced in Section 3.3 as a black box solver.

Let us start with the time discretization. We consider an S–stage linearly implicit method for
the semidiscretization in time of Rosenbrock–Wanner(ROW)-type. By this we mean an iteration
of the form

u(n+1) = u(n) +
S∑

i=1

miui (26)

with the stage equations

(
1

hγi,i
I − J

)
ui = A

(
u(n) +

i−1∑

j=1

ai,juj

)
+ f(tn + αih) +

i−1∑

j=1

ci,j

h uj + hγig, i = 1, . . . , S, (27)

where J ≈ A and g ≈ f ′(tn) and (γi,j)
S
i,j=1, (ai,j)

S
i,j=1, (αi,j)

S
i,j=1, (ci,j)

S
i,j=1, (m1, . . . , mS)⊤ are

suitably chosen parameters.
It is well-known that for a strongly A(θ)-stable Rosenbrock method the numerical approxi-

mations according to (27) indeed converge to the exact solution as h → 0, see [26] for details.
However, a constant temporal step size h might not be the most economic choice. At least for
times t close to 0 and in situations where the driving term f is not smooth at t, it is advisable to
choose small values of h in order to track the behavior of the exact solution correctly. In regions
where f and u are temporally smooth, larger time step sizes may be used. As a consequence,
we have to employ an a posteriori temporal error estimator to control the current value of h.
The traditional approach resorts to estimators for the local truncation error at tn

δh(tn) := Φtn,tn+h(u(tn)) − u(tn + h),

where Φtn,tn+h : V → V is the increment mapping of the given Rosenbrock scheme at time tn
with step size h. For the global error at t = tn+1 = tn + hn, we have the decomposition

en+1 = u(n+1) − u(tn+1) = Φtn,tn+hn(u(n)) − Φtn,tn+hn(u(tn)) + δhn
(tn),
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i.e., en+1 comprises the local error at time tn and the difference between the current Rosenbrock
step Φtn,tn+hn(u(n)) and the virtual step Φtn,tn+hn(u(tn)) with starting point u(tn). Estimators
for the local discretization error δhn

(tn) can be either based on an embedded lower order scheme
or on extrapolation techniques, see [19, 20]. For applications to partial differential equations,
embedding strategies yield sufficient results and thus are our method of choice.

Since the iteration (26) cannot be implemented numerically, we will now finally address the
numerical approximation of all the ingredients by finite–dimensional counterparts. Precisely, we
have to find approximate, computable iterates ũ(n+1), such that the additional error ũ(n+1) −
u(n+1) introduced by the spatial discretization stays below some given tolerance ε when measured
in an appropriate norm. Hence this perturbation of the virtual orbit {u(n)}n≥0 can be interpreted
as a controllable additional error of the temporal discretization. The accumulation of local
perturbations in the course of the iteration is then an issue for the step size controller. In order
not to spoil the convergence behavior of the unperturbed iterates u(n) we will demand that
ũ(n+1) − u(n+1) stays small in the topology of X, which results in the requirement

‖ũ(n+1) − u(n+1)‖X ≤ ε

for the numerical scheme, where ε > 0 is the desired target accuracy. To achieve this goal, we
want to use the convergent adaptive wavelet schemes as outlined in Subsection 3.3. Observe
that by (26), the exact increment u(n+1) differs from u(n) by a linear combination of the exact
solutions ui of the S stage equations (27). The operators involved in (27) take the form

Bα := αI −A, α ≥ 0,

where α = (hγi,i)
−1 for the i–th stage equation. By the estimate

〈B0v, v〉 ≤ 〈Bαv, v〉 = α〈v, v〉V + 〈B0v, v〉 ≤ (Cα + 1)〈B0v, v〉, v ∈ X,

we see that the energy norms ‖v‖Bα := |〈Bαv, v〉|1/2 differ from ‖v‖B0
h ‖v‖X only by an

α–dependent constant:

‖v‖B0
≤ ‖v‖Bα ≤ (Cα + 1)1/2‖v‖B0

, v ∈ X.

Consequently, if we define

(Dα)λ,λ := ‖ψλ‖Bα , λ ∈ J ,

then the system D−1
α Ψ is a Riesz basis in the energy space (H, ‖ · ‖Bα), with Riesz constants

independent of α ≥ 0:

‖c‖ℓ2 ∼ ‖c⊤D−1
α Ψ‖Bα , c ∈ ℓ2.

Therefore, we can use the Riesz basis D−1
α Ψ, α = (hγi,i)

−1 as test functions in a variational
formulation of (27). Abbreviating the exact right–hand side of (27) by

ri,h := A
(
u(n) +

i−1∑

j=1

ai,juj

)
+ f(tn + αih) +

i−1∑

j=1

ci,j

h uj + hγif
′(tn),

we get the system of equations

〈Bαui,D
−1
α Ψ〉⊤ = 〈ri,h,D−1

α Ψ〉⊤. (28)
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Inserting a wavelet representation of ui = (Dαui)
⊤D−1

α Ψ into the variational formulation (28),
we end up with the biinfinite linear system in ℓ2

D−1
α 〈BαΨ, Ψ〉⊤D−1

α Dαui = D−1
α 〈ri,h, Ψ〉⊤. (29)

Now we observe that problem (29) exactly fits into the setting of Subsection 3.3.
A detailed analysis of the concepts outlined above can be found in the PhD-thesis [29].

4 Numerical Investigations

In this section we present some numerical experiments for the IHCP from monitoring steel
production introduced in Section 2. First we summarize the whole solution algorithm, which
has been described in detail in the previous section. The numerical results are then presented
in the second part of the current section.

4.1 The Algorithm for Solving the IHCP

In Section 3 we described several theoretical building blocks, which are necessary for solving the
IHCP stated in Section 2. Now, we put everything together and specify the whole reconstruction
algorithm for a fixed regularization parameter:

1. Choose a temperature distribution g0 on (0, T ) × Γ0.

2. Choose a precision ε, set n = 0.

3. Solve the direct problem (4) with g = gn, within a precision of ε.

4. Restrict the solution u to the outer boundary (0, T ) × Γ1.

5. Calculate the residual u|(0,T )×Γ1
− ĥδ.

6. Solve the adjoint problem (12) with h = u|(0,T )×Γ1
− ĥδ, within a precision of ε.

7. Calculate the derivative of the solution v in step 6 in normal direction ∂v
∂ν |(0,T )×Γ0

on the
inner boundary.

8. Determine the argument of the shrinkage operator gn − (∂v
∂ν |(0,T )×Γ0

).

9. Calculate the next iterate gn+1 = Sαw,p(g
n − (∂v

∂ν |(0,T )×Γ0
)).

10. Go back to step 3.

Having this strategy in mind, we consider its numerical realization extensively in the next
subsection.

Remark 4.1 A crucial point in regularization theory is choosing the regularization parameter
in an optimal way. In case of classical regularization schemes, like Tikhonov regularization or
Landweber iteration with exact operator evaluations, there are several a priori and a posteriori
parameter choice rules, which guarantee optimal convergence rates.

For the adaptive theory presented above, no theory for choosing the regularization parameter
is available, so far. As far as we know there are not even any a posteriori parameter choice
strategies for the presented generalized Tikhonov-regularization defined by (15), (16) using exact
operator evaluations. However, this topic is still a current field of research and will be considered
in a forthcoming paper.
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4.2 Numerical Results for the IHCP

For the numerical experiments on the ring-shaped domain Ω, we choose radii r0 = 0.5 and
r1 = 2, and the final time T is set to 1. The spaces L2(0, 1; L2(Γi)) ∼= L2((0, 1) × Γi) that
contain the boundary data for the forward and adjoint problem, i ∈ {0, 1}, are discretized by
using biorthogonal wavelet bases Ψ = {ψλ}λ∈J . By the specific geometry of Ω, we can work
in both cases with an appropriately lifted tensor product Ψ = Ψtime ⊗ Ψangular of a boundary-
adapted wavelet basis Ψtime ⊂ L2(0, 1) for the temporal component and a periodic wavelet basis
Ψangular ⊂ L2(0, 1)per for the angular component, using polar coordinates. In particular, we
will choose Ψtime to be a linear spline wavelet basis with two vanishing moments, as constructed
in [28]. The angular basis Ψangular is taken as a periodized quadratic spline wavelet basis from [10]
with three vanishing moments.

The sought temperature distribution x ∈ L2((0, 1) × Γ0) should be sparse in the underlying
wavelet system. To this end, for simplicity, we choose x to be one of the scaling functions within
Ψ on the coarsest multiresolution level j0, see Figure 2 for a plot. Internally, we then compute
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Figure 2: Exact solution x for the experiments.

the wavelet coefficient array of the observed data y = Ax as an input for the iterative shrinkage
algorithm, augmented by additional noise of magnitude δ ≥ ‖yδ − y‖.

Within the iteration, the forward and the adjoint operators are applied inexactly by an
adaptive discretization of the generic parabolic problem

ut = ∆u + f, u|(0,1)×Γ0
= 0, ∂u

∂ν |(0,1)×Γ1
= 0, u(0, ·) = u0, (30)

endowed with different driving terms f and initial data u0, depending on whether we are solving
an inhomogeneous Dirichlet or Neumann problem. For example, assume that some inhomoge-
neous Dirichlet data g are given for the forward operator K. Testing (4) with functions from
V := {v ∈ H1(Ω) | v|Γ0

= 0}, we observe that it suffices to look for solutions of the form
u = w + G, where G(t) = Eg(t) denotes a bounded trace lifting of g(t) ∈ H1/2(Γ0) into the
space H1(Ω), and w solves the homogeneous problem (30) with a suitable driving term f . The
concrete form of f can be derived when testing (4) with v ∈ V ,

〈f(t), v〉V ′×V = −

∫

Ω
∇G(t)∇v dx − 〈∂G(t)

∂t , v〉V ′×V for all v ∈ V and a.e. t ∈ (0, T ).

In a completely analogous way, also inhomogeneous Neumann data h for the adjoint problem
(12) can be transformed into an associated driving term f̃ for the homogeneous problem (30).
We refer to Section 2 for further details on the involved function spaces.
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Using the specific geometry of Ω, concrete extensions of the current Dirichlet and Neumann
data may be obtained by multiplication with an appropriately shaped polynomial in radial
direction. To be specific, Dirichlet data g ∈ L2((0, 1) × Γ0) are extended into the space-time
cylinder by the setting

G(t,x) = g(t, r0x

‖x‖)p(‖x‖), for all (t,x) ∈ (0, 1) × Ω,

where p is a quadratic polynomial with p(r0) = 1 and p(r1) = p′(r1) = 0, ensuring that the
extended boundary data vanish of second order at the exterior boundary Γ1. Conversely, a global
function with Neumann data h ∈ L2((0, 1) × Γ1) and second-order zero boundary conditions at
Γ0 is given by

H(t,x) = h(t, r1x

‖x‖)q(‖x‖), for all (t,x) ∈ (0, 1) × Ω,

where q is a quadratic polynomial with q(r0) = q′(r0) = 0 and q′(r1) = 1.
The parabolic subproblems are treated with the Rothe method, see Subsection 3.4, us-

ing inexact linearly implicit increments [29]. For the experiments, we choose the second-order
Rosenbrock scheme ROS2. The elliptic subproblems are solved by the adaptive wavelet-Galerkin
algorithm from [8], up to a prescribed accuracy. Due to the fact that the temporal wavelet basis
Ψtime is constructed from interpolatory scaling functions, a transformation of space-time data
into a spatial wavelet representation at dyadic time nodes t = 2−jk is feasible via 2D wavelet
transforms.

In the following, starting from f0 = 0, we present the iterates after a certain fixed number
of shrinkage iterations. The weights wλ are chosen to be 1. By the norm equivalences (20) for

the wavelet basis Ψ, this choice in turn corresponds to a B
2/p−1
p,p penalty term in the Tikhonov

functional. The tolerance ε for the inexact forward and adjoint solves is chosen proportional to
the regularization parameter α, corresponding to the limit case τ → 1 in Theorem 3.2.

We first show some results for the case p = 1.1 and for certain values of the regularization
parameter α. For an absolute noise level δ = 10−3, the results from Figure 3 show that iterative
shrinkage can locate the local features of the target function quite well. However, the amplitudes
of the reconstructions are significantly smaller, than in the exact solution. There are still quite
a few active wavelet coefficients in regions where the exact solution x is zero.
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Figure 3: Reconstructions for p = 1.1 after 2500 iterations (δ = 0.001) for α = 9.8e − 4 (left)
and α = 2.0e − 3 (right)

Interestingly, the results improve considerably if iterative shrinkage is replaced by iterative
thresholding, i.e., switching to the case p = 1. Without having theoretical results available, we
choose the same dependence of the accuracies ε on α. Results after 2500 thresholding iterations
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can be found in Figure 4. We see that thresholding effectively reduced the number of degrees of
freedom. In regions where the exact solution x is zero, also the reconstructions vanish.
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Figure 4: Reconstructions for p = 1 after 2500 iterations (δ = 0.001) for α = 4.9e− 4 (left) and
α = 2.0e − 3 (right)

In Figures 5 and 6, the absolute noise level δ is increased to 10−2. We observe the same
effect as for low noise. Both for p = 1.1 and for p = 1, the localization of the reconstructions is
quite good. But the amplitude of the exact solution is reconstructed considerably better when
using thresholding iterations instead of mere shrinkage. Moreover, the reconstructions exhibit
fewer active wavelet coefficients, due to the soft thresholding operations.
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Figure 5: Reconstructions for p = 1.1 after 2500 iterations (δ = 0.01) for α = 9.8e− 4 (left) and
α = 2.0e − 3 (right)

Some figures concerning the summands of the Tikhonov functional for certain reconstructions
x can be found in Table 1. As is already visible to some extent in the preceding figures, the
reconstructions for p = 1.1 require more active wavelet coefficients than for p = 1, in particular
when the noise parameter δ grows. As an effect, the results for p = 1.1 exhibit significantly larger
residual errors than those for p = 1, underlining the visual anticipation from the presented plots.

Up to a certain noise level and with an appropriate choice of the regularization parameter
α, we see that it is indeed possible to obtain almost perfect reconstructions of target functions
that are sparse in the underlying wavelet system.
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Figure 6: Reconstructions for p = 1 after 2500 iterations (δ = 0.01) for α = 9.8e − 4 (left) and
α = 2.0e − 3 (right)

δ p α ‖Kx − yδ‖L2
‖x‖w,p

10−3 1 4.9e − 4 1.46e − 3 2.11e − 1
1.1 9.8e − 4 3.12e − 3 2.07e − 1

10−2 1 9.8e − 4 6.12e − 3 2.32e − 1
1.1 9.8e − 4 5.29e − 3 4.40e − 1

Table 1: Residual norms and penalty terms for certain reconstructions.

5 Conclusions

In this paper, we have outlined how the abstract analysis investigated in [1] can be applied to
a very concrete application, i.e., to an inverse heat conduction problem which arises from mon-
itoring steel production. The method consists of an adaptive iterated soft shrinkage procedure
based on wavelets. The algorithm requires the approximate solution of the forward problem,
and for this, also an adaptive wavelet scheme has been employed. The use of wavelets for both
issues is advantageous for the following reasons. Firstly, wavelets are well-suited for the detec-
tion of sparse structures. Secondly, adaptive wavelet schemes for elliptic and parabolic problems
are guaranteed to converge with optimal order. Thirdly, our approach avoids the complicated
and unconvenient change of bases when different systems of ansatz functions are used. The
numerical experiments clearly confirm the power of our approach. More numerical experiments
will be presented in the near future.

References

[1] T. Bonesky and P. Maass, Iterated soft shrinkage with adaptive operator evaluations,
preprint, 2008, To appear in Inverse and Ill-Posed Problems.

[2] L. Borcea, Electrical impedance tomography, Inverse Problems 18 (2002), no. 6, R99–R136.

[3] K. Bredies and D. A. Lorenz, Iterated hard shrinkage for minimization problems with spar-
sity constraints, SIAM J. Sci. Comput. 30 (2008), no. 2, 657–683.

[4] , Linear convergence of iterated soft-thresholding, preprint, 2008, To appear in Jour-
nal of Fourier Analysis and Applications.

21



[5] K. Bredies, D. A. Lorenz, and P. Maass, A generalized conditional gradient method and its
connection to an iterative shrinkage method, To appear in Computational Optimization and
Applications, 2008.

[6] C. Canuto, A. Tabacco, and K. Urban, The wavelet element method, part II: Realization
and additional features in 2D and 3D, Appl. Comput. Harmon. Anal. 8 (2000), 123–165.

[7] A. Cohen, Wavelet methods in numerical analysis, Handbook of Numerical Analysis (P.G.
Ciarlet and J.L. Lions, eds.), vol. VII, North-Holland, Amsterdam, 2000, pp. 417–711.

[8] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator
equations – Convergence rates, Math. Comput. 70 (2001), no. 233, 27–75.

[9] , Adaptive wavelet methods II: Beyond the elliptic case, Found. Comput. Math. 2

(2002), no. 3, 203–245.

[10] A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported
wavelets, Commun. Pure Appl. Math. 45 (1992), 485–560.

[11] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Model. Simul. 4 (2005), no. 4, 1168–1200.

[12] S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale bases and local
error estimation for elliptic problems, Appl. Numer. Math. 23 (1997), 21–48.

[13] W. Dahmen and R. Schneider, Wavelets with complementary boundary conditions — Func-
tion spaces on the cube, Result. Math. 34 (1998), no. 3–4, 255–293.

[14] , Composite wavelet bases for operator equations, Math. Comput. 68 (1999), 1533–
1567.

[15] , Wavelets on manifolds I. Construction and domain decomposition, SIAM J. Math.
Anal. 31 (1999), 184–230.

[16] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Commun. Pure Appl. Math. 57 (2004), no. 11,
1413–1457.

[17] L. Eldén, The numerical solution of a non-characteristic Cauchy problem for a parabolic
equation, Numerical treatment of inverse problems in differential and integral equations,
Proc. int. Workshop, Heidelberg 1982, Prog. Sci. Comput., vol. 2, 1983, pp. 246–268.

[18] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Kluwer, 1996.

[19] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations. I: Nonstiff
problems, 2nd rev. ed., Springer Series in Computational Mathematics, vol. 8, Springer,
Berlin, 1993.

[20] E. Hairer and G. Wanner, Solving ordinary differential equations. II: Stiff and differential–
algebraic problems, 2nd rev. ed., Springer Series in Computational Mathematics, vol. 14,
Springer, Berlin, 1996.
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[3] E. Novak and H. Woźniakowski. Optimal Order of Convergence and (In-) Tractability
of Multivariate Approximation of Smooth Functions. Preprint 3, DFG-SPP 1324,
October 2008.

[4] M. Espig, L. Grasedyck, and W. Hackbusch. Black Box Low Tensor Rank Approxi-
mation using Fibre-Crosses. Preprint 4, DFG-SPP 1324, October 2008.

[5] T. Bonesky, S. Dahlke, P. Maass, and T. Raasch. Adaptive Wavelet Methods and
Sparsity Reconstruction for Inverse Heat Conduction Problems. Preprint 5, DFG-
SPP 1324, January 2009.


