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Minimization of non-smooth, non-convex

functionals by iterative thresholding

Kristian Bredies∗ Dirk A. Lorenz†

April 17, 2009

Abstract

Numerical algorithms for a special class of non-smooth and non-convex
minimization problems in infinite dimensional Hilbert spaces are consid-
ered. The functionals under consideration are the sum of a smooth and
non-smooth functional, both possibly non-convex. We propose a gener-
alization of the gradient projection method and analyze its convergence
properties. For separable constraints in the sequence space, we show that
the algorithm amounts to an iterative thresholding procedure. In this
special case we prove strong subsequentional convergence and, moreover
show that the limit satisfies necessary conditions for a global minimizer.
Eventually, the algorithm is applied to `p-penalties arising in the recovery
of sparse data and numerical tests are presented.

AMS classification scheme numbers: 49M05, 65K10
Keywords: Non-convex optimization, non-smooth optimization, gradient pro-
jection method, iterative thresholding

1 Introduction

In this article we develop an algorithm which aims at minimizing non-smooth
and non-convex functionals, covering the important special case of Tikhonov
functionals for non-linear operators and non-convex penalty terms. The min-
imization of non-convex and non-smooth functionals is a delicate matter. On
the one hand, there is a class of popular generic algorithms such as simulated
annealing, genetic algorithms and other derivative-free methods which can be
performed with minimal assumptions on the objective functional. However,
they tend to be impractical in higher-dimensional or infinite-dimensional spaces.
On the other hand, many minimization algorithms for non-convex problems
which are based on derivatives can be applied when the functional is sufficiently
smooth. Convergence can, under suitable conditions, be established, also in
infinite-dimensional spaces [21, 22]. When it comes to non-convex and non-
smooth optimization problems in high (or infinite) dimensions as it is typical
for inverse problems in mathematical image processing or partial differential
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36, A-8010 Graz, Austria, kristian.bredies@uni-graz.at
†Institute for Analysis and Algebra, TU Braunschweig, D-38092 Braunschweig, Germany,

d.lorenz@tu-braunschweig.de

1



equations, there are only a few algorithms available, for instance the grad-
uated non-convexity algorithm which works for finite-dimensional, large-scale
problems [1, 19, 20]. In the present paper, a new method for the numerical
minimization of such functionals is proposed.

More precisely, we introduce a generalized gradient projection method which
involves non-convex proximity mappings and show convergence. Our plan of
establishing convergence can roughly be summarized as follows: First we show,
that the proposed algorithm reduces the functional value in every step. By
coercivity this will give us a weakly convergent subsequence. Then we use
arguments for the specific case of separable penalties to show strong convergence
of a subsequence and we show that the limit is a critical point of the functional.
Under additional assumptions we get strong convergence of the whole sequence.

Our problem in general reads as follows: Let X be a Hilbert space, S : X →
[0,∞[ a differentiable functional and R : X → [0,∞] possibly non-smooth. For
a positive parameter α we consider the minimization problem

min
u∈X

Tα(u) with Tα(u) = S(u) + αR(u). (1)

Such a Tα typically models the Tikhonov functional associated with the inverse
problem K(u) = g where K : X → Y is a weakly sequentially closed and
sufficiently smooth mapping into the Hilbert space Y . Here, S measures, for
example, the discrepancy, i.e.

S(u) =
‖K(u)− g‖2

2

while R serves as a regularization term, which is non-convex and non-smooth
in our setting.

As a case of particular importance we will consider separable penalties,
i.e. for X = `2 and φ : [0,∞[→ [0,∞[ we consider

R(u) =
∑
k∈N

φ(|uk|)

(while R(u) = ∞ whenever the sum does not converge). Note that we do not
assume φ (and hence R) to be either convex or smooth.

One may be tempted to use the approach via surrogate functionals as pro-
posed in [9] and applied to non-linear problems in [23]. In this approach, one
replaces the functional with

Φ(u, a) = Tα(u) + C
2 ‖u− a‖

2 + 1
2 ‖K(u)−K(a)‖2

and defining an iteration through un+1 ∈ argminu Φ(u, un). It is easy to see
that this produces decreasing functional values but as shown in [23] one has
to solve a “fixed-point problem” in each iteration. In the non-convex case this
fixed-point equation becomes an inclusion with a discontinuous operator and
hence, there is no guarantee for convergence. Hence, we will not pursue this
direction but use the generalized gradient projection algorithm from [5] (see
also [3, 7] in which a generalized conditional gradient method was used in the
case of convex constraints and [4] for the case of Banach spaces).

The paper is organized as follows: Section 2 presents the generalized gradient
projection method for the case of general functionals S + αR. Section 3 treats
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the case R(u) =
∑
φ(|uk|) and in Section 4 we specialize the results further to

the case φ(x) = xp with 0 < p ≤ 1 and S(u) = ‖Ku− g‖2 /2 with a bounded
linear operator K. Section 5 presents numerical experiments and Section 6
summarizes and concludes the paper.

2 The generalized gradient projection method

We first consider the general case of minimizing

Tα(u) = S(u) + αR(u).

The generalized gradient projection algorithm builds on the gradient projection
algorithm for constrained minimization problems

min
u∈C

S(u),

where C is a usually a non-empty, convex and closed set incorporating the
constraints. In this case, the method calculates iterates according to un+1 =
PC(un − snS′(un)) where PC denotes the projection onto C and sn is a prop-
erly chosen step-size (cf. [10, 11]). The main idea of the generalized gradient
projection algorithm for the solution of (1) is to replace the convex constraint
C by a general functional R and to replace the projection PC by the associated
proximity operator, i.e.

Js : u 7→ argmin
v∈X

‖u− v‖2

2
+ sαR(v). (2)

While proximity operators are well-studied for convex functionals [24, 25], the
non-convex case has been of interest to researchers only recently [15]. The
motivation for the consideration of this minimization problem is that, in practice
and as we will see later, it is much easier to solve than the original problem since
it only involves the regularization term R. Hence, the generalized gradient
projection algorithm reads as

u0 ∈ dom(S + αR) , un+1 ∈ Gα,sn
(un),

Gα,sn
(u) = argmin

v∈X

‖u− snS′(u)− v‖2

2
+ snαR(v).

(3)

In [5] the convergence of the generalized gradient projection method is worked
out for the case of convex R and it is proved that the algorithm converges
linearly in certain cases. In the non-convex case the operator Js may be set-
valued because there may be several global minima—moreover local minima may
exist. However, if one is able to evaluate Js, i.e. to calculate global minimizers
of 1

2 ‖u− v‖
2 + sαR(v), descent of the functional value is guaranteed as shown

in the following proposition.

Proposition 2.1. Let S : X → [0,∞[ be weakly lower-semicontinuous and
differentiable with S′ being Lipschitz continuous with constant L > 0. Further-
more, let R : X → [0,∞] be weakly lower-semicontinuous and α > 0. Then, Js
is non-empty for each s > 0 and it holds for every

v ∈ Gα,s(u)
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that
Tα(v) ≤ Tα(u)− 1

2

(
1
s − L

)
‖v − u‖2 . (4)

Proof. Due to the assumptions, the functional in (2) is proper, coercive and
weakly lower-semicontinuous for each u ∈ X and hence, minimizers exist, in
particular for the minimization problem in (3). Due to the minimizing property
of v it holds that

1
2 ‖v − u+ sS′(u)‖2 + sαR(v) ≤ 1

2 ‖sS
′(u)‖2 + sαR(u)

which implies

αR(v)− αR(u) ≤ 1
2s

(‖sS′(u)‖2 − ‖v − u+ sS′(u)‖2)

= − 〈S′(u)| v − u〉 − 1
2s
‖v − u‖2 .

With this, it follows that

(S + αR)(v)− (S + αR)(u) ≤ S(v)− S(u)− 〈S′(u)| v − u〉 − 1
2s
‖v − u‖2 . (5)

Finally, we use the Lipschitz-continuity of S′ and the inequality of Cauchy-
Schwarz to show

S(v)− S(u)− 〈S′(u)| v − u〉 =
∫ 1

0

〈S′(u− t(v − u))− S′(u)| v − u〉 dt

≤
∫ 1

0

Lt ‖v − u‖2 dt

=
L

2
‖v − u‖2

which immediately implies the assertion.

From this proposition we conclude that a step-size 0 < s < L−1 reduces the
objective functional Tα. But since Tα is bounded from below we get that the
sequence (Tα(un)) converges. As a direct consequence we moreover have the
following corollary.

Corollary 2.2. In the situation of Proposition 2.1 and with a step-size sequence
(sn) satisfying 0 < s ≤ sn ≤ s < L−1 for each n, the sequence (un) generated
by the iteration (3) obeys∥∥un+1 − un

∥∥ → 0 as n→∞. (6)

Proof. The assertion follows from the estimate

1
2 ( 1
sn
− L)

∥∥un+1 − un
∥∥2 ≤ (S + αR)(un)− (S + αR)(un+1)

and the observation that (S + αR)(un) is a converging sequence.

In general, this does not lead to convergence, but if R is, for example, some
power of a norm in a space which is compactly embedded in X, i.e.

R(u) =

{
‖u‖pZ u ∈ Z
∞ u /∈ Z

, Z ↪−↪→ X, p > 0, (7)
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then from the boundedness of the sequence (Tα(un)) follows that (R(un)) is
bounded and hence (un) is precompact in X, admitting a convergent subse-
quence unj → u∗ as j →∞.

It is however, not clear whether the limit is a global solution (which is rather
unlikely in general) or at least a point which is stationary in some sense. At the
current stage, however, we can state the following.

Proposition 2.3. For each global minimizer u∗ of Tα and 0 < s < L−1, we
have

Gα,s(u∗) = {u∗}.

In other words: Each minimizer is a fixed point of the generalized gradient
projection method.

Moreover, if 0 < s ≤ sn ≤ s < L−1, each convergent subsequence of (un)
according to (3) converges, for some s ∈ [s, s], to an element of the closed set

Uα,s = {u ∈ X
∣∣ u ∈ Gα,s(u)}.

Proof. Choosing v ∈ Gα,s(u∗) and utilizing (4) implies

Tα(u∗) ≤ Tα(v) ≤ Tα(u∗)−
( 1

2s
− L

2

)
‖v − u∗‖2 ,

hence ‖v − u∗‖2 ≤ 0 and consequently, v = u∗.
For the remainder, first examine, for 0 < s < L−1, the functional

Ψα,s(u) =
‖sS′(u)‖2

2
+ sαR(u)−

(
min
v∈X

‖u− sS′(u)− v‖2

2
+ sαR(v)

)
which satisfies Ψα,s ≥ 0 and Ψα,s(u) = 0 if and only if u ∈ Gα,s(u) or, equiva-
lently, u ∈ Uα,s.

We will show that Ψα,s is lower semi-continuous with respect to both u and
s which in particular implies that Uα,s is closed. For this purpose, choose a (un)
with un → u, (sn) ⊂ ]0, L−1[ such that sn → s with 0 < s < L−1 and fix a
v ∈ X with R(v) <∞. Computations lead to

Ψα,sn(un) ≥
‖snS′(un)‖2 − ‖sS′(u)‖2

2
+
‖sS′(u)‖2 − ‖un − snS′(un)− v‖2

2
+ snα

(
R(un)−R(v)

)
and by continuity of S′ as well as lower semi-continuity of R follows

lim inf
n→∞

Ψα,sn
(un) ≥

‖sS′(u)‖2 − ‖u− sS′(u)− v‖2

2
+ sα

(
R(u)−R(v)

)
.

This holds true for each v ∈ X such that R(v) <∞, hence

lim inf
n→∞

Ψα,s(un) ≥
‖sS′(u)‖2

2
+ sαR(u) + sup

v∈X

(
−
‖u− sS′(u)− v‖2

2
− sαR(v)

)
= Ψα,s(u).

Next, suppose that a subsequence of the iterates converges, i.e. unj → u as
j → ∞ for some u ∈ X. Note that the step-sizes (snj

) associated with the
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subsequence (unj
) are contained in the compact set [s, s], hence, one can say

without loss of generality, that snj
→ s for some s ∈ [s, s]. For each j, one easily

sees the identity

αR(unj+1)− αR(unj ) = −
Ψα,snj

(unj )

snj

−
〈
S′(unj )

∣∣unj+1 − unj
〉

− 1
2snj

∥∥unj+1 − unj
∥∥2
.

As we already concluded in the proof of Proposition 2.1, this leads to

Tα(unj+1)− Tα(unj ) ≤ −
Ψα,snj

(unj )

snj

−
( 1

2snj

− L

2

)∥∥unj+1 − unj
∥∥2

implying
Ψα,snj

(unj ) ≤ snj

(
Tα(unj )− Tα(unj+1)

)
.

Since the right-hand side tends to zero as j → ∞ it follows, by lower semi-
continuity, that Ψα,s(u) = 0 and hence u ∈ Uα,s.

The sets Uα,s in the latter proposition describe, in some sense, the fixed
points of the iteration, hence one can say that the generalized gradient projection
method converges subsequentially, if it converges, to a fixed point. The main
objective of this article is to show a framework in which the iteration (3) is
computable in the non-convex setting and in which weaker conditions than
the compactness stated in (7) lead to convergence to such a fixed point. We
therefore examine, in the following, separable non-convex regularization terms
in the sequence space `2. Due to the special properties these constraints have,
it is possible to obtain convergence for `p-regularization with 0 < p < 1, for
example, without a (strong) compactness assumption.

3 Application to separable constraints

Before turning directly to sparsity constraints in terms of `p (quasi-)norms we
study the application of (3) in X = `2 for separable constraints of the form:

R(u) =
∞∑
k=1

φ(|uk|) (8)

Throughout this section, we assume the following on φ.

Assumption 3.1. Let φ : [0,∞[ → [0,∞[ be continuous with φ(0) = 0 and
φ(x)→∞ whenever x→∞. It is moreover assumed that for each b > 0 there
exists an a > 0 such that φ(x) ≥ ax2 for x ∈ [0, b].

Note that this ensures coercivity and weak sequential lower-semicontinuity
in `2, see Lemmas 3.2 and 3.4, respectively, in [6]. Furthermore, we usually
assume that S : `2 → [0,∞[ is weakly sequentially lower semi-continuous and
differentiable with Lipschitz continuous derivative whose constant is L > 0 (this
only excludes trivial problems).
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Let us take a closer look at the generalized gradient projection method (3).
Assuming that S′(u) is computationally accessible, the main problem is the
evaluation of the proximity operator (as it is also pointed out in [15], where
similar, more general considerations can be found). But fortunately, as one can
easily see, in the case of separable constraints, computing Js is reduced to the
solution of the one-dimensional minimization problem

js(x) ∈ argmin
y

1
2 (y − x)2 + sαφ(|y|)

for x ∈ R. In fact, by symmetry, we can moreover restrict ourselves to the case
x ≥ 0. Knowing the (generally multi-valued) mapping js, iteration (3) amounts
to {

u0 such that
∑∞
k=1 φ(|u0

k|) <∞,
un+1
k ∈ Js

(
un − snS′(un)

)
k

= jsn

(
unk − snS′(un)k

)
.

(9)

The following is concerned with the convergence analysis of this iteration.
As it will turn out, subsequential convergence to a stationary point can be en-
sured under sufficiently general conditions. In addition to that, some necessary
properties of the sought global minimizers of (1) are derived and the algorithm
is adapted such that it converges to points where these conditions are met.

We start with an observation on js which resembles a result from [20].

Lemma 3.2. Let φ be non-decreasing on [0,∞[ as well as differentiable on
]0,∞[ with φ′(x) → ∞ for x → 0. Then there exists a κs > 0 which depends
monotonically increasing on s such that

|x| < κs =⇒ js(x) = 0.

Proof. By definition of js we have, for js(x) 6= 0,

x = js(x) + sαφ′
(
js(x)

)
= (I + sαφ′)

(
js(x)

)
.

Without loss of generality, consider x > 0. Since φ′ ≥ 0 and φ′(y) tends to
infinity for y → 0 the value κs = infy>0 y+sαφ′(y) is positive meaning that for
all y > 0 we have (I + sαφ′)(y) ≥ κs which proves the claim. Moreover, from
the definition of κs that it depends monotonically increasing on s.

We give properties of the iterates of the generalized gradient projection
method. The crucial observation is that due to the fact that js maps either
to 0 or to a value with modulus greater or equal to κs, so a change of support
always implies a “jump” of size κs. We are interested in examining what a
change of support implies for the functional descent. This is closely connected
to the following property of S.

Assumption 3.3. Let S : `2 → [0,∞[ be continuously differentiable with
Lipschitz constant L. Assume there is an orthogonal projection P onto a finite-
dimensional space and an L∗ < L such that with Q = I − P the estimate

‖S′(u)− S′(v)‖2 ≤ L2 ‖P (u− v)‖2 + (L∗)2 ‖Q(u− v)‖2 (10)

is satisfied for each u, v ∈ `2 .

7



Such an assumption leads to the following refinement of Proposition 2.1
which also gives functional descent for a step-size s = L−1.

Proposition 3.4. Suppose that S satisfies Assumption 3.3 and let 0 < s ≤ L−1.
Then, for each u ∈ `2 and v ∈ Gα,s(u), the functional descent of Tα can be

estimated by

Tα(v) ≤ Tα(u)−1
2

(1
s
−L
)
‖P (v − u)‖2−1

2
sL∗ + 1
sL+ 1

(1
s
−L∗

)
‖Q(v − u)‖2 . (11)

Proof. For the verification of the claimed estimate, we can restrict ourselves to
the case u 6= v. In analogy to the proof of Proposition 2.1, one gets to the
intermediate step (5) which can be further estimated, using Cauchy-Schwarz as
well as (10), according to

Tα(v)− Tα(u) ≤
∫ 1

0

〈
S′
(
u+ t(v − u)

)
− S′(u)

∣∣ v − u〉 dt−
‖v − u‖2

2s

≤
∫ 1

0

t
(
L2 ‖P (v − u)‖2 + (L∗)2 ‖Q(v − u)‖2

)1/2 dt ‖v − u‖ −
‖v − u‖2

2s

≤ 1
2

((
L2 ‖P (v − u)‖2 + (L∗)2

∥∥Q(v − u)2
∥∥)1/2 − ‖v − u‖

s

)
‖v − u‖ .

(12)

Note that L∗ ≤ L ≤ 1/s, so the difference on the right hand side is actually
non-positive. By writing

√
a−
√
b = (a−b)/(

√
a+
√
b) and estimating it becomes(

L2 ‖P (v − u)‖2 + (L∗)2 ‖Q(v − u)‖2
)1/2 − ‖v − u‖

s

≤
(
L+

1
s

)−1
(
L2 − s−2

)
‖P (v − u)‖2 +

(
(L∗)2 − s−2

)
‖Q(v − u)‖2

‖v − u‖
. (13)

Combining (12) and (13), rewriting (L∗)2 − s−2 = (L∗ + s−1)(L∗ − s−1) and
expanding finally gives (11).

In the context of Assumption 3.3, we also observe the following.

Lemma 3.5. Let P : `2 → `2 be an orthogonal projection onto a finite-
dimensional space and Q = I − P . Then, for each 0 < ε < 1 there exists a k0

such that for the truncation operator (Mk0u)k = 0 if k ≤ k0 and (Mk0u)k = uk
otherwise holds

‖Mk0Pu‖ ≤ ε ‖Pu‖ , (1− ε) ‖Mk0u‖ ≤ ‖QMk0u‖

for all u ∈ `2.

Proof. With an orthonormal basis z1, . . . , zm of rangeP , we can write

Mk0Pu =
m∑
j=1

〈zj |Pu〉Mk0zj ⇒ ‖Mk0Pu‖ ≤
( m∑
j=1

‖Mk0zj‖
)
‖Pu‖ ,

so choosing k0 large enough that the sum on the right-hand side does not exceed
ε yields ‖Mk0Pu‖ ≤ ε ‖Pu‖. Likewise,

PMk0u =
m∑
j=1

〈Mk0zj |Mk0u〉 zj ⇒ ‖PMk0u‖ ≤
( m∑
j=1

‖Mk0zj‖
)
‖Mk0u‖
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which implies

‖QMk0u‖ ≥ ‖Mk0u‖ − ‖PMk0u‖ ≥ (1− ε) ‖Mk0u‖ .

Lemma 3.2 together with Proposition 3.4 implies that the sequence generated
by (9) eventually does not change its support from some iterate on.

Lemma 3.6. Let φ fulfill the assumption of Lemma 3.2 and let R be according
to (8). Let furthermore (un) be generated by iteration (9) and the step-size
sequence (sn) satisfy

0 < s ≤ sn ≤ s < L−1.

Then all iterates un (n ≥ 1) have a finite support and the support only changes
finitely many times. In case Assumption 3.3 is satisfied and s = L−1, the
supports of all un for n ≥ 1 are still contained in a finite set.

Proof. First assume that s < L−1. Due to Lemma 3.2 there exists a κs > 0
such that |x| < κs implies jsn

(x) = 0 for all n, the latter since sn ≥ s > 0 and
κs depends monotonically increasing on s. Hence, each non-zero component of
un has magnitude greater or equal to κs. We conclude that if the support of
un+1 differs from un, we have

∥∥un+1 − un
∥∥ ≥ κs. But from Proposition 2.1 we

deduce that also ( 1
sn
− L

)κ2
s

2
≤ Tα(un)− Tα(un+1)

with the right-hand side going to zero as n→∞. Hence, a change of the support
can only occur a finite number of times.

In case s = L−1 and when Assumption 3.3 is satisfied, first assume that∥∥Q(un+1 − un)
∥∥ does not converge to 0, meaning that there exists a c > 0 such

that
∥∥Q(un+1 − un)

∥∥ ≥ c for infinitely many n. For these n, Proposition 3.4
yields

c

2
snL

∗ + 1
snL+ 1

( 1
sn
− L∗

)
≤ Tα(un)− Tα(un+1)

which is a contradiction since the right-hand side tends to zero as n→ 0 while
the left-hand side is bounded away from zero. Hence,

∥∥Q(un+1 − un)
∥∥ → 0.

Next, we choose k0 according to Lemma 3.5 (with ε = 1/2, for instance)
and consider the mappings QMk0 as well as QM⊥k0 = Q(I −Mk0). Note that
rangeQMk0 ∩ rangeQM⊥k0 is a finite-dimensional space on which the pseudo-
inverse (QMk0)† is linear and continuous. Denoting by Z the projection on this
space and by vn = un+1 − un we have

Qvn = QMk0v
n + ZQM⊥k0v

n︸ ︷︷ ︸
=wn

+(I − Z)QM⊥k0v
n.

It follows that wn → 0 as n→∞ since

rangeQ = (rangeQMk0 + rangeZQM⊥k0)⊕ range(I − Z)QM⊥k0

by the construction of Z. We conclude, by Lemma 3.5, that

Mk0v
n +Mk0(QMk0)†ZQM⊥k0v

n︸ ︷︷ ︸
=xn

→ 0
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as n→∞. Since (un) is bounded, (xn) is bounded and, moreover, contained in a
finite-dimensional subspace of `2, hence according to Lemma 3.5 we can achieve
for arbitrary ε > 0 that ‖Mk1x

n‖ ≤ ε/2 for each n, by simply choosing k1 ≥ k0

large enough. Also, ‖Mk1v
n‖ ≤ ‖Mk0v

n + xn‖ + ‖Mk1x
n‖ so by choosing n0

suitably it follows ‖Mk0v
n + xn‖ ≤ ε/2 for n ≥ n0 and hence ‖Mk1v

n‖ ≤ ε for
these n.

Letting 0 < ε < κs eventually allows us to conclude that Mk1u
n has fixed

support for n ≥ n0 since the opposite would imply that ‖Mk1v
n‖ ≥ κs for some

n ≥ n0 which contradicts the above. Consequently, all supports of un for n ≥ 1
are contained in a finite set.

By the above lemma we have the existence of a strong accumulation point
of the sequence (un):

Corollary 3.7. Every subsequence of (un) has a strong accumulation point
u∗. In the case s < L−1, this accumulation point is a fixed point in the sense
u∗ ∈ Gα,s(u∗) for some s ∈ [s, s].

Proof. By assumption, Tα is coercive in `2 and hence, there is a subsequence
(unj ) which has a weak accumulation point u∗ in `2. By Lemma 3.6 there is
an iteration index j0 and a finite set J ⊂ N such that unj

k = 0 for j ≥ j0
and k ∈ J . Hence, we have for the finitely many k ∈ J that unj

k → u∗k as
j →∞ and infinitely often unj

k = u∗k = 0 (for j > j0). Finally, we conclude that
unj converges strongly to u∗. The above argumentation holds true for every
subsequence of (un).

Furthermore, if s < L−1, one can apply Proposition 2.3 to get that u∗ ∈
Gα,s(u∗) for some s ∈ [s, s].

Note that similar arguments have been used in [2] for φ = χR\{0} in the finite
dimensional case. Hence, the generalized gradient projection method converges,
subsequentially, to a fixed point. In general, we do not know whether this fixed
point is a global minimizer, it is no even clear if it still is a local minimizer. One
can, however, derive necessary conditions for the global minimizer and make
sure that the (subsequential) limits of the algorithm converge to points where
these conditions are met. Such an approach is carried out in the following. It will
turn out that one actually has to take care of the step-size sequence (sn): As we
will see, it is essential that they converge to L−1 on the one hand. On the other
hand, one still has to ensure convergence of the algorithm. These requirements
call for a further analysis of the situation. But first, let us summarize the result
on convergence for step-sizes not approaching L−1.

Theorem 3.8. Let S : X → [0,∞[ be continuously differentiable with Lipschitz
continuous derivative (with constant L) and 0 < s ≤ sn ≤ s < L−1. Further-
more, let R be according to (8) with a φ satisfying Assumption 3.1 as well as φ
being non-decreasing and continuously differentiable on ]0,∞[ with φ′(x) → ∞
for x→ 0.

Then, the sequence (un) according to (3) has a strong accumulation point.
Each accumulation point is a fixed-point of Gα,s for some s ∈ [s, s]. If, addi-
tionally, there exists an isolated accumulation point u∗, then the whole sequence
converges to the fixed point u∗.
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Proof. One can easily convince oneself of the validity of the prerequisites for
Lemma 3.6 and Corollary 3.7 which gives a strong accumulation point u for
each subsequence of (un) which is moreover a fixed point of Gα,s for some
s ∈ [s, s].

Now suppose that u∗ is an isolated accumulation point for (un), i.e. there is
a δ > 0 such that ‖u∗ − u‖ ≥ δ for each accumulation point u 6= u∗. Assume
that not the whole sequence converges to u∗, i.e. there exists a 0 < ε < δ and
infinitely many n with ‖un − u∗‖ ≥ ε. Denote by N the set of these n. Since
there exists a subsequence of (un) with limit u∗ we can find infinitely many
n with n ∈ N and n + 1 /∈ N . Denote by (unj ) the subsequence associated
with these n. By construction

∥∥unj+1 − u∗
∥∥ ≤ ε < δ, so unj+1 → u∗ and since∥∥unj − unj+1

∥∥ → 0, also unj → u∗. Because of nj ∈ N , this is a contradiction,
hence the assumption that not the whole sequence converged must have been
wrong.

We now proceed with the case where the step-size sequence (sn) approaches
L−1. In order to state necessary conditions for global minimizers, let us first
derive sufficient conditions for the continuity of the js outside of the “dead zone”
{x ∈ R

∣∣ js(x) = 0}. For that purpose, we introduce some additional assump-
tions on φ, which are supposed to the fulfilled (in addition to Assumption 3.1)
in the remainder of this section.

Assumption 3.9. Let φ : [0,∞[→ [0,∞[ continuous with φ(0) = 0 satisfy the
conditions

(a) the derivative φ′ is strictly convex on ]0,∞[ with φ′(x) → ∞ for x → 0
and φ′(x)/x→ 0 for x→∞,

(b) some single-valued selection of x 7→ ∂φ′(x)x is locally integrable on [0,∞[.

We need a preparatory lemma for proving continuity of the js.

Lemma 3.10. Assumption 3.9 implies the following properties:

(a) for each s > 0, the function ρs : y 7→ y + sαφ′(y) exists on R+, is strictly
convex and attains a minimum at ys > 0,

(b) the function ψ : y 7→ 2
(
φ(y) − yφ′(y)

)
/y2 is strictly decreasing and one-

to-one on ]0,∞[→ ]0,∞[,

(c) we have, for y > 0 and any z ∈ ∂φ′(y), that ψ(y) > −z.

Proof. Since it is convex, the function φ′ is continuous. Moreover, φ′ has to
satisfy limy→∞ φ′(y) ≥ 0 (with ∞ allowed) since otherwise

lim
y→∞

φ(y) = lim
y→∞

∫ y

0

φ′(t) dt→ −∞

which contradicts φ ≥ 0. Thus, each ρs is a strictly convex function with
ρs(x)→∞ for y → 0 and y →∞ which implies that a unique minimizer ys > 0
exists.

Next, note that φ′′(y) = ∂φ′(y) for almost every y > 0. So, we can use
Taylor expansion of φ in y to get

φ(y)− yφ′(y) = −
∫ y

0

t∂φ′(t) dt.

11
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Figure 1: Illustration of some φ satisfying Assumption 3.9, φ′, ρs (α = 1,
s ∈ {1/2, 1, 2}) and ψ.

Since ∂φ′(t) is strictly monotonically increasing, for y > 0 and any z ∈ ∂φ′(y),

−
∫ y

0

t∂φ′(t) dt > −z
∫ y

0

tdt = −zy
2

2
.

This already proves ψ(y) > −z. For ψ being strictly decreasing, consider y > 0
where ∂φ′(y) = φ′′(y) and deduce

ψ′(y) =
2
y

( 2
y2

∫ y

0

t∂φ′(t) dt− φ′′(y)
)
< 0 ⇔ ψ(y) > −φ′′(y),

where the latter has already been established. Hence, ψ′(y) < 0 almost ev-
erywhere and, consequently, ψ is strictly monotonically decreasing. Moreover,
ψ(y) > −φ′′(y) also implies ψ(y)→∞ as y → 0 since φ′(y) is bounded around 0
whenever φ′′(y) is bounded around 0. Finally, from the assumption φ′(y)/y → 0
as y →∞ follows that φ(y)/y2 → 0: For each ε > 0 there is a y0 such that for
y ≥ y0 we have |φ′(y)/y| ≤ ε and hence

φ(y)− φ(y0) =
∫ y

y0

tφ′(t)/t dt ≤ ε

2
(y2 − y2

0) ⇒ φ(y)
y2
≤ φ(y0)

y2
+
ε

2
.

One can choose a y1 such that φ(y0)/y2 < ε/2 for y ≥ y1, so for y large enough
we have φ(y)/y2 < ε. Consequently, ψ(y) → 0 as y → ∞ and, together with
the above, ψ : [0,∞[→ [0,∞[ is one-to-one.

Example 3.11. For p ∈ ]0, 1[, it can be verified that the functions φ(x) = xp as
well as φ(x) = log(xp + 1) satisfy Assumption 3.9. In Figure 1, you can see an
illustration of the constructions in Lemma 3.10.

The continuity properties can now easily be deduced.
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Lemma 3.12. The functions js obey

js(x) =

{
0 for |x| ≤ τs
sign(x)ρ−1

s (|x|) for |x| ≥ τs,

|js(x)| ∈ {0} ∪ {x ≥ λs}

where
λs = ψ−1

(
(sα)−1

)
, τs = ρs ◦ ψ−1

(
(sα)−1

)
. (14)

In particular, js takes two values if |x| = τs, is left- and right continuous there
(in the sense that js(±τ) are exactly the left- and right limits) as well as con-
tinuous on {|x| 6= τs}.

Proof. Let s > 0 be fixed and denote by Fx(y) = 1
2 (y − x)2 + sαφ(|y|). Fur-

thermore, assume, without loss of generality, x ≥ 0 such that we only need to
minimize Fx over [0,∞[. Note the identities F ′x = ρs − x and F ′′ = ρ′s. From
Lemma 3.10 we know that there is a unique minimizer ys > 0 of ρs. Conse-
quently, F ′′x (y) = ρ′s(y) < 0 for y < ys meaning that local minimizers y∗ 6= 0 of
Fx obey y∗ ≥ ys.

Thus, we can conclude that js(x) = 0 whenever x < ρs(ys) since no y∗ > 0
exists for which these necessary conditions are satisfied. On the other hand, if
x ≥ ρs(ys), a unique y∗ ≥ ys with ρs(y∗) = x ⇔ F ′x(y∗) = 0 exists and we
just have to compare the values of Fx(0) and Fx(y∗) in order to determine the
minimizers. It turns out that

Fx(y∗)− Fx(0) =
(sαφ′(y∗))2

2
+ sαφ(y∗)− (y∗ + sαφ′(y∗))2

2

= sα
(
φ(y∗)− y∗φ′(y∗)

)
− (y∗)2

2

which leads to

sign
(
Fx(y∗)− Fx(0)

)
= sign

(
ψ(y∗)− (sα)−1

)
= sign

(
ψ−1((sα)−1)− y∗

)
= sign(λs − y∗)

the latter since ψ is invertible and strictly monotonically decreasing, see Lemma
3.10 (b). Finally, ρs is also strictly monotonically increasing on {y ≥ ys} and
x = ρs(y∗), hence

sign
(
Fx(y∗)− Fx(0)

)
= sign

(
ρs(λs)− x

)
= sign(τs − x).

Note that necessarily τs ≥ ρs(ys), hence js(x) = 0 for all x < τs, js(x) = ρ−1
s (x)

for x > τs. For x = τs, there are the two minimizers 0 and λs.
Finally observe that ρs can be continuously inverted on [y0,∞[, hence js is

continuous on [τs,∞[ with the left limit in τs being λs. The claimed continuity
on [0, τs] is trivial and it is easy to see that range(js) = {0} ∪ {|x| ≥ λs}.

Remark 3.13. We remark that the threshold τs is always greater than the mini-
mum of ρs: Since ρs is strictly convex, the minimizer ys satisfies z = −(sα)−1 ∈
∂φ′(ys). According to the definition, (sα)−1 = ψ(λs), so due to Lemma 3.10 (c)
we have ψ(ys) > −z = ψ(λs) and hence ys < λs. Since ρs is strictly monotoni-
cally increasing on [ys,∞[, miny>0 ρs(y) = ρs(ys) = κs < τs follows. Moreover,
note that in particular we have that ∂ρs(τs) does not contain 0.
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Figure 2: Illustration of js for some particular φ and s ∈ {1/4, 1/2, 1} (α = 1).
Additionally, the curve of breaking points (τs, λs) is depicted.

You can find illustrations of the functions js for some particular φ in Figure 2.
The thresholds (14) for s = L−1 play an important role for global optimality as
they occur in the necessary conditions.

Proposition 3.14. For λL−1 and τL−1 according to (14) each global minimizer
u∗ of Tα possesses the following properties:

(a) The set J = {k ∈ N
∣∣ u∗k 6= 0} is finite,

(b) for all k ∈ J it holds that −S′(u∗)k = α sgn(u∗k)φ′(|u∗k|) and |u∗k| ≥ λL−1 ,

(c) For all k /∈ J it holds that |S′(u∗)k| ≤ LτL−1 .

Proof. Suppose u∗ ∈ `2, u∗ 6= 0 is a global minimizer of Tα. Obviously,
−S′(u∗) ∈ `2. Exploiting the condition that limx↓0 φ

′(x) = ∞, we are able
to find an ε > 0 such that |φ′(x)| ≥ 1 for |x| ≤ ε and x 6= 0. Take a k for which
|u∗k| ≤ ε and u∗k 6= 0, differentiate with respect to that component to get

S′(u∗)k + α sgn(u∗k)φ′(|u∗k|) = 0 ⇒ |S′(u∗)|k = αφ′(|u∗k|) ≥ α.

Consequently, α−1 ‖S′(u∗)‖ ≥ #{|u∗k| ≤ ε ∧ u∗k 6= 0} and since the norm is finite
as well as only finitely many u∗k can satisfy |u∗k| > ε, J = {u∗k 6= 0} has to be
finite. This proves the first assertion as well as the first part of the second.

Next, we will show that if u∗k 6= 0 and |u∗k| < λL−1 for some k, setting u∗k
to zero strictly decreases the functional value of Tα and hence, u∗ was not a
global minimizer. Let v∗k = 0 and v∗l = u∗l for l 6= k such that v∗ − u∗ = −u∗kek.
Expand S at u∗ and compare Tα(v∗) with Tα(u∗):

Tα(u∗)− Tα(v∗) = − 〈S′(u∗)| v∗ − u∗〉

−
∫ 1

0

〈
S′
(
u∗ + t(v∗ − u∗)

)
− S′(u∗)

∣∣ v∗ − u∗〉 dt

+ α

∞∑
l=1

φ(|u∗l |)− α
∑
l 6=k

φ(|u∗l |)

≥ u∗kS′(u∗)k − L
(u∗k)2

2
+ αφ(|u∗k|)

=
α(u∗k)2

2

(2
(
φ(|u∗k|)− |u∗k|φ′(|u∗k|)

)
(u∗k)2

− (L−1α)−1
)
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remembering that u∗k 6= 0 implies S′(u∗)k = −α sgn(u∗k)φ′(|u∗k|). The term on
the right-hand side is positive if and only if |u∗k| < ψ−1

(
(L−1α)−1

)
= λL−1 (also

confer Lemma 3.10), thus |u∗k| < λL−1 implies Tα(v∗) < Tα(u∗). Hence, for
u∗ being a global minimizer, it is necessary that |u∗k| ≥ λL−1 for each k ∈ J ,
concluding the proof of the second assertion.

For the remainder, we will utilize a similar line of argumentation. Take a
k /∈ J , i.e. u∗k = 0 and denote by w∗k = S′(u∗)k. Our interest is in finding
sufficient criteria which lead to a functional descent by just varying the k-th
component. Let v∗l = u∗l for l 6= k and v∗k ∈ R. With this, we get, similarly to
the above,

Tα(u∗)− Tα(v∗) ≥ w∗kv∗k − L
(v∗k)2

2
− αφ(|v∗k|)

= −L
(1

2

(
v∗k −

w∗k
L

)2

+
α

L
φ(|v∗k|)

)
+

(w∗k)2

2L
. (15)

Maximizing the term on the right hand side with respect to v∗k gives v∗k =
jL−1

(
w∗kL

−1
)

which is only non-zero if |w∗k| ≥ LτL−1 , see Lemma 3.12. From
jL−1 being the solution of a minimization problem we also know that

|w∗k| > LτL−1 ⇒ 1
2

(
v∗k −

w∗k
L

)2

+
α

L
φ′(|v∗k|) <

(w∗k)2

2L2

and plugging this into (15) yields Tα(u∗)− Tα(v∗) > 0. Consequently, if |w∗k| >
LτL−1 for a u∗k = 0 then u∗ was not a global minimizer what was to show.

The properties (a)–(c) tell us what is necessary for the generalized gradient
projection method to be able to detect global minimizers.

Remark 3.15. In order to get consistent results, we use, in the sequel, a single-
valued selection of Gα,s:

G+
α,s(u)k =


0 if uk 6= 0, |uk − sS′(u)k| < τs

0 if uk = 0, |uk − sS′(u)k| ≤ τs
ρ−1
s (uk − sS′(u)k) if uk 6= 0, |uk − sS′(u)k| ≥ τs
ρ−1
s (uk − sS′(u)k) if uk = 0, |uk − sS′(u)k| > τs

(16)

This rule basically tells in the ambiguous cases to select 0 whenever uk = 0 and
the non-zero value of js otherwise.

Proposition 3.16. A global minimizer u∗ for the Tikhonov functional Tα is a
fixed point of G+

α,L−1 . The other way around, each fixed point of this mapping
satisfies the properties (a)–(c) of Proposition 3.14.

Proof. Let u∗ be a minimizer and denote again by J the set of indices where
u∗k 6= 0. If k ∈ J , then −L−1S′(u∗)k = L−1α sgn(u∗k)φ′(|u∗k|) as well as |u∗k| ≥
λL−1 , hence∣∣u∗k − L−1S′(u∗)k

∣∣ =
∣∣u∗k + L−1α sgn(u∗k)φ′(|u∗k|)

∣∣ = ρL−1

(
|u∗k|

)
≥ ρL−1(λL−1) = τL−1

15



by Proposition 3.14. Consequently, by the particular single-valued selection
v∗ = G+

α,L−1(u∗) according to (16), the corresponding jL−1 always yields the
non-zero value, i.e.

v∗k = ρ−1
L−1

(
u∗k − L−1S′(u∗)k

)
= ρ−1

L−1

(
u∗k + L−1α sign(u∗k)φ′(|u∗k|)

)
= u∗k

by the definition of ρL−1 .
Take a k /∈ J and observe that

|L−1S′(u∗)k| ≤ τL−1 ⇒ G+
α,L−1

(
u∗ − L−1αS′(u∗)

)
k

= 0

again by the single-valued selection (16). Hence v∗k = u∗k = 0 and consequently,
u∗ is a fixed point.

Now suppose that u∗ obeys u∗ = G+
α,L−1(u∗). Obviously, u∗ has only finitely

many non-zero coefficients, meaning that property (a) of Proposition 3.14 is
satisfied. For u∗k 6= 0 we have

u∗k − L−1S′(u∗)k = u∗k + L−1α sign(u∗k)φ′(|u∗k|)

thus S′(u∗)k+α sign(u∗k)φ′(|u∗k|) = 0 and since range(jL−1) = {0}∪{|x| ≥ λL−1},
see Proposition 3.12, we also have property (b). Finally, u∗k = 0 means that
L−1|S′(u∗)k| ≤ τL−1 , so |S′(u∗)k| ≤ LτL−1 , implying that u∗ also obeys prop-
erty (c).

These results suggest that the generalized gradient projection method should
actually look for fixed points of Gα,L−1 . There are, however, some difficulties
with taking L−1 as a step-size since no strict descent of Tα can be guaranteed,
see Proposition 3.4. Thus, one can only try to have subsequential convergence
to a fixed point of G+

α,L−1 , which is indeed possible.

Lemma 3.17. If sn → s∗ monotonically increasing and xn → x∗ with |x| 6= τs∗

then jsn
(xn)→ js∗(x∗). For |x∗| = τs∗ , the following implications hold

|xn| ≥ τsn
⇒ jsn

(xn)→ sign(x∗)λs∗ , |xn| ≤ τsn
⇒ jsn

(xn)→ 0.

Proof. First suppose |x∗| < τs∗ meaning that from some index on, |xn| < τs∗ ≤
τsn

since τs depends monotonically decreasing on s. Consequently, jsn
(xn) = 0

from some index on and limn→∞ jsn
(xn) = 0 = js∗(x∗). Note that this also

gives jsn
(xn)→ 0 whenever |xn| ≤ τsn

, in particular for |x∗| = τs∗ .
Now assume |x∗| > τs∗ implying that from some index on, |xn| > τsn since

τsn → τs∗ from above. Hence
(
x∗, s∗, js∗(x∗)

)
is in

M = {(x, s, y) ∈ R3
∣∣ s ∈ ]0,∞[ , |x| ≥ κs , |y| ≥ ys},

denoting by ys and κs again the minimizing argument and minimum of ρs,
respectively. It is easily seen that F : M → R defined by

F (x, s, y) = y − x+ sαφ′(y) = ρs(y)− x

is locally Lipschitz continuous in M . Moreover, for |x∗| ≥ τs∗ we have that
the generalized partial derivative satisfies ∂F

∂y

(
x∗, s∗, js∗(x∗)

)
> 0, the latter

since τs∗ > ρs∗(ys∗), see Remark 3.13. The implicit function theorem for
Lipschitz functions [8] implies the Lipschitz continuity of the mapping locally
parametrizing the fiber F−1(0), i.e. (s, x) 7→ ρ−1

s (x) = js(x). Due to that,
jsn

(xn)→ js∗(x∗). Finally, the latter also applies to the case where |xn| ≥ τsn

and |x∗| = τs∗ , yielding jsn(xn)→ sign(x∗)λs∗ .
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Lemma 3.18. Let sn → s monotonically increasing and (unj ) be a subsequence
with unj → u. Then it holds that G+

α,snj
(unj )→ G+

α,s(u).

Proof. Since S′ is Lipschitz continuous, it is easy to see that unj−snj
S′(unj )→

u− sS′(u) and in particular unj

k − snj
S′(unj )k → uk− sS′(u)k for each k. Now,

since unj are iterates, the range property of jsn (see Lemma 3.12) applies,
i.e. u

nj

k = 0 or |unj

k | ≥ λsnj
. One can easily derive from (14) that λsnj

→
λs monotonically increasing, thus either uk = 0 or |uk| ≥ λs. Consequently,
uk = 0 for almost every k and u

nj

k = 0 for all of these k and from some
index on. It follows |unj

k − sS′(unj )k| ≤ τsnj
and |uk − sS′(u)k| ≤ τs since

τsnj
→ τs monotonically decreasing (again, see (14)). Hence, G+

α,s(u)k = 0 =
limj→∞G+

α,snj
(unj

)k by the single-valued selection (16).

Analogously, from some index on we have |unj

k | ≥ τsnj
for all k for which

uk 6= 0. Of course, this also implies for uk that |uk| ≥ τs, thus, by the continuity
statement of Lemma 3.17 and (16) we get

G+
α,snj

(unj )k = ρ−1
snj

(
u
nj

k − snjS
′(unj )k

)
→ ρ−1

s

(
uk − sS′(u)k

)
= G+

α,s(u)k

and consequently, the desired statement.

The previous lemmas and propositions are the essential ingredients for prov-
ing subsequential convergence of the generalized gradient projection method
when sn is increasing monotonically with limit L−1 in a suitable manner. This
will be done in the following theorem.

Theorem 3.19. If, under the same prerequisites as for Theorem 3.8, the As-
sumptions 3.3 and 3.9 hold true and the iteration is performed according to (16)
with step-size choice sn = n/(Ln + 1), then there exists a strong accumulation
u point of (un) which is a fixed point of G+

α,L−1 , i.e. it obeys (a)–(c) of Propo-
sition 3.14. Furthermore, the whole sequence converges to u if

1. uk − L−1S′(u)k 6= ±τL−1 for each k and

2. u is a strong local minimizer for Tα in the sense that there exists a contin-
uous, strictly monotonically increasing ξ : [0, δ] → [0,∞[ for some δ > 0
with ξ(0) = 0 such that

Tα(u) + ξ(‖v − u‖) ≤ Tα(v)

whenever ‖v − u‖ ≤ δ and supp v ⊂ suppu.

Proof. We first establish the existence of a subsequence (unj ) which satisfies∥∥unj+1 − unj
∥∥ → 0. Assume the opposite which means that for each ε > 0

there exists a n0 such that
∥∥un+1 − un

∥∥2 ≥ ε2 for n ≥ n0. According to
Proposition 2.1,

ε2

2

( 1
sn
− L

)
≤ Tα(un)− Tα(un+1)

which yields, by the particular choice of sn, after summing up,

n1−1∑
n=n0

1
n
≤ 2
ε2
(
Tα(un0)− Tα(un1)

)
17



for any n1 > n0. Since (Tα(un)) is a decreasing sequence, the right-hand side is
bounded as n1 →∞ while the right-hand is not, a contradiction.

Hence, there has to be a subsequence for which
∥∥unj+1 − unj

∥∥ → 0 as j → 0.
Moreover, Corollary 3.7 implies that by further restriction to a subsequence,
also denoted by (unj ), we can achieve that unj → u for some u ∈ `2. From
Lemma 3.18 we know that unj+1 = G+

α,snj
(unj )→ G+

α,L−1(u) and, consequently,

u = G+
α,L−1(u) from which Proposition 3.16 gives the desired properties.

For the convergence statement regarding the whole sequence, note that since
unj − snj

S′(unj )→ u−L−1S′(u), we can assume that for some j0 it holds that
|unj

k − snjS
′(unj )k| 6= τL−1 for each k and for j ≥ j0. In Lemma 3.17 it is also

shown that (s, x) 7→ js(x) is locally Lipschitz continuous as long as the values do
not cross the threshold τs (which is the case for (unj )), hence there is a C ≥ 1
such that ∥∥unj+1 − u

∥∥ ≤ C ‖unj − u‖ +
C

L(Lnj + 1)

for j ≥ j1 where j1 ≥ j0 is suitably chosen. By choosing j2 such that for
j ≥ j2 ≥ j1 it moreover follows that nj ≥ L−1

(
2C/(δL) − 1

)
and Tα(unj ) −

Tα(u) ≤ ξ
(
δ/(2C)

)
we get

ξ(‖unj − u‖) ≤ ξ
(
δ/(2C)

)
⇒ ‖unj − u‖ ≤ δ

2C
⇒

∥∥unj+1 − u
∥∥ ≤ δ

as well as

Tα(unj+1)− Tα(u) ≤ Tα(unj )− Tα(u) ≤ ξ
(
δ/(2C)

)
.

By induction, it follows that there is n0 such that for n ≥ n0 it holds that
‖un − u‖ ≤ δ and Tα(un) → Tα(u). This implies ξ(‖un − u‖) → 0 and thus
‖un − u‖ → 0 what was to show.

To summarize, this means that one can design an algorithm for which at
least one subsequential limit u shares the same necessary conditions as the
global minimizer u∗. Under some additional assumptions, the convergence of
the whole sequence may be established. Such an observation does not prove
that the algorithm indeed runs into a global minimizer but makes sure that
there is a chance and helps to avoid stationary points which are certainly not a
global minimizer. Hence, if Theorem 3.19 is applicable, one can argue that the
generalized gradient projection method produces reasonable approximations to
a minimizer of Tα.

4 Application to `p penalties

This section deals with the special case Φ(x) = |x|p with 0 < p < 1 which is
clearly a non-convex separable penalty. First, it is analyzed how the proximity
operator can be calculated (cf. [16, 18]). This result can be easily derived from
the general statements of Lemma 3.12.

Lemma 4.1. Let 0 < p < 1 and α > 0. The function φ(x) = |x|p satisfies
Assumptions 3.1 and 3.9. The corresponding js and thresholds according to (14)

18



can be expressed by

js(x) =

{
0 for |x| ≤ τs(
· + sαp sign( · )| · |p−1

)−1 for |x| ≥ τs
,

τs =
2− p
2− 2p

(
2sα(1− p)

) 1
2−p , λs =

(
2sα(1− p)

) 1
2−p .

Proof. All the statements can easily be verified by computation. Assumption 3.1
is trivially fulfilled. Regarding Assumption 3.9, note that φ is arbitrarily differ-
entiable on ]0,∞[. The function φ′ is strictly convex because of φ′′′ > 0 for posi-
tive arguments. We have φ′(x)→∞ as x→ 0 as well as φ′(x)/x = pxp−2 → 0 as
x→∞. Moreover, xφ′′(x) = p(p− 1)xp−1 is easily seen to be locally integrable
on [0,∞[.

Clearly, ψ(y) = 2(1− p)yp−2, so one computes λs =
(
2sα(1− p)

)1/(2−p) and
consequently

τs = ρs(λs) = λs + sαpλp−2
s λs =

(
1 +

p

2− 2p

)
λs =

2− p
2− 2p

(
2sα(1− p)

) 1
2−p .

Knowing the thresholds τs and λs is crucial for performing the generalized
gradient projection method, see Lemma 3.12. With Proposition 3.14 in mind,
we also get the following.
Remark 4.2. If S : `2 → [0,∞[, one can immediately estimate the number of
non-zero coefficients for a minimizer u∗ of Tα:

S(0) = Tα(0) ≥ Tα(u∗) ≥ α ‖u∗‖pp ≥ #{u∗k 6= 0}α
(
2L−1α(1− p)

)p/(2−p)
implies

#{u∗k 6= 0} ≤ 2S(0)
(
(2α)2/pL−1(1− p)

)p/(p−2)
.

It is remarkable that this quantity stays bounded as p→ 0.
The above shows that the generalized gradient projection method is applica-

ble for `p-penalties and leads to convergence whenever one of the Theorems 3.8
or 3.19 is applicable. Roughly speaking, without additional assumptions we only
get subsequential convergence to stationary points. In some situations, where
more about the structure of the problem is known, one can actually see that the
additional assumptions introduced in Section 3 are satisfied and convergence
can be established. One class for which this is possible is the usual setting of
linear inverse problems. We will deal, in the following, with the problem of
minimizing

min
u∈`2

‖Ku− f‖2H
2

+ α

∞∑
k=1

|uk|p (17)

with a Hilbert space H, K : `2 → H being a linear and continuous operator,
f ∈ H some data and α > 0, 0 < p < 1. Hence, S(u) = 1

2 ‖Ku− f‖
2 and

R(u) = ‖u‖pp.
Note that S′(u) = K∗(Ku − f) is Lipschitz continuous. It is easy to see

that the Lipschitz constant is given by ‖K∗K‖ and Theorem 3.8 is applicable
with 0 < s ≤ sn ≤ s < ‖K∗K‖ yielding subsequential convergence to stationary
points. We observe that Assumption 3.3 is also satisfied in many cases:
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Lemma 4.3. In the situation of (17), if the space for which K∗Ku = ‖K∗K‖ u
holds is finite-dimensional and the eigenvalues of K∗K do not accumulate at
‖K∗K‖, then Assumption 3.3 is fulfilled.

Proof. The statement follows immediately by setting P as the projection onto
the eigenspace for ‖K∗K‖ and noting that K∗K = ‖K∗K‖ P +QK∗KQ where
‖QK∗KQ‖ < ‖K∗K‖.

In particular, Theorem 3.19 is applicable for compact operators and hence,
we have strong subsequential convergence to a fixed point even if sn = n/(Ln+
1). In the remainder of this section, we show that there are conditions on K
under which the choice of a sufficiently small p and a special parameter choice
almost certainly lead to convergence of the whole sequence. We start with
establishing under which conditions one can guarantee that stationary points
are strong local minimizer in the sense of Theorem 3.19.

Proposition 4.4. Let f ∈ H and K : `2 → H be a fixed linear, continuous
and compact operator satisfying the finite basis injectivity property, i.e. K is
injective whenever restricted to finitely many coefficients.

Consider the problem of minimizing the Tikhonov functional Tα in depen-
dence of p and the parameter choice α(p) = γαp0 with α0, γ > 0 and γ ≥ ‖f‖

2

2 ,
i.e.

Tα(p)(u) =
‖Ku− f‖2

2
+ γαp0 ‖u‖

p
p . (18)

There exists a p∗ ∈ ]0, 1[ such that for each 0 < p < p∗ every stationary point
for the corresponding (u(p)n) with step-size choice sn = n/(Ln+ 1) and u0 = 0
is a strong local minimizer.

Proof. We first derive the bound ‖u‖ ≤ α−1
0 for u with Tα(p)(u) ≤ ‖f‖

2

2 which
is independent of K and p ∈ ]0, 1[. For the non-trivial case u 6= 0, this can be
achieved by

γαp0 ‖u‖
p
p ≤ Tα(p)(u) ≤

‖f‖2

2
⇒ ‖u‖p ≤

(‖f‖2
2γ

)1/p 1
α0
≤ 1
α0

and

|uk|2

‖u‖2
≤ |uk|

p

‖u‖p
⇒ 1 =

∞∑
k=1

|uk|2

‖u‖2
≤
∞∑
k=1

|uk|p

‖u‖p
=
‖u‖pp
‖u‖p

⇒ ‖u‖ ≤ ‖u‖p .

Next, note we have for p ∈ [0, 1[ that

τL−1(p) =
2− p
2− 2p

(
2L−1γαp0(1− p)

)1/(2−p)
> 0

hence there is a τ∗ > 0 such that τL−1(p) ≥ τ∗ on each interval [0, p0] where
p0 ∈ ]0, 1[. Consequently, due to the compactness of K and f being in H, we
can find a k0 such that |K∗(Ku− f)|k ≤ Lτ∗ for each k ≥ k0 and ‖u‖ ≤ α−1

0 .
Since we start the algorithm with u0 = 0, all u(p)n satisfy Tα(p)

(
u(p)n

)
≤

Tα(p)(u0) = ‖f‖2 /2, hence one can say that for each p ∈ [0, p0] and k ≥ k0 the
estimate∣∣snK∗(Ku(p)n − f

)∣∣
k
≤ L−1

∣∣K∗(Ku(p)n − f
)∣∣
k
≤ τ∗ ≤ τL−1(p) ≤ τsn

(p)
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holds. By induction, u(p)nk = 0 for all k ≥ k0 and p ∈ [0, p0]. Thus, it suffices
to consider the iteration on the coefficients 1, . . . , k0 − 1 and the restriction of
K∗K to these coefficients which we will denote by K∗0K0 in the following. Let
c > 0 be the smallest eigenvalue of K∗0K0 (which is positive due to finite basis
injectivity) and set p∗ = min {p0, 2cL}. In the following, we consider 0 < p < p∗

as fixed and omit the dependence on p. We will see that such p always implies
that Tα has stationary points being strong local minimizers.

Suppose that u∗ is a stationary point for (un), i.e. unj → u∗ with u∗ =
G+
α,L−1(u∗). As it is argued in Proposition 3.16, we get K∗0 (K0u

∗ − f)k +
αp|u∗k|p−2u∗k = 0 and |u∗k| ≥ λL−1 if u∗k 6= 0. Restrict, Tα to the space corre-
sponding to suppu∗, denoted by T̄α, as well as K, denoted by K1, and compute

F (u) = ∇T̄α(u) = K∗1 (K1u− f) + αp|u|p−2u

for which holds F (u∗) = 0 (taking the restriction into account). This is a smooth
mapping whenever each uk 6= 0, so check that the Jacobian matrix

∇F (u∗) = K∗1K1 − αp(1− p) diag(|u∗|p−2)

is positive definite. For v with supp v ⊂ suppu we can estimate, according to
the definition of c,

〈v| ∇F (u∗)v〉 = ‖K1v‖2 − αp(1− p)
∑
k

|u∗k|p−2v2
k

≥
(
c− αp(1− p)λp−2

L−1

)
‖v‖2 =

(
c− p

2L

)
‖v‖2 .

By the choice of p, ∇F (u∗) = ∇2T̄α(u∗) is positive definite and hence, u∗ is a
strong local minimizer for some δ > 0 and ξ(t) = c∗t2 where c∗ > 0.

Remark 4.5. The “finite basis injectivity” (FBI) property also plays an impor-
tant role in the context of linear (as well as non-linear) inverse problems with
sparsity constraints. One the one hand, it is one of the crucial ingredients under
which order-optimal convergence rates can be established [6, 12,13,17]. On the
other hand, under the assumption that the FBI property holds, one can achieve
good convergence rates for numerical algorithms for minimization problems with
sparsity constraints [5, 14]

In order to apply Theorem 3.19 concerning the convergence of the whole
sequence, each stationary point u of (un) must not “hit” the points of disconti-
nuity, i.e.

uk − L−1
(
K∗(Ku− f)

)
k
6= ±τL−1

for each k. In fact, one can easily construct cases in which this condition is
violated, for instance where K is the identity on `2 and fk = ±τk for some k.
In this example, however, one can see that varying p slightly changes τL−1 and
therefore, for a fixed f the above condition is fulfilled generically.

Likewise, one can proceed and try to establish an analogous statement for
general K. However, this would result in a large additional amount of technical
considerations which do not add too much to this article since the result only
covers a special situation. Moreover, in practice it seems like the stationary
points never violate this assumption. For these reasons, we omit a thorough
examination of this issue and leave it to the reader who is interested in it. To
this point, we summarize in the following convergence theorem:
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Theorem 4.6. For f , K and α(p) according to Proposition 4.4, there is a p > 0
such that the generalized gradient projection method for (18) converges, subse-
quentially, to a stationary point u which satisfies the (a)–(c) of Proposition 3.14.
If, additionally, ∣∣uk − L−1

(
K∗(Ku− f)

)
k

∣∣ 6= τL−1

for each k, then the whole sequence converges to u.

Proof. This follows immediately from Theorem 3.19 for which the prerequisites
are given by the Lemmas 4.1 and 4.3. The additional part can be obtained from
Proposition 4.4 and, of course, the assumption.

We conclude this section with some remarks about this result and its con-
nection to minimization with an `0-penalty term.

Remark 4.7. Let us comment on the parameter choice α(p) = γαp0 with α0, γ > 0

with γ ≥ ‖f‖2
2 . As it is shown in the proof of Proposition 4.4, this leads to a

bound on the norm of solutions which is uniform in p. However, as p→ 0, α(p)
tends to γ which cannot be made arbitrarily small. The necessity for this can
be explained, to a certain extend, in the fact that the “limit problem” for p = 0,
i.e.

min
u∈`2

‖Ku− f‖2

2
+ ᾱ#{uk 6= 0} (19)

is not well-posed for general ᾱ > 0 due to the lack of coercivity of the functional
#{uk 6= 0}. For ᾱ = γ ≥ ‖f‖2

2 , however, it is easy to see that the above
functional is globally minimized by the trivial solution u = 0.

On the other hand, letting f 6= 0 and 0 < ᾱ <
‖f‖2

2 , one can construct a
compact linear operator such that the minimization problem admits no solution:
Set Ken = 1

n (f + 1
nen) and deduce, for example with un = nen, that

inf
u∈`2

‖Ku− f‖2

2
+ ᾱ#{uk 6= 0} ≤ lim

n→∞

‖Kun − f‖2

2
+ ᾱ = ᾱ .

But each u = vek for some v 6= 0 and k ∈ N results in a ‖Ku− f‖2 /2 + ᾱ > ᾱ,
the same holds true for u = 0 and and u with #{uk 6= 0} ≥ 2. Hence, no
minimizer exists and the choice of γ ≥ ‖f‖

2

2 is sharp for compact linear operators
K.

Remark 4.8. As the previous remark showed, problem (19) generally admits no
solution. One can, however, also try to apply the generalized gradient projection
method with quadratic fidelity and the separable penalty term

S(u) =
‖Ku− f‖2

2
, R(u) = α

∞∑
k=1

φ(|uk|) , φ(x) =

{
0 if x = 0
1 if x 6= 0 .

One easily sees that the minimization problem for Js, i.e.

min
v∈`2

∞∑
k=1

(
uk − s

(
K∗(Ku− f)

)
k

)2 + αφ(|uk|),

22



can be solved by doing a hard-thresholding on w = u− sK∗(Ku− f):

Js
(
w
)
k

=

{
0 for |wk| ≤

√
2sα

wk for |wk| ≥
√

2sα

This iteration has been studied in finite dimensions in [2].
Note that the structure of the iteration is the same as for the `p-penalties

with 0 < p < 1. Furthermore, with 0 < s < L−1, Proposition 2.1 is still
applicable and since hard-thresholding also induces a jump, the iterates (un) do
not change the sign pattern from some index on, reducing the iteration to

un+1
k = unk − s

(
K∗(Kun − f)

)
k

for k being in some finite set J . This amounts to a Landweber iteration in finite
dimensions which always converges.

Hence, the hard-thresholding operation of [2] still converges in the infinite-
dimensional setting even though a global minimizer does not necessarily exist.
The `p-setting where 0 < p < 1 has the advantage that we can get both: well-
posedness as well as convergence of the algorithm.

5 Numerical examples

We illustrate the behavior of the proposed algorithm with two examples. The
purpose of this section is to give an impression of the characteristics of the
algorithm, especially since it behaves somehow discontinuous.

5.1 Reconstruction with a partial DCT-matrix

The purpose of this example is, to demonstrate the typical behavior of the
iterated thresholding algorithm on a simple example. We considered the finite
dimensional problem of reconstruction of a spiky signal from partial discrete
cosine transformed (DCT) measurements. We generated an operator by taking
64 random rows of a DCT matrix of size 256×256. We generated spiky data by
randomly choosing ten entries to have normally distributed values, added 5%
noise and chose α = 5 · 10−4. Moreover, we chose to use the increasing step-size
rule sn = n/(nL + 1). Figure 3 illustrates the behavior of the iteration. We
plotted the behavior of the functional value Tα and also the norm difference
between two iterates

rn =
∥∥un − Jsn

(
un − snK∗(Kun − gδ)

)∥∥ . (20)

We observe that the functional value is monotonically decreasing and from time
to time it jumps down. This effect is due to the jump in the iteration mapping
Gα,sn

and happens when one coefficient jumps out of or into the dead-zone of
Gα,sn . These jumps are also present in the plot of the residual r and of course
they are smaller for larger p since the jump in Gα,sn is smaller. Finally one
observes that, from some point on, the residual decreases monotonically and
this may be due to the fact that the support of the minimizer is identified and
hence, is not changing anymore and the algorithm behaves like a usual gradient
descent.
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Figure 3: Two typical runs for the partial-DCT example. Top row: p = 0.1,
bottom row: p = 0.9. Left column: development of the objective value Tα(un),
right column: development of the residual from (20).

5.2 Deblurring of spikes

This purpose of the next example is to show the difference of the minimizers
for different values of p. In this numerical example we considered a discretized
linear blurring operator F combined with a synthesis operator B associated with
simple hat-functions. We generated data which just consists of a few spikes and
hence, has a sparse representation in hat functions. We generated noisy data
with 5% noise, see Figure 4. Then we chose α = 5 ·10−5 and p = 0.1. Motivated
by the previous example we applied our algorithm until the norm of the residual
rn from (20) fell below the threshold 1 · 10−9, leading to a reconstruction uα,δp .
To make a comparison with different values for p we calculated the discrepancy
for

∥∥FBuα,δp − gδ
∥∥ and chose α such that we obtained the same discrepancy

for different values of p. The result is depicted in Figure 5. Concerning the
properties of the solutions one may note the following things:

• Smaller values of p lead to higher sparsity for the same discrepancy.

• Smaller values of p lead to a more accurate reconstruction of the height
of the peaks.

6 Conclusion

We considered special instances of non-smooth and non-convex minimization
problems and proposed a generalization of the well-known gradient projection
method. Our analysis shows, that even in the general case of functionals S+αR
the proposed algorithm has convenient convergence properties. In the special
case of separable constraints our method amounts to an iterative thresholding
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Figure 4: Example with a smoothing operator. Left original solution f†, middle:
original data g†, right: noisy data gδ (5% noise).
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Figure 5: Reconstructions for different values of p. The first row shows the norm
of the residual, i.e.

∥∥un − Js(un −K∗(Kun − gδ)∥∥. The second row shows the
reconstructed fα,δ (and with slim lines the original f†).
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procedure and is rather easy to implement: One only needs to calculate the
gradient of S and the proximal mapping for the one-dimensional function φ
which can even be done analytically in some examples.

We remark that non-smooth and non-convex optimization problems are
fairly hard to solve. Our algorithm gives strong subsequential convergence and
there is good reason to hope that it may reach a global minimizer in the special
case of separable constraints.
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