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Summary. We survey recent results on numerical integration with respect to mea-
sures µ on infinite-dimensional spaces, e.g., Gaussian measures on function spaces or
distributions of diffusion processes on the path space. Emphasis is given to the class
of multi-level Monte Carlo algorithms and, more generally, to variable subspace
sampling and the associated cost model. In particular we investigate integration
of Lipschitz functionals. Here we establish a close relation between quadrature by
means of randomized algorithms and Kolmogorov widths and quantization numbers
of µ. Suitable multi-level algorithms turn out to be almost optimal in the Gaussian
case and in the diffusion case.

1 Introduction

Let µ be a Borel probability measure on a Banach space (X, ‖ · ‖X), and let
F denote a class of µ-integrable functionals f : X → R. In the corresponding
quadrature problem we wish to compute

S(f) =
∫

X

f(x)µ(dx)

for f ∈ F by means of randomized (Monte Carlo) algorithms that use the
values f(x) of the functional f at a finite number of sequentially (adaptively)
chosen points x ∈ X.
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The classical instance of this quadrature problem is given by X = Rd

and µ being the uniform distribution on [0, 1]d, say, or the d-dimensional
standard normal distribution. In the present paper we are mainly interested
in infinite-dimensional spaces X. The classical instance of infinite-dimensional
quadrature is path integration with respect to the Wiener measure µ on X =
C([0, 1]) or, more generally, quadrature with respect to a Gaussian measure
µ on a function space X.

Further important instances of quadrature problems arise for stochastic
(partial) differential equations, and here the measure µ is usually given only
implicitly, since it depends on the solution process of the equation. We have
dim(X) < ∞ if µ is a marginal distribution of the solution of an SDE and
dim(X) = ∞ for quadrature on the path space. For SPDEs, both the marginal
and the path dependent case lead to infinite-dimensional quadrature problems.

The present paper is motivated by the following developments. On the one
hand a new class of algorithms, namely multi-level Monte Carlo algorithms,
has been introduced by Heinrich [18] and Giles [14]. On the other hand infinite-
dimensional quadrature problems have been studied from a complexity point
of view by Wasilkowski and Woźniakowski [37] and Hickernell and Wang [21].
The purpose of this paper is to illustrate the approach and the results from [5],
which provides a link between the two developments and which establishes the
concept of approximation of distributions as the basis for integration of Lip-
schitz functionals f on infinite-dimensional spaces X. Furthermore, we provide
a continuation of the survey paper [30] on strong and weak approximation of
SDEs with a new focus on multi-level Monte Carlo algorithms.

The content of this paper is organized as follows. In Section 2 we present
multi-level Monte Carlo algorithms in general terms together with the partic-
ular case of multi-level Euler Monte Carlo algorithms for SDEs, which serve
as a basic example in the sequel.

Section 3 is devoted to the presentation of a reasonable cost model for the
analysis of infinite-dimensional quadrature problems. We distinguish between
full space sampling, variable subspace sampling, and fixed subspace sampling.
In the latter case an algorithm may only evaluate the integrands f at the
points in a finite-dimensional subspace X0 ⊂ X, which may be chosen arbi-
trarily but which is fixed for a specific algorithm. We add that fixed subspace
sampling is frequently used for infinite-dimensional quadrature problems. In
contrast, a multi-level algorithm uses dependent samples in a hierarchy of
finite-dimensional subspaces X1 ⊂ X2 ⊂ . . . ⊂ X with only a small proportion
taken in high-dimensional spaces. For both variants of subspace sampling the
cost per evaluation at x ∈ X is given by the dimension of the (minimal) sub-
space containing x. Full space sampling permits evaluations anywhere in X at
cost one, which is perfectly reasonable for finite-dimensional quadrature prob-
lems; in the infinite-dimensional case its main purpose is to establish lower
bounds.

Section 4 contains an analysis of multi-level algorithms. In the particular
case of Lipschitz continuous integrands we provide upper error bounds for
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these algorithms in terms of average Kolmogorov widths of the underlying
measure µ, see Theorem 3.

In Section 5 we introduce the concept of minimal errors, which allows a
rigorous comparison of the power of full space sampling, variable subspace
sampling, and fixed subspace sampling.

In Section 6 we focus on the Lipschitz case and we present upper and
lower bounds for the minimal errors in terms of average Kolmogorov widths
and quantization numbers. Since the latter two quantities can equivalently be
defined in terms of the Wasserstein distance on the space of Borel probabil-
ity measures on X our error estimates exhibit the tight connection between
quadrature by means of randomized algorithms and approximation of the un-
derlying measure µ by means of probability measures with a finite-dimensional
or finite support. These results are applied to quadrature with respect to Gaus-
sian measures µ and with respect to the distributions of the solutions of SDEs.
Suitable multi-level algorithms turn out to be almost optimal in both cases.

2 Multi-level Algorithms

Multi-level Monte Carlo methods have been introduced by Heinrich [18] and
Heinrich and Sindambiwe [20] for computation of global solutions of inte-
gral equations and for parametric integration, respectively. Moreover, the au-
thors have shown that suitable multi-level algorithms are (almost) optimal
in both cases. See [19] for further results and references. In their work finite-
dimensional quadrature problems arise as subproblems and the Monte Carlo
methods take values in infinite-dimensional Banach spaces Y. Here we are
interested in the dual situation of infinite-dimensional quadrature with real
numbers as outputs of Monte Carlo algorithms, i.e., we have Y = R.

In the context of quadrature problems for diffusion processes multilevel
algorithms have been introduced by Giles [14], while a two level algorithm has
already been considered by Kebaier [22]. Both papers also include numerical
examples from computational finance, see also [15, 16].

In order to describe the multi-level approach in general terms it is conve-
nient to assume that µ is the distribution of an X-valued random element of
the form

X = ϕ(X̃)

for some random element X̃ taking values in a Banach space (X̃, ‖ · ‖eX) and
some measurable mapping

ϕ : X̃ → X.

As the key assumption we suppose that we have a sequence of measurable
mappings

ϕ(k) : X̃ → X

at hand, which provide approximations
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X(k) = ϕ(k)(X̃)

to X. Hence
E(f(X(k))) = E(f(ϕ(k)(X̃)))

may serve as an approximation to

S(f) = E(f(X)) = E(f(ϕ(X̃))).

Example 1. A typical example is provided by an SDE

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dX̃(t), t ∈ [0, 1],

with initial value
X(0) = ξ ∈ Rm,

drift coefficient
a : [0, 1]× Rm → Rm,

diffusion coefficient
b : [0, 1]× Rm → Rm×d,

and with a d-dimensional Brownian motion X̃. In this case X̃ = C([0, 1],Rd)
and X = C([0, 1],Rm) are the spaces of continuous functions on [0, 1] taking
values in Rd and Rm, respectively, and ϕmaps the driving Brownian motion X̃
to the solution process X. The mapping ϕ(k) may correspond to the piecewise
linear interpolation of the Euler scheme with step size δ(k) = 2−(k−1). The
time discretization is then given by

t
(k)
i = i δ(k), i = 0, . . . , 2k−1,

and we have
X

(k)
0 = ξ

and

X
(k)
i+1 = X

(k)
i + a(t(k)

i , X
(k)
i ) δ(k) + b(t(k)

i , X
(k)
i )

(
X̃(t(k)

i+1)− X̃(t(k)
i )

)
. (1)

Finally, the random element X(k) = ϕ(k)(X̃) is given by the piecewise linear
interpolation of X(k)

0 , . . . , X
(k)

2k−1 at the nodes t(k)
0 , . . . , t

(k)

2k−1 .
For a Gaussian measure µ on X it is reasonable to take X̃ = X, X̃ = X, and

the identity function ϕ. Metric projections ϕ(k) onto an increasing sequence
of finite-dimensional subspaces of X may be used for approximation of X.

The classical Monte Carlo approximation to E(f(X(k))) is based on inde-
pendent copies X̃1, . . . , X̃n of X̃ and given by the random variable

A(f) =
1
n

n∑

`=1

f(ϕ(k)(X̃`)). (2)
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For its mean square error we clearly have

E(S(f)−A(f))2 =
1
n

Var(f(X(k))) + b2k(f) (3)

with the bias
bk(f) = E(f(X(k)))− S(f).

The actual computation of a realization of A(f) requires simulation of the
distribution of X(k) and evaluation of f at randomly chosen points from the
range of ϕ(k).

Note that

E(f(X(k))) = E(f(X(1))) +
k∑

j=2

E(f(X(j))− f(X(j−1))),

where f(X(j)) = f(ϕ(j)(X̃)) and f(X(j−1)) = f(ϕ(j−1)(X̃)) are coupled via
X̃. In the multi-level approach each of the expectations on the right-hand
side is approximated separately by means of independent, classical Monte
Carlo approximations. With n1, . . . , nk denoting the corresponding numbers
of replications and with independent copies

X̃j,1, . . . , X̃j,nj , j = 1, . . . , k,

of X̃ the multi-level approximation is given by the random variable

Ak(f) = A(1)(f) +
k∑

j=2

A(j)(f) (4)

where

A(1)(f) =
1
n1

n1∑

`=1

f(ϕ(1)(X̃1,`)) (5)

and

A(j)(f) =
1
nj

nj∑

`=1

(f(ϕ(j)(X̃j,`))− f(ϕ(j−1)(X̃j,`))) (6)

for j = 2, . . . , k. For the mean square error of Ak(f) we get

E(S(f)−Ak(f))2 =
k∑

j=1

vj(f)
nj

+ b2k(f) (7)

where
v1(f) = Var(f(X(1)))

and
vj(f) = Var(f(X(j))− f(X(j−1)))
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for j = 2, . . . , k. The actual computation of a realization of Ak(f) requires
simulation of the distribution of X(1) and the joint distribution of X(j) and
X(j−1) for j = 2, . . . , k. Furthermore, evaluation of f at randomly chosen
points from the ranges of ϕ(1), . . . , ϕ(k) is needed.

Typically the variances vj(f) and the bias bk(f) are decreasing with in-
creasing values of j and k, respectively, while the computational cost is in-
creasing. One therefore has to properly balance these effects. A comparison
of (3) and (7) reveals that the multi-level approach is a variance reduction
technique.

Remark 1. The error formula (7) is a consequence of Bienaymé’s equality for
real-valued random variables, which does not extend to general Banach spaces.
Thus, for the analysis of multi-level algorithms taking values in such a space
the so-called Rademacher type of this space plays an important role, see [18,
19, 20].

Example 2. Let us present the details for a multi-level Euler algorithm in the
case of an SDE, see Example 1. For notational convenience we consider a
scalar equation, i.e., m = d = 1. We use d= to denote equality in distribution
of two random elements.

The simulation of ϕ(1)(X̃1,`) and (ϕ(j)(X̃j,`), ϕ(j−1)(X̃j,`)) in (5) and (6)
may be based on i.i.d. standard normally distributed random variables Z(j)

i,`

for j = 1, . . . , k, ` = 1, . . . , nj , and i = 1, . . . , 2j−1 as follows. We put

U
(j)
0,` = ξ

as well as

U
(j)
i+1,` = U

(j)
i,` + a(t(j)i , U

(j)
i,` ) δ(j) + b(t(j)i , U

(j)
i,` )

√
δ(j) Z

(j)
i+1,`

for i = 0, . . . , 2j−1 − 1, cf. (1). Furthermore, if j > 1, we put

V
(j)
0,` = ξ

as well as

V
(j)
i+1,` = V

(j)
i,` + a(t(j−1)

i , V
(j)
i,` ) δ(j−1)

+ b(t(j−1)
i , V

(j)
i,` )

√
δ(j−1)/2

(
Z

(j)
2i+1,` + Z

(j)
2i+2,`

)

for i = 0, . . . , 2j−2 − 1.
We stress that the corresponding piecewise linear interpolations U (j)

` and
V

(j)
` , respectively, are coupled, since they are based on the same random vector

(Z(j)
1,` , . . . , Z

(j)
2j−1,`). On the other hand, U (j−1)

` and V (j)
`′ are independent with

U
(j−1)
`

d= V
(j)
`′

d= X(j). Altogether we obtain independent random elements
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U
(1)
1 , . . . , U (1)

n1
,

(U (2)
1 , V

(2)
1 ), . . . , (U (2)

n2
, V (2)

n2
),

. . .

(U (k)
1 , V

(k)
1 ), . . . , (U (k)

nk
, V (k)

nk
)

taking values in C([0, 1]) or (C([0, 1]))2, respectively, whose distributions sat-
isfy

U
(1)
`

d= X(1)

and
(U (j)

` , V
(j)
` ) d= (X(j), X(j−1)).

Consequently

Ak(f) d=
1
n1

n1∑

`=1

f(U (1)
` ) +

k∑

j=2

1
nj

nj∑

`=1

(f(U (j)
` )− f(V (j)

` )).

We add that scaling of step sizes for the Euler scheme has already been
used in a bias reduction technique by means of extrapolation, see [2, 35].

3 A Cost Model for Variable Subspace Sampling

In this section we present a cost model for the analysis of multi-level algo-
rithms and, more generally, for the complexity analysis of infinite-dimensional
quadrature problems. See [5] for details.

We assume that algorithms for the approximation of S(f) have access to
the functionals f ∈ F via an oracle (subroutine) that provides values f(x)
for points x ∈ X or a subset thereof. The cost per evaluation (oracle call) is
modelled by a measurable function

c : X → N ∪ {∞}.

We define the cost of a computation as the sum of the cost of all oracle
calls that are made during the computation. For a randomized algorithm the
cost defines a random variable (under mild measurability assumptions), which
may also depend on f ∈ F . This random variable is henceforth denoted by
costc(A, f).

Let us look at the particular case of a randomized quadrature formula

A(f) =
n∑

`=1

a` f(X`) (8)

with deterministic weights a` ∈ R and random elements X` taking values in
X. This class of randomized algorithms obviously contains every Monte Carlo
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method (2) and every multi-level algorithm (4), where n = n1 +2
∑k

j=2 nj in
the latter case. The cost of a randomized quadrature formula is given by

costc(A, f) =
n∑

`=1

c(X`).

Now we discuss specific choices of c. In the cost model given by

c = 1 (9)

evaluation of an integrand f is possible at any point x ∈ X at cost one. In this
model, which is called full space sampling, costc(A, f) is the number of evalua-
tions of the integrand. For finite-dimensional quadrature, i.e., if dim(X) <∞,
full space sampling is the common choice in the literature.

However, if dim(X) = ∞, then full space sampling seems to be too generous
and therefore of limited practical relevance. It is more reasonable and partially
motivated by the multi-level construction to consider variable subspace sam-
pling instead. In any such model we consider a sequence of finite-dimensional
subspaces

{0} ( X1 ⊂ X2 ⊂ . . . ⊂ X,

and we define the cost function c by

c(x) = inf{dim(Xj) : x ∈ Xj}. (10)

In particular, in the setting of a multi-level algorithm (4),

Xj = span

(
j⋃

i=1

ϕ(i)(X̃)

)
(11)

is a natural choice, and the cost of this algorithm then satisfies

costc(Ak, f) ≤ n1 dim(X1) +
k∑

j=2

nj (dim(Xj) + dim(Xj−1)) (12)

in the corresponding variable subspace model.
We write xk ¹ yk for sequences of positive real numbers xk and yk, if

xk ≤ γ yk holds for every k ∈ N with a constant γ > 0. Furthermore, xk ³ yk

means xk ¹ yk and yk ¹ xk.

Example 3. Consider the spaces Xj according to (11) in the setting from Ex-
ample 2. Here, Xj = span(ϕ(j)(X̃)) is the space of piecewise linear func-
tions in X = C([0, 1]) with equidistant breakpoints i 2−(j−1) and we have
dim(Xj) = 2j−1 + 1. It follows that 1/nj

∑nj

`=1 f(U (j)
` ) can be computed at

cost nj (2j−1 + 1), and we get
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costc(Ak, f) ≤ n1 2 +
k∑

j=2

nj (2j−1 + 2j−2 + 2) ³
k∑

j=1

2j nj (13)

for the multi-level algorithm (4).

Finally we discuss fixed subspace sampling. In this case, evaluations are
possible only at points in a finite-dimensional subspace

{0} ( X0 ⊂ X.

For every such evaluation its cost is given by dim(X0). Thus

c(x) =

{
dim(X0), if x ∈ X0,
∞, otherwise.

(14)

Clearly fixed subspace sampling constitutes a particular case of variable sub-
space sampling.

For both kinds of subspace sampling we think of bases associated to the
subspaces, so that c(x) is the (minimal) number of real coefficients needed to
represent x and this representation is actually submitted to the oracle.

Example 4. Obviously the multi-level Euler algorithm from Example 2 may
also be analyzed in the fixed subspace model defined by X0 = span(ϕ(k)(X̃)),
which leads to

costc(Ak, f) ≤
k∑

j=1

nj (2k−1 + 1) ³ 2k
k∑

j=1

nj .

This analysis, however, would be inadequate, since it does not capture the
fact that a large proportion of samples is taken in low-dimensional spaces.

Remark 2. We stress that costc(A, f) is a rough measure of the computational
cost for applying the algorithm A to the integrand f , since it only takes into
account the information cost, which is caused by the evaluations of f . All
further operations needed to compute a realization of A(f) are not considered
at all.

In a more detailed analysis it is appropriate to take the real number model
of computation as a basis for quadrature problems. See [32, 36] for the defi-
nition of this model. Informally, a real number algorithm is like a C-program
that carries out exact computations with real numbers. Furthermore, a perfect
generator for random numbers from [0, 1] is available and elementary functions
like exp, ln, etc. can be evaluated. Finally, algorithms have access to the in-
tegrands f ∈ F via the oracle (subroutine). We think that these assumptions
are present at least implicitly in most of the work dealing with quadrature
problems.
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For simplicity we assume that real number operations as well as calls of
the random number generator and evaluations of elementary functions are
performed at cost one. Furthermore, in case of µ being the distribution of
a diffusion process, function values of its drift and diffusion coefficients are
provided at cost one, too. Then the total cost of a computation is given by
costc(A, f) plus the total number of real number operations, calls of the ran-
dom number generator, evaluations of elementary functions, and, eventually,
function evaluations of drift and diffusion coefficients.

Example 5. In the analysis according to Remark 2 the right-hand side in (13)
still is an upper bound for the cost of the multi-level Euler Monte Carlo
algorithm, up to a constant. Indeed, the number of arithmetic operations and
calls of the random number generator as well as the number of evaluations of
the drift coefficient a and diffusion coefficient b that are needed to compute
1/nj

∑nj

`=1 f(U (j)
` ) are bounded by the number nj of replications times the

number 2j−1 of time steps, up to a constant. Hence costc(Ak, f) properly
reflects the computation time in practice.

Example 6. SDEs also give rise to finite-dimensional quadrature problems,
where µ is the distribution of the solution X at time t = 1, say. Then full
space sampling provides the appropriate cost model, and we get

costc(Ak, f) ≤ n1 + 2
k∑

j=2

nj ³
k∑

j=1

nj

for the multi-level algorithm according to Example 3. In this way, however,
we would ignore the impact of the step size on the computational cost of the
Euler scheme. Hence an analysis according to Remark 2 is necessary, and then
we once more get the right-hand side of (13) as an upper bound for the cost.

4 Analysis of the Multi-level Algorithm

In the sequel we consider a sequence of mappings ϕ(k) with associated bias
and variance functions bk and vj , respectively, see Section 2. Furthermore, we
consider the corresponding variable subspace model with cost function c, see
(10) and (11).

4.1 General Results

Suppose that there exist real numbers M > 1 and γ, ρ, τ > 0 such that

|bk(f)| ≤ γM−k ρ, (vj(f))1/2 ≤ γM−j τ , dim(Xj) ≤ γM j . (15)

We use Ak to denote the multi-level approximation given by (4) with the
numbers of replications defined by
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nj =

{⌈
Mk 2ρ−j (1/2+τ)

⌉
, if τ ≥ 1/2,⌈

Mk (2ρ+1/2−τ)−j (1/2+τ)
⌉
, if τ < 1/2

for j = 1, . . . , k. By a+ = max(a, 0) we denote the positive part of a ∈ R.
The following result is due to Giles, see [14] for the case ρ ≥ 1/2.

Theorem 1. Assume that (15) holds and put

ρ̃ = min(ρ, 1/2)

as well as
Γk = costc(Ak, f).

Then there exists a constant γ̃ > 0, which may depend on M,γ, ρ, τ , such that
the multi-level approximation Ak satisfies

(
E(S(f)−Ak(f))2

)1/2 ≤ γ̃





Γ−eρk , if τ > 1/2,

Γ−eρk log(Γk) if τ = 1/2 ≤ ρ,

Γ−eρk (log(Γk))1/2 if τ = 1/2 > ρ,

Γ
−ρ/(1+2 (ρ−τ)+)
k if τ < 1/2.

Proof. First assume that τ ≥ 1/2. Due to (7) and the definition of nj ,

E(S(f)−Ak(f))2 ¹
k∑

j=1

M−j 2τ M−(k 2ρ−j (1/2+τ)) +M−k 2ρ

¹M−k 2ρ
k∑

j=1

M−j (τ−1/2) +M−k 2ρ

¹
{
M−k 2ρ, if τ > 1/2,
M−k 2ρ k, if τ = 1/2.

By (12),

Γk ≤ 2
k∑

j=1

nj dim(Xj)

¹
k∑

j=1

(
1 +Mk 2ρ−j (1/2+τ)

)
M j

¹Mk +Mk 2ρ
k∑

j=1

M j (1/2−τ)

¹Mk +

{
Mk 2ρ, if τ > 1/2,
Mk 2ρ k, if τ = 1/2.
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Furthermore,
Γk ≥ n1 dim(X1) ºMk 2ρ,

which implies
log(Γk) º k.

Finally, use the relations

M−k 2ρ ³ (Mk +Mk 2ρ)−2eρ

and

M−k 2ρ k ³
{

(Mk +Mk 2ρ k)−2eρ k2, if ρ ≥ 1/2,
(Mk +Mk 2ρ k)−2eρ k, if ρ < 1/2

to finish the proof for τ ≥ 1/2.
Next, consider the case τ < 1/2. Then

E(S(f)−Ak(f))2 ¹
k∑

j=1

M−j 2τ M−(k (2ρ+(1/2−τ))−j (1/2+τ)) +M−k 2ρ

³M−k 2ρ

and

Γk ¹
k∑

j=1

(
1 +Mk (2ρ+(1/2−τ))−j (1/2+τ)

)
M j

³Mk +Mk (2ρ+1−2τ)

³Mk (1+2 (ρ−τ)+),

which completes the proof.

Remark 3. For finite-dimensional quadrature a variant of Theorem 1 is appli-
cable, if the underlying definition of the computational cost is chosen according
to Remark 2. Instead of the bound on dim(Xj) in (15) one has to assume that
the cost for simulation of (f(X(j)), f(X(j−1))) is bounded by γM j . Actually,
this variant is close to the analysis of the multi-level algorithm in [14, Theorem
3.1].

Next, we discuss the performance of the classical Monte Carlo approxima-
tion under the assumption (15). Clearly,

(
Var(f(X(k))

)1/2 ≤
k∑

j=1

(vj(f))1/2
,

so that (15) implies

|bk(f)| ≤ γM−k ρ, Var(f(X(k))) ≤ γ, dim(Xk) ≤ γMk (16)
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with some constant γ > 0.
Assume that (16) holds. We use A′k to denote the classical Monte Carlo

approximation (2) with the number of replications defined by

n = dMk 2ρe

and we put
Γ ′k = costc(A′k, f),

where c is the cost function given by (14) for the appropriate fixed subspace
model with X0 = Xk. Then it is straightforward to check that there exists a
constant γ̃ > 0, which may depend on M,γ, ρ, such that

(
E(S(f)−A′k(f))2

)1/2 ≤ γ̃
(
Γ ′k

)−ρ/(1+2ρ)
. (17)

Remark 4. We compare the multi-level algorithm with the classical Monte
Carlo approximation on the basis of the upper error bounds provided by
Theorem 1 and (17), respectively.

Up to logarithmic factors, the corresponding orders of convergence of these
bounds in terms of powers of the cost are given by

θ∗(ρ, τ) =

{
min(1/2, ρ), if τ ≥ 1/2,
ρ/(1 + 2 (ρ− τ)+), if τ < 1/2

for the multi-level algorithm, and

θ(ρ) = ρ/(1 + 2ρ)

for the classical approach. Put τ̃ = min(1/2, τ). We always have

1 <
θ∗(ρ, τ)
θ(ρ)

≤ θ∗(τ̃ , τ)
θ(τ̃)

= 1 + 2 τ̃ ≤ 2

and

lim
ρ→0

θ∗(ρ, τ)
θ(ρ)

= lim
ρ→∞

θ∗(ρ, τ)
θ(ρ)

= 1.

4.2 Lipschitz Continuous Integrands

Now we turn to the particular case of Lipschitz continuous integrands, as we
assume that

|f(x)− f(y)| ≤ ‖x− y‖X, x, y ∈ X. (18)

Moreover, we put X(0) = 0 and

δj =
(
E ‖X −X(j)‖2X

)1/2
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for j = 0, . . . , k.
We immediately get

bk(f) ≤ δk

as well as
vj(f) ≤ E ‖X(j) −X(j−1)‖2X ≤ (δj + δj−1)2

for j = 1, . . . , k. The analysis for Lipschitz continuous integrands therefore
corresponds to the diagonal case ρ = τ in Theorem 1.

We select mappings ϕ(j) such that

dim span((ϕ(j)(X̃))) ≤ 2j , (19)

and for any integer N ≥ 16 we define the parameters of the multi-level algo-
rithm AN by

k = blog2(N/8)c (20)

and
nj =

⌈
2k−j/(3k)

⌉
(21)

for j = 1, . . . , k. See [5, Lemma 3] for the following result.

Theorem 2. Under the assumptions (18)–(21) the multi-level algorithm AN

satisfies
costc(AN , f) ≤ N

and
(
E(S(f)−AN (f))2

)1/2 ≤ 12
√

2
(

log2N

N

k∑

j=0

2j δ2j

)1/2

.

Proof. Note that (19) implies dim(Xj) ≤ 2j+1 − 2 for Xj according to (11),
and therefore

costc(AN , f) ≤ 2n1 +
k∑

j=2

3 2j nj ≤ 2k+3 ≤ N

follows from (12), (20), and (21). Moreover

E(S(f)−AN (f))2 ≤
k∑

j=1

(δj + δj−1)2

nj
+ δ2k

≤ 2
n1

δ20 +
k−1∑

j=1

2
(

1
nj

+
1

nj+1

)
δ2j + 2

(
1
nk

+
1
2

)
δ2k

≤ 18k
2k

k∑

j=0

2j δ2j ,

which completes the proof.
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Example 7. In the situation of Example 3 the estimate (19) is satisfied. More-
over, it is well known that (under standard smoothness conditions for the drift
and diffusion coefficient of the SDE)

δj ≤ cp 2−j/2

for all spaces X = Lp([0, 1]) with 1 ≤ p <∞ and

δj ≤ c∞ j 2−j/2

for X = C([0, 1]). Hence

(
E(S(f)−AN (f))2

)1/2 ≤ 12
√

2 cp
log2N

N1/2

for X = Lp([0, 1]) and

(
E(S(f)−AN (f))2

)1/2 ≤ 12
√

2 c∞
(log2N)2

N1/2

for X = C([0, 1]). Analogous results are valid for systems of SDEs. See, e.g.,
[29, 30] for results and references.

Note that Asian as well as look-back options lead to Lipschitz-continuous
integrands. We refer to [14, 16] for a corresponding analysis and numerical
experiments using multi-level Euler Monte Carlo algorithms, while a multi-
level Milstein Monte Carlo algorithm is employed in [15].

Recall that δj is based on the choice of the mapping ϕ(j) : X̃ → X. Mini-
mizing δj subject to a constraint

dim(span(ϕ(j)(X̃))) ≤ κ

leads to the notion of average Kolmogorov widths of order two, which are
defined by

d(r)
κ = inf

dim(X0)≤κ

(
E inf

x0∈X0
‖X − x0‖r

X

)1/r

(22)

with r = 2. Here the infimum with respect to x0 ∈ X0 corresponds to the
best approximation of any realization of X by elements from the subspace
X0, and ϕ(j) is a metric projection of X̃ onto X0. The quality of this subspace
is measured by an average distance of X to X0, and minimization over all
subspaces with dimension at most κ leads to the average Kolmogorov width
d
(r)
κ . We add that limκ→∞ d

(r)
κ = 0, if X is separable and E ‖X‖r

X <∞. Aver-
age Kolmogorov widths and their relation to further scales of approximation
quantities for random elements were studied in [4, 27, 28], see also [34].

We now suppose that the sequence of Kolmogorov widths d(2)
κ is regularly

varying of index −ρ ∈ ]−∞, 0[, i.e.,
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d(2)
κ = κ−ρ L(κ) (23)

with a slowly varying function L : [1,∞[ → ]0,∞[. This means that
limx→∞ L(r x)/L(x) = 1 for every r > 0. By definition L is almost increasing
if

inf
x0≤x<y

L(y)/L(x) > 0

for some x0 > 0, see [3].

Theorem 3. Assume that (23) holds. If

(i) ρ 6= 1/2 or
(ii) ρ = 1/2 and L is bounded or almost increasing,

then there exists a constant γ > 0 and a sequence of multi-level algorithms
AN such that

costc(AN , f) ≤ N

and

(
E(S(f)−AN (f))2

)1/2 ≤ γ





N−1/2 (log2N)1/2 if ρ > 1/2,
max(N−1/2, d

(2)
N ) log2N if ρ = 1/2,

d
(2)
N log2N if ρ < 1/2.

Proof. Consider the multi-level algorithm AN from Theorem 2, where the
mappings ϕ(j) are chosen such that

δj ≤ 2 d(2)
2j .

By assumption,
d
(2)
2j = 2−j ρ L(2j).

Since costc(AN , f) ≤ N and

E(S(f)−AN (f))2 ≤ 576
log2N

N

k∑

j=0

2j(1−2ρ) (L(2j))2,

it remains to show that

k∑

j=0

2j(1−2ρ) (L(2j))2 ¹ (
max

(
1, N1−2ρ (L(N))2

)
log2N

)eρ (24)

with ρ̃ = 0 if ρ > 1/2 and ρ̃ = 1 otherwise.
First assume that ρ > 1/2. Then (1− 2ρ)/2 < 0, which implies

lim
j→∞

2j(1−2ρ)/2 (L(2j))2 = 0,

since the function L2 is slowly varying as well. Consequently,
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k∑

j=0

2j(1−2ρ) (L(2j))2 ¹
k∑

j=0

2j(1−2ρ)/2 ¹ 1.

Next assume that 0 < ρ < 1/2. Then

(L(x))2/(L(y))2 ¹ (y/x)1−2ρ

for 1 ≤ x ≤ y, and therefore
k∑

j=0

2j(1−2ρ) (L(2j))2 ¹
k∑

j=0

2j(1−2ρ) (N/2j)1−2ρ (L(N))2

¹ N1−2ρ (L(N))2 log2N.

Finally, consider the case ρ = 1/2. By assumption L is bounded or almost
increasing, and therefore

k∑

j=0

2j(1−2ρ) (L(2j))2 =
k∑

j=0

(L(2j))2 ¹ max(1, (L(N))2) log2N,

which completes the proof.

Remark 5. The error bound in Theorem 3 can be slightly improved in the case
ρ < 1/2 if the slowly varying function L is almost increasing. Then

(
E(S(f)−AN (f))2

)1/2 ≤ γ d
(2)
N (log2N)1/2

for some constant γ > 0.

Example 8. Consider an SDE, and let X = C([0, 1],Rm) or X = Lp([0, 1],Rm)
with 1 ≤ p < ∞. Then (under appropriate smoothness conditions on the
coefficients of the SDEs)

d(2)
κ ³ κ−1/2,

see [5, Prop. 3]. Hence the estimate from Example 7 can be slightly improved
for X = C([0, 1],Rm) to an upper bound of order log2N/N

1/2.

Remark 6. Our proof of Theorem 3 is based on inequality (24), which is equiv-
alent to

k∑

j=0

(L(2j))2 ¹ max
(
1, (L(2k))2

)
k (25)

in the case ρ = 1/2. Note that the latter inequality does not hold without an
additional assumption on the slowly varying function L. For example, consider
the function

L(x) = exp
(
(log2 x)

1/3 cos((log2 x)
1/3)

)

with x ≥ 1. Then L is slowly varying and we have

lim sup
k→∞

(
max

(
1, (L(2k))2

)
k
)−1

k∑

j=0

(L(2j))2 = ∞.
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5 Minimal Errors in Different Cost Models

In order to determine the power of variable subspace sampling, and in par-
ticular the power of multi-level algorithms, we consider the worst case errors
and cost of randomized algorithms A on a class F of integrands f : X → R.
These quantities are defined by

e(A) = sup
f∈F

(
E(S(f)−A(f))2

)1/2

and
costc(A) = sup

f∈F
Ecostc(A, f),

if the cost per evaluation of f ∈ F is modelled by c : X → N ∪ {∞}.
Actually we have already used the worst case point of view in the previous

section. For instance, with F = Lip(1) denoting the class of all functionals f
that satisfy (18), the error bound from Theorem 2 is equivalent to

e(AN ) ≤ 12
√

2
(

log2N

N

)1/2
(

k∑

j=0

2j δ2j

)1/2

,

and obviously
costc(AN ) ≤ N.

We extend our analysis beyond the class of multi-level algorithms, as we
consider the class Aran of all randomized algorithms. See, e.g., [5] for the
formal definition. Here we only mention that Aran contains in particular all
random variables of the form

A(f) = φ(f(X1), . . . , f(Xn))

with any choice of a joint distribution of (X1, . . . , Xn) on Xn and any mea-
surable mapping φ : Rn → R. Note that randomized quadrature formulas are
a particular instance thereof, see (8).

For comparing the power of different sampling regimes it does not suffice to
establish upper bounds for the error and cost of specific algorithms. Instead,
one has to study minimal errors and to establish lower bounds.

Let Cfix denote the set of all cost functions given by (14) with any finite-
dimensional subspace {0} ( X0 ⊂ X, let Cvar denote the set of all cost func-
tions given by (10) with any increasing sequence of finite-dimensional sub-
spaces {0} ( Xi ⊂ X, and let Cfull consist of the constant cost function one,
see (9). For

samp ∈ {fix, var, full}
and N ∈ N we introduce the N -th minimal error

eranN,samp = inf{e(A) : A ∈ Aran, ∃ c ∈ Csamp : costc(A) ≤ N}.
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According to this definition a most favorable cost model c ∈ Csamp is used for
assessing the quality of an algorithm A ∈ Aran. We add that minimal errors
are key quantities in information-based complexity, see, e.g., [30, 31, 34, 36].

Clearly
eranN,full ≤ eranN,var ≤ eranN,fix,

and these quantities allow us to compare the different sampling regimes. For
instance, variable subspace sampling is superior to fixed subspace sampling
for a class of integrands F and a measure µ iff the minimal errors eranN,var are
significantly smaller than the minimal errors eranN,fix. Note that a lower bound
for eranN,fix and an upper bound for eranN,var are needed to establish this conclusion.
Conversely, a lower bound for eranN,var and an upper bound for eranN,fix are needed
to prove that variable subspace sampling is not superior to fixed subspace
sampling.

6 Optimal Quadrature of Lipschitz Functionals

Throughout this section we assume that

F = Lip(1).

In this case the minimal errors for the quadrature problem can be estimated
from above and below in terms of average Kolmogorov widths, see (22), and
quantization numbers. A partial result was already formulated in Theorem 3.

The quantization numbers of order r ≥ 1 are defined by

q(r)n = inf
|X0|≤n

(
E min

x0∈X0
‖X − x0‖r

X

)1/r

.

Both, average Kolmogorov widths and quantization numbers correspond to
best approximation from optimally chosen subsets X0 ⊆ X, subject to a con-
straint on the dimension of the linear subspace X0 or the size of the finite set
X0. Quantization of random elements X that take values in finite-dimensional
spaces X has been studied since the late 1940’s, and we refer to the mono-
graph [17] for an up-to-date account. For random elements X taking values in
infinite-dimensional spaces X, quantization has been studied since about ten
years. Results are known for Gaussian processes, see, e.g., [7, 10, 12, 24, 25],
and for diffusion processes, see [5, 8, 9, 26].

In the sequel we assume that q(1)n < ∞. Clearly, limn→∞ q
(r)
n = 0 if X is

separable and E ‖X‖r
X <∞.

In the following theorem the upper bounds on eranN,full and eranN,fix as well as
all lower bounds are due to [5]. See Theorem 3 for the upper bound on eranN,var.

Theorem 4. For full space sampling

N1/2 sup
n≥4N

(q(1)n−1 − q(1)n ) ¹ eranN,full ¹ N−1/2 q
(2)
N .
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For variable subspace sampling

max(eranN,full, d
(1)
2N ) ¹ eranN,var,

and, under the assumption of Theorem 3,

eranN,var ¹ max(N−1/2, d
(2)
N ) log2N.

For fixed subspace sampling

inf
κ n≤N

max(erann,full, d
(1)
κ ) ¹ eranN,fix ¹ inf

κ n≤N
(n−1/2 + d(2)

κ ).

Remark 7. Clearly d(r)
κ and q

(r)
n only depend on the distribution µ of X, and

they can equivalently be defined in terms of the Wasserstein distance on the
space of Borel probability measures on X. See, e.g., [5] for these facts and for
further references. Thus Theorem 4 relates quadrature of Lipschitz functionals
by means of randomized algorithms to approximation of µ by distributions
with finite support and distributions concentrated on finite-dimensional sub-
spaces, and the latter constraints reflect the restrictions on evaluation of the
functionals in the three sampling regimes.

We add that an analogue analysis can be carried out for quadrature of
Lipschitz functionals by means of deterministic algorithms only. In the set-
ting of full space sampling it is well known that this quadrature problem is
equivalent to the quantization problem in the sense that the corresponding
minimal errors satisfy

edet
N,full = q

(1)
N . (26)

See [5] for details and for further references.

Remark 8. The following algorithms achieve the upper bounds in Theorem 4.
For full space sampling we may use quantization for variance reduction, see
[5, Thm. 2] for details. For variable subspace sampling we may use the multi-
level algorithm according to Theorem 3. For fixed subspace sampling we may
choose mappings ϕk such that

dim(span(ϕ(k)(X̃))) ≤ k

and (
E ‖X −X(k)‖2X

)1/2 ≤ 2 d(2)
k

and employ the classical Monte Carlo algorithm (2), see [5, Thm. 4].

6.1 Gaussian Measures

In this section we study the case of a zero mean Gaussian measure µ on a
separable Banach space X. In order to apply Theorem 4 we have to know the
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asymptotic behaviour of the average Kolmogorov widths and the quantization
numbers. To this end we consider the small ball function

ψ(ε) = − lnµ({x ∈ X : ‖x‖ ≤ ε}), ε > 0,

of µ, and we assume that there exist constants α > 0 and β ∈ R such that

ψ(ε) ³ ε−α (ln ε−1)β (27)

as ε tends to zero. This implies

q(r)n ³ (lnn)−1/α (ln lnn)β/α,

and
d(r)

κ ³ κ−1/α (lnκ)β/α,

see [7, Thm. 3.1.2] and [4, Cor. 4.7.2], respectively.
Typically, (27) holds for infinite-dimensional spaces X, see, e.g., [23] for

results and further references. For example, if µ is the distribution of a d-
dimensional Brownian sheet on X = L2([0, 1]d) then α = 2 and β = 2(d− 1),
see [6, 13].

Essentially the following results are a consequence of Theorems 2 and 4,
see [5, Sec. 8].

Theorem 5. For variable subspace sampling the minimal errors are bounded
as follows.
If α > 2, then

N−1/α (lnN)β/α ¹ eranN,var ¹ N−1/α (lnN)β/α+1/2.

If α = 2 and β 6= −1, then

N−1/2 (lnN)β/2 ¹ eranN,var ¹ N−1/2 (lnN)(β/2+1/2)++1/2.

If α = 2 and β = −1, then

N−1/2 (lnN)−1/2 ¹ eranN,var ¹ N−1/2 (lnN)1/2 (ln lnN)1/2.

If 0 < α < 2, then
eranN,var ¹ N−1/2 (lnN)1/2

and
lim sup
N→∞

eranN,varN
1/2 (lnN)1+1/α (ln lnN)−β/α > 0.

Theorem 5 provides sharp upper and lower bounds on the minimal errors
for variable subspace sampling, up to logarithmic factors and up to the fact
that one of the lower bounds is established only for an infinite sequence of
integers N . The order of the polynomial term N−γvar is

γvar = min(1/2, 1/α).

We add that the upper bounds hold for suitable multi-level algorithms, which
thus turn out to be almost optimal for variable subspace sampling, see [5].
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Theorem 6. For full space sampling the minimal errors satisfy

eranN,full ¹ N−1/2 (lnN)−1/α (ln lnN)β/α

and
lim sup
N→∞

eranN,fullN
1/2 (lnN)1+1/α (ln lnN)−β/α > 0.

Roughly speaking, Theorem 6 determines the asymptotic behaviour of the
minimal errors for full space sampling, and the order of the polynomial term
N−γfull is

γfull = 1/2.

We conclude that variable subspace sampling is as powerful as full subspace
sampling iff α ≤ 2 and, consequently, suitable multi-level algorithms are al-
most optimal even in a much stronger sense in this case. As a specific example
we mention any fractional Brownian motion with Hurst parameter H ∈ ]0, 1[
either on X = C([0, 1]) or on X = Lp([0, 1]) with 1 ≤ p < ∞. In all cases we
have α = 1/H and therefore γfull = γvar iff H ≥ 1/2.

Theorem 7. For fixed subspace sampling the minimal errors satisfy

eranN,fix ¹ N−1/(2+α) (lnN)β/(2+α)

and

lim sup
N→∞

eranN,fixN
1/(2+α) (lnN)(2+2α−αβ)/(α(2+α)) (ln lnN)−2β/(α(2+α)) > 0.

Ignoring again logarithmic factors as well as the shortcoming of the lower
bound result, Theorem 7 states that the minimal errors for fixed subspace
sampling behave like N−γfix with order

γfix = 1/(2 + α).

Clearly, γfix < γvar for all α > 0 so that variable subspace sampling is always
superior to fixed subspace sampling, and this superiority is maximal for α = 2
when γvar = 1/2 = 2 γfix. The dependence of the orders γvar, γfull, and γfix

on the parameter α of the small ball function (27) is illustrated in Figure 6.1,
which summarizes the essential content of Theorems 5 to 7.

6.2 Diffusion Processes

In this section we consider the distribution µ of an m-dimensional diffusion
process X on the space X = C = C([0, 1],Rm) or on a space X = Lp =
Lp([0, 1],Rm) with 1 ≤ p <∞. More precisely, X is given by

dXt = a(Xt) dt+ b(Xt) dWt,

X0 = u0 ∈ Rm (28)

for t ∈ [0, 1] with an m-dimensional Brownian motion W , and we assume that
the following conditions are satisfied:



Variable Subspace Sampling and Multi-level Algorithms 23

0

1/2

0 2 α

γfull
γvar
γfix

Fig. 1. Dependence of γvar, γfull, γfix on α

(i) a : Rm → Rm is Lipschitz continuous
(ii) b : Rm → Rm×m has bounded first and second order partial derivatives

and is of class C∞ in some neighborhood of u0

(iii) det b(u0) 6= 0

We first present bounds for the quantization numbers and the average
Kolmogorov widths. Let X = C or X = Lp. The quantization numbers q(r)n

satisfy
q(r)n ³ (lnn)−1/2

for every r > 0. The average Kolmogorov widths d(r)
k satisfy

d
(r)
k ³ k−1/2

for every r > 0. See [5, Prop. 3].
The estimates from Theorems 5–7 with α = 2 and β = 0 are valid, too, in

the diffusion case, see [5, Sec. 9].

Theorem 8. Let X = C or X = Lp. For full space sampling the minimal
errors satisfy

eranN,full ¹ N−1/2 (lnN)−1/2

and
lim sup
N→∞

eranN,fullN
1/2 (lnN)3/2 > 0.

For fixed subspace sampling the minimal errors satisfy

eranN,fix ¹ N−1/4

and
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lim sup
N→∞

eranN,fixN
1/4 (lnN)3/4 > 0.

For variable subspace sampling the minimal errors satisfy

N−1/2 ¹ eranN,var ¹ N−1/2 lnN.

For full space and fixed subspace sampling the lower bounds from Theorem
8 can be improved in the case X = C, see [5, Thm. 12].

Theorem 9. Let X = C. For full space sampling the minimal errors satisfy

eranN,full º N−1/2 (lnN)−3/2.

For fixed subspace sampling the minimal errors satisfy

eranN,fix º N−1/4 (lnN)−3/4.

Remark 9. For a Gaussian measure µ on an infinite-dimensional space, as stud-
ied in Section 6.1, as well as for µ being the distribution of the solution of an
SDE on the path space, the corresponding quantization numbers q(1)N essen-
tially behave like powers of lnN , asymptotically. Observing (26) we conclude
that in both cases quadrature of arbitrary Lipschitz functionals is intractable
by means of deterministic algorithms.

7 Concluding Remarks

The majority of results presented in this survey is concerned with Lipschitz
continuous integrands f . The multi-level approach, however, is not at all linked
to any kind of smoothness assumption on f . Instead, only bias and variance
estimates are needed, see Theorem 1, and there are good reasons to consider
classes F of integrands that either contain non-Lipschitz functionals or are
substantially smaller than Lip(1).

Motivated by applications from computational finance non-continuous in-
tegrands are considered in [1] and [16]. These authors establish new results
on strong approximation of SDEs, which in turn are used in the multi-level
approach. In particular the computation of the expected payoff for digital and
barrier options is covered by this work.

For finite-dimensional spaces X much smaller classes F of integrands than
Lip(1) are studied since long. With a view towards infinite-dimensional in-
tegration as a limiting case, tractability results for d-dimensional integration
are most interesting, since they provide bounds on the minimal errors with
an explicit dependence on the dimension d. We refer to the recent mono-
graph [33]. Here weighted Hilbert spaces with a reproducing kernel play an
important role, and in this setting full space sampling for infinite-dimensional
quadrature case has already been analyzed in [21].
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As for the class F of functionals, the multi-level approach also does not
rely on specific properties of the measure µ. Actually, only suitable subspaces
have to be identified and the simulation of two-level couplings of correspond-
ing distributions must be feasible. So far, most of the work on multi-level
algorithms is dealing with SDEs that are driven by a Brownian motion, and
results for Gaussian measures µ are available as well. Recent progress in a dif-
ferent direction is made in [11], which provides the construction and analysis
of a multi-level algorithm for Lévy-driven SDEs.
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plexity, Academic Press, New York (1988).
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