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Function spaces and optimal currents in impedance tomography

Bangti Jin∗ Taufiquar Khan† Peter Maass∗ Michael Pidcock‡

June 11, 2009

Abstract

The main objective of this paper is to compare - analytically as well as numerically - dif-
ferent approaches for obtaining optimal input currents in impedance tomography. Following
the approaches described in for example [13, 5, 12, 16], we aim at constructing input currents
j, which contain the most information about the difference between the unknown physical
conductivity σ∗ and an estimate σ0. The differences can be measured by different discrep-
ancy functionals and the optimal input currents which maximize these functionals depend
on the function spaces chosen for defining j and on the norm for measuring the discrepancy.
Moreover, the definition of the appropriately weighted Sobolev spaces depends on σ and this
subsequently influences the iteration for maximizing the functionals.

Numerical experiments illustrate features of the optimal input currents obtained for dif-
ferent combinations of function spaces. We compare the resulting optimal currents by a
simplified sparse reconstruction algorithm.

1 Introduction

The electrical impedance tomography (EIT) problem is to determine a spatially varying electrical
conductivity distribution σ within a bounded region Ω ⊂ Rn(n = 2, 3) with a smooth boundary
∂Ω using electrical measurements made on the boundary. If we assume that σ is a strictly
positive, isotropic and bounded conductivity distribution and that there are no current sources
inside Ω, the basic mathematical model for the relevant EIT forward problem (σ known) is
described by the elliptic differential equation for the electric potential u

− div (σ∇u) = 0 in Ω, (1)

subject to the Neumann boundary condition σ ∂u
∂n = j on ∂Ω.

An EIT data collection experiment consists of applying an electrical current (Neumann
data) j on ∂Ω and measuring the resulting electrical potential (Dirichlet data) ϕ on ∂Ω, thus
giving some information on the Neumann-to-Dirichlet (NtD) map. In practise, a number of
experiments using different input currents are made, and the inverse problem for EIT becomes
that of determining an approximation to σ from a partial knowledge of the NtD map [6, 2, 19].

The optimal choice of the input current patterns in the experiment is important for any EIT
reconstruction and several definitions of optimality, either function analytic [13, 12, 5, 9, 16]
or statistical [14, 8], have been suggested. The function analytic approaches define optimality
with respect to a discrepancy functional, which enables us to measure the difference between
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the true physical but unknown σ∗ and an estimate σ0. For an input current j, denote by ϕ∗ the
outcome of an EIT experiment, i.e. the Dirichlet data of the solution of (1), with σ = σ∗. We
use the same input current j and denote by ϕ0 the simulated Dirichlet data of the solution of
(1) with σ = σ0. We can then calculate the difference ‖ϕ∗ −ϕ0‖ and define the optimal current
by solving

max
j,‖j‖=1

‖ϕ∗ − ϕ0‖.

This approach was introduced in [13] for a setting with L2-norms, and it was later formalized
and mathematically justified in [10] as an eigenvalue problem. Similarly, the role of constraints,
either pointwise or in the L2-sense, in determining input currents and the associated optimization
problems has been discussed in [17, 18]. Alternatively, we may use the approach of [16], which
takes ϕ∗ as input to a Dirichlet problem with σ = σ0 and compares the resulting solution u∗

with the solution u0 of the Neumann problem with conductivity σ0 and input current j. The
optimal j is then obtained by maximizing

max
j,‖j‖=1

‖u∗ − u0‖.

In either case the optimal currents depend on the chosen norms for defining these discrepancy
functionals as well as for measuring the input currents themselves. A first attempt in this
direction was made in [5]. It starts by describing discrepancy functionals in different norms
followed by a discussion of the influence of the chosen norms on the resulting optimal currents.
However, after an introductory statement this paper returns to numerical investigations in the
L2-setting. A second attempt was made in [15, 16], where a functional comparing the solutions in
the domain was proposed, but no numerical results were presented. Our more general approach
will also overcome a certain lapse in the approach of [15, 16] which does not consider the
dependence on σ of the chosen H1-norms.

In summary, we aim at an analytic investigation of the influence of the norms of the function
spaces on the resulting optimal currents. We will investigate different natural combinations of
Sobolev and L2- spaces and analyze the resulting optimal currents. The choice of the Sobolev
spaces is justified by either the analytic properties of Neumann and Dirichlet problems, which
suggests measuring the boundary data as well as the solution in Sobolev norms, or by physical
considerations related to the dissipation power of EIT experiments, see [5]. The choice of the
L2-norms is justified by either modelling measurement errors or simply by numerical conve-
nience. The results will be illustrated by numerical experiments. Consequently, we will obtain
optimal currents for each discrepancy functional and we need a second criterion for differentiat-
ing between them. In Section 6 we will use a simplified sparse reconstruction procedure which
determines an update for σ0 based on a thresholded gradient step (shrinkage operation, line
search).

The paper is organized as follows. In the next section we will review the formal analytic
setting of EIT and define relevant function spaces. Section 3 contains the definition of the
operators and in Section 4 we determine the associated adjoint operators. In Section 5 we
derive the iteration procedure for obtaining optimal input currents based on these discrepancy
functionals. Finally, Section 6 presents numerical experiments evaluating the optimality criteria.
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2 Definitions and function spaces

We define the following Neumann and Dirichlet boundary value problems

− div (σ∇u) = 0 in Ω,

σ ∂u
∂n = j on ∂Ω,

(2)

and

− div (σ∇u) = 0 in Ω,

u = ϕ on ∂Ω.
(3)

The conductivity σ is assumed to be bounded below and above, i.e. 0 < c1 ≤ σ ≤ c2 < ∞. In
addition, denote by γDu the Dirichlet trace operator, i.e. the restriction of u to the boundary

γD : Y → Z

u 7→ γDu.

As usual in EIT, we restore uniqueness of the solution u of the Neumann problem (2) by requiring
that the Dirichlet trace γDu satisfies ∫

∂Ω
γDu(s)ds = 0. (4)

Note that to ensure the solvability of the Neumann problem (2) the current j must satisfy
the integrability condition, which, in the absence of a source term, reads

∫
∂Ω j(s)ds = 0. The

associated linear forward operator of the Neumann problem, which maps an input current j to
the solution u, is denoted by

F σ
N : X → Y

j 7→ u solves (2).

The linear operator F σ
D for the Dirichlet problem (3) can be defined analogously. The NtD map

can be written as γDF σ
N and the weak formulation of the Neumann problem (2) becomes∫

Ω
σ∇F σ

N (j) · ∇vdx =
∫

∂Ω
jγDvds (5)

for a suitable set of test functions v. The integral on the boundary should be understood in
the sense of duality pairing, i.e. j ∈ H−1/2(∂Ω) and γDv ∈ H1/2(∂Ω) yield

∫
∂Ω jγDvds =

〈j, γDv〉H−1/2×H1/2 .
As discussed in the Introduction, there are several natural choices for the spaces X, Y and

Z. To this end, we introduce

H̃1
σ(Ω) =

{
u ∈ L2(Ω) |

∫
Ω

σ(x)|∇u(x)|2dx < ∞,

∫
∂Ω

γDu(s)ds = 0
}

.

Because of equation (4), the following bilinear form defines a scalar product on this space

〈u, v〉H̃1
σ

=
∫

Ω
σ∇u · ∇vdx.
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We use the Dirichlet forward operator F σ
D as an extension operator and define the following

space of functions on the boundary ∂Ω

H̃1/2
σ (∂Ω) =

{
g ∈ L2(∂Ω) |

∫
Ω

σ(x)|∇F σ
D(g)(x)|2dx < ∞,

∫
∂Ω

g(s)ds = 0
}

together with its scalar product

〈g, h〉
H̃

1/2
σ

=
∫

Ω
σ(x)∇F σ

D(g)(x) · ∇F σ
D(h)(x)dx.

The Dirichlet-to-Neumann (DtN) operator σ ∂
∂nF σ

D is well defined on H̃
1/2
σ (∂Ω), see [7, 20], and

we introduce
H̃−1/2

σ (∂Ω) =
{

f | f = σ ∂
∂nF σ

D(g), g ∈ H̃1/2
σ (∂Ω)

}
together with its scalar product

〈f, h〉
H̃

−1/2
σ

=
∫

Ω
σ∇F σ

N (f) · ∇F σ
N (h)dx.

We observe, that f ∈ H̃
−1/2
σ (∂Ω) is the Neumann trace for u = F σ

D(g). This implies−div(σ∇u) =
0 and the integrability condition for Neumann problems yields∫

∂Ω
fds = 0 and H̃−1/2

σ (∂Ω) =
{

f ∈ H−1/2
σ (∂Ω)|

∫
∂Ω

fds = 0
}

.

In the following, we will consider the choices X = L̃2(∂Ω) =
{
f ∈ L2(∂Ω) |

∫
∂Ω f(s)ds = 0

}
or X = H̃

−1/2
σ (∂Ω) , Y = H̃1

σ(Ω) or Y = L2(Ω) and Z = H̃
1/2
σ (∂Ω) or Z = L̃2(∂Ω). It is

well-known that the choice of these function spaces strongly influences analytical and numerical
properties of optimal currents, and consequently EIT reconstructions. However, for numerical
convenience most authors have studied the L̃2-case, see, for example [2, Section 7].

3 Functionals for optimal input currents

The design of optimal EIT experiments, i.e. the optimal choice of input currents j, has been
the topic of several studies since the pioneering work [13], see also [5, 6, 16]. The basic idea is to
construct an input current j that best distinguishes an estimate σ0 from the unknown physical
conductivity σ∗.

In [13], Isaacson compares the NtD maps for σ∗ and σ0 as follows

max
j,‖j‖X=1

‖γDF σ0
N (j)− γDF σ∗

N (j)‖Z

with X = Z = L̃2(∂Ω). He then shows that the optimal input current is the maximal eigen-
function (the eigenfunction with the largest eigenvalue in absolute value) of the self-adjoint
operator

A1 : L̃2(∂Ω) → L̃2(∂Ω)
j 7→ γDF σ0

N (j)− γDF σ∗
N (j).

We can also use the natural norms in Z = H̃
1/2
σ0 (∂Ω) and X = H̃

−1/2
σ0 (∂Ω). However, these

norms depend on σ and we need the following embedding operators (if = f)

i+ : H̃
1/2
σ∗ (∂Ω) → H̃1/2

σ0
(∂Ω),

i− : H̃−1/2
σ0

(∂Ω) → H̃
−1/2
σ∗ (∂Ω),
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where the subscripts + and − refer to the sign of the Sobolev index. We can now define

A2 : H̃−1/2
σ0

(∂Ω) → H̃1/2
σ0

(∂Ω)

j 7→ γDF σ0
N (j)− i+ ◦ γDF σ∗

N ◦ i− (j).

The operator A2 is no longer self-adjoint and maximizing ‖A2j‖H̃
1/2
σ0

requires the computation

of a maximal eigenfunction of A∗
2A2.

In [16] another approach for obtaining optimal input currents was introduced by finding

max
j,‖j‖X=1

‖F σ0
N (j)− F σ0

D (γDF σ∗
N (j))‖Y .

Incorporating the σ-dependence of the norms involved and taking into account various combi-
nations of function spaces, we define the following operators

A3 : H̃−1/2
σ0

(∂Ω) → H̃1
σ0

(Ω)

j 7→ F σ0
N (j)− F σ0

D ◦ i+ ◦ γDF σ∗
N ◦ i− (j),

A4 : H̃−1/2
σ0

(∂Ω) → L2(Ω)

j 7→ F σ0
N (j)− F σ0

D ◦ i+ ◦ γDF σ∗
N ◦ i− (j),

A5 : L̃2(∂Ω) → H̃1
σ0

(Ω)

j 7→ F σ0
N (j)− F σ0

D ◦ i+ ◦ γDF σ∗
N (j),

A6 : L̃2(∂Ω) → L2(Ω)
j 7→ F σ0

N (j)− F σ0
D ◦ i+ ◦ γDF σ∗

N (j).

The optimal currents based on these functionals are given by the maximal eigenfunctions of
A∗

kAk, k = 3, 4, 5, 6. In all cases we will take the optimal current as the limit of the iteration

jn+1 =
A∗Ajn

‖A∗Ajn‖
,

in the spirit of the power method in linear algebra [11]. To this end, we need to determine A∗A
for these combinations of function spaces, and this requires the calculation of the adjoints of
the Neumann and the Dirichlet forward operator in different function spaces. This is a classical
exercise in PDE-theory for elliptic problems. The restriction to the rather basic equation of EIT
makes it even simpler. However, the choice of the somewhat unusual combination of function
spaces yield rather different optimal currents as well as different sparse reconstructions.

Remark 3.1 Another natural functional for obtaining optimal currents is given by

max
j,‖j‖X=1

〈j, γDF σ0
N (j)− γDF σ∗

N (j)〉
H̃

−1/2
σ0

×H̃
1/2
σ0

.

The choice X = L̃2(∂Ω) gives

〈j, γDF σ0
N (j)− γDF σ∗

N (j)〉
H̃

−1/2
σ0

×H̃
1/2
σ0

= 〈j, γDF σ0
N (j)− γDF σ∗

N (j)〉L̃2
,

which - since the NtD-map is L̃2-selfadjoint - is equivalent to the case A1 above.
The choice X = H̃

−1/2
σ0 (∂Ω) is equivalent to cases A2 and A3 as we will see in Remark 5.3.
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4 Adjoint operators

For a linear continuous operator B : H1 → H2 between two Hilbert spaces H1 and H2, the
defining equation for the adjoint operator B∗ : H2 → H1 is given by

〈Bf, g〉H2 = 〈f,B∗g〉H1 .

We will determine B∗ for the operators (embedding operators i+ and i−, NtD operator and
Dirichlet and Neumann forward operators F σ

D and F σ
N ) necessary for constructing optimal cur-

rents.
We will need the following identities.

F σ
D = F σ

N

(
σ ∂

∂nF σ
D

)
, (6)

σ ∂
∂nF σ

D ◦ γDF σ
N (f) = f. (7)

The second identity states that the DtN map is inverted by the NtD map.

Lemma 4.1 Let i : H1 → H2 be the embedding operator. Then the adjoint i∗ : H2 → H1 is
given by

(a) i∗g = γDF σ∗
N ◦ σ0

∂
∂nF σ0

D (g) for H1 = H̃
1/2
σ∗ (∂Ω) and H2 = H̃

1/2
σ0 (∂Ω),

(b) i∗g = σ0
∂
∂nF σ0

D ◦ γDF σ∗
N (g) for H1 = H̃

−1/2
σ0 (∂Ω) and H2 = H̃

−1/2
σ∗ (∂Ω).

Proof. (a), here i = i+ and by utilizing i+f = f , the definition of the norm in H̃
1/2
σ0 (∂Ω), the

weak formulation (5) of the Neumann problem and identity (6), we deduce that

〈i+f, g〉
H̃

1/2
σ0

=
∫

Ω
σ0(x)∇F σ0

D (f)(x) · ∇F σ0
D (g)(x)dx

=
∫

Ω
σ0(x)∇F σ0

D (f)(x) · ∇F σ0
N

(
σ0

∂
∂nF σ0

D (g)
)
(x)dx

=
∫

∂Ω
f(s)σ0(s) ∂

∂nF σ0
D (g)(s)ds.

Similarly

〈f, i∗+g〉
H̃

1/2
σ∗

=
∫

Ω
σ∗(x)∇F σ∗

D (f)(x) · ∇F σ
D(i∗+g)(x)dx

=
∫

∂Ω
f(s)σ∗(s) ∂

∂nF σ∗
D (i∗+g)(s)ds.

Now comparing the scalar products and using identity (7) yields the first assertion.
(b) Here i = i−. Appealing again to the weak formulation (5) of the Neumann problem and

the definition of the norm in H̃
−1/2
σ0 (∂Ω) yields

〈i−f, g〉
H̃

−1/2
σ∗

=
∫

Ω
σ∗(x)∇F σ∗

N (f)(x) · ∇F σ∗
N (g)(x)dx

=
∫

∂Ω
f(s)γDF σ∗

N (g)(s)ds,

〈f, i∗−g〉
H̃

−1/2
σ0

=
∫

Ω
σ0(x)∇F σ0

N (f)(x) · ∇F σ0
N (i∗−g)(x)dx

=
∫

∂Ω
f(s)γDF σ0

N (i∗−g)(s)ds.

Comparing the scalar products and using equation (7) gives the second assertion. �
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Next we consider the NtD operator B := γDF σ
N : X → Z for different combinations of

function spaces. It is well-known that B : L̃2(∂Ω) → L̃2(∂Ω) is self-adjoint, i.e. B∗ = γDF σ
N , and

similarly the adjoint of B : H̃
−1/2
σ (∂Ω) → H̃

1/2
σ (∂Ω) is given by the DtN map, i.e. B∗ = σ ∂

∂nF σ
D,

see [2]. The next result gives the adjoint for B : L̃2(∂Ω) → H̃
1/2
σ (∂Ω).

Lemma 4.2 The adjoint of the NtD map B = γDF σ
N : L̃2(∂Ω) → H̃

1/2
σ (∂Ω) is the embedding

operator

B∗ : H̃1/2
σ (∂Ω) → L̃2(∂Ω)

f 7→ B∗f = f.

Proof. The defining equation for the adjoint operator is

〈Bg, f〉
H̃

1/2
σ

= 〈g,B∗f〉L̃2
=

∫
∂Ω

g(s)(B∗f)(s)ds.

The identity F σ
D(Bg) = F σ

D(γDF σ
N (g)) = F σ

N (g) and the definition of the norm in H̃
1/2
σ (∂Ω) in

conjunction with the weak formulation of the Neumann problem yield

〈Bg, f〉
H̃

1/2
σ

=
∫

Ω
σ∇F σ

D(Bg) · ∇F σ
D(f)dx

=
∫

Ω
σ∇F σ

N (g) · ∇F σ
D(f)dx =

∫
∂Ω

g(s)f(s)ds.

Comparing these scalar products implies B∗f = f . �

The next lemma summarizes the adjoints for the Neumann forward operator F σ
N . Observing

the integrability condition, the natural choices for the function spaces X and Y for Neumann
forward operators are X = L̃2(∂Ω) or X = H̃

−1/2
σ (∂Ω) and Y = L2(Ω) or Y = H̃1

σ(Ω).

Lemma 4.3 Let B = F σ
N : X → Y be the Neumann forward operator. For any u ∈ Y let z be

the solution of the inhomogeneous Neumann problem with source term u and constant boundary
data c = −

∫
Ω u(x)dx/|∂Ω|. Then the adjoint B∗ : Y → X is given by

(a) B∗u = σ ∂
∂nF σ

D(γDu) for X = H̃
−1/2
σ (∂Ω) and Y = H̃1

σ(Ω),

(b) B∗u = σ ∂
∂nF σ

D(γDz) for X = H̃
−1/2
σ (∂Ω) and Y = L2(Ω),

(c) B∗u = γDz for X = L̃2(∂Ω) and Y = L2(Ω),

(d) B∗u = γDu for X = L̃2(∂Ω) and H̃1
σ(Ω).

Proof. (a). The weak formulation of the Neumann problem for F σ
N (f) stated in (5) gives

〈f,B∗u〉X =
∫

Ω
σ(x)∇F σ

N (f)(x) · ∇F σ
N (B∗u)(x)dx

=
∫

∂Ω
f(s)γDF σ

N (B∗u)(s)ds.

On the other hand, we have

〈Bf, u〉Y =
∫

Ω
σ(x)∇F σ

N (f)(x) · ∇u(x)dx =
∫

∂Ω
f(s)γDu(s)ds.
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Comparing these two identities yields γDF σ
N (B∗u) = γDu(s) and the desired identity follows

using (7).
It remains to verify the integrability condition of B∗u, i.e. B∗u ∈ H̃

−1/2
σ (∂Ω). Let w =

F σ
D(γDu), then we have −div(σ∇w) = 0. The assertion follows from the integrability condition

for the Neumann problem with vanishing sources, i.e.

0 =
∫

∂Ω
σ ∂

∂nw(s)ds =
∫

∂Ω
B∗u(s)ds.

(b). From the definition of the scalar product in X and the weak formulation of the Neumann
problem for F σ

N (f), we obtain

〈f,B∗u〉X =
∫

Ω
σ(x)∇F σ

N (f)(x) · ∇F σ
N (B∗u)(x)dx = 〈f, γDF σ

N (B∗u)〉
H

−1/2
σ ×H

1/2
σ

.

Let z be the solution of the inhomogeneous Neumann problem with source term u ∈ L2(Ω)
and constant Neumann boundary data c = −

∫
Ω udx/|∂Ω|. The choice of c ensures the integra-

bility condition. Utilizing the weak formulation for z with test function Bf we obtain

〈z,Bf〉H̃1
σ

= 〈u,Bf〉(H̃1
σ)′×H̃1

σ
+ 〈c, γDBf〉

H
−1/2
σ ×H

1/2
σ

= 〈u, Bf〉L2 +
∫

∂Ω
c γDBfds = 〈u, Bf〉L2 ,

where we have used the normalization for the Neumann forward solver B, see equation (4).
Utilizing the weak formulation of the Neumann problem for Bf = F σ

N (f) with test function z
yields

〈z, Bf〉H̃1
σ

= 〈γDz, f〉
H

−1/2
σ ×H

1/2
σ

.

By combining the preceding three expressions we obtain

γDF σ
N (B∗u) = γDz,

which together with equation (7) gives the desired result. It remains to check B∗u ∈ H̃
−1/2
σ (∂Ω).

Note that since w = F σ
D(γDz) satisfies −div(σ∇w) = 0 the Neumann integrability condition

implies
∫
∂Ω σ ∂

∂nwds = 0 and hence B∗u ∈ H̃
−1/2
σ (∂Ω).

Similarly, we obtain that for Case (c), i.e. B : L̃2(∂Ω) → L2(Ω), B∗u = γDz, where z is the
solution of the inhomogeneous Neumann problem with source term u and constant boundary
value c = −

∫
Ω u(x)dx/|∂Ω|. Equation (4) implies

∫
∂Ω γDz(s)ds = 0, i.e. B∗u ∈ L̃2(∂Ω).

For Case (d), i.e. B : L̃2(∂Ω) → H̃1(Ω), we can deduce analogously that B∗u = γDu. �

Remark 4.4 We can simplify the expression for Case (a) if u is the solution of a homogeneous
Dirichlet problem. In this case we obtain

B∗u = σ ∂
∂nF σ

D(γDu) = σ ∂
∂nu.

Finally, we consider the adjoint for the Dirichlet forward operator B = F σ
D : X → Y .

Lemma 4.5 Let B = F σ
D : X → Y be the Dirichlet forward operator. For any u ∈ Y let z be

the solution of the inhomogeneous Neumann problem with source term u and constant boundary
data c = −

∫
Ω u(x)dx/|∂Ω|. Then the adjoint B∗ : Y → X is given by
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(a) B∗u = γDu for X = H̃
1/2
σ (∂Ω) and Y = H̃1

σ(Ω),

(b) B∗u = γDz for X = H̃
1/2
σ (∂Ω) and Y = L2(Ω).

Proof. (a), using identity (6) and Lemma 4.3, we obtain

B∗u = (F σ
N ◦ σ ∂

∂nF σ
D)∗(u)

=
(
σ ∂

∂nF σ
D

)∗ ◦ (F σ
N )∗ (u)

= γDF σ
N ◦ σ ∂

∂nF σ
D(γDu) = γDu.

(b), the Neumann forward operator F σ
N is now a mapping from H̃

−1/2
σ (∂Ω) to L2(Ω). Using

identity (6) and Lemma 4.3, we deduce

B∗u = (F σ
N ◦ σ ∂

∂nF σ
D)∗(u)

=
(
σ ∂

∂nF σ
D

)∗ ◦ (F σ
N )∗ (u)

= γDF σ
N ◦ σ ∂

∂nF σ
D(γDz) = γDz,

where z is the solution of the inhomogeneous Neumann problem with source term u and constant
Neumann boundary data c = −

∫
Ω udx/|∂Ω|. �

5 Optimal input currents

As motivated in Section 1, we search for an input current j that distinguishes the physical model
σ∗ from an estimate σ0. We compute the optimal input current j∗ by the power method

jn+1 =
A∗Ajn

‖A∗Ajn‖
,

which converges to an optimal current for general j0. In Section 3 we introduced several choices
for A, which resulted from different discrepancy functionals and choices of function spaces. These
approaches will lead to a variety of ‘optimal’ input currents. The analytical differences between
these ’optimal’ currents can be expressed by comparing the NtD and DtN operators for σ∗ and
σ0. More precisely, we introduce

E = σ0
∂
∂nF σ0

D ◦ γDF σ∗
N and Ẽ = γDF σ∗

N ◦ σ0
∂
∂nF σ0

D .

Both operators reduce to the identity operator if σ0 = σ∗. In the following theorem we give the
main analytical result of this paper.

Theorem 5.1 Let E, and Ẽ be defined as above. Let u = F σ0
N (1−E)j and let z be the solution of

the inhomogeneous Neumann problem with conductivity σ0, source term u and constant boundary
value c = −

∫
Ω udx/|∂Ω|. Then

(a) A∗
1 : L̃2(∂Ω) → L̃2(∂Ω) and A∗

1 = A1 = γDF σ0
N ◦ (1− E),

(b) A∗
2A2 = A∗

3A3 : H̃
−1/2
σ0 (∂Ω) → H̃

−1/2
σ0 (∂Ω) and A∗

2A2 = A∗
3A3 = (1− E)2,

(c) A∗
4A4 : H̃

−1/2
σ0 (∂Ω) → H̃

−1/2
σ0 (∂Ω) and A∗

4A4f = σ0
∂
∂nF σ0

D ◦ (1− Ẽ) ◦ γDz,

(d) A∗
5A5 : L̃2(∂Ω) → L̃2(∂Ω) and A∗

5A5 = γDF σ0
N (1− E)2,

(e) A∗
6A6 : L̃2(∂Ω) → L̃2(∂Ω) and A∗

6A6f = (1− Ẽ) ◦ γDz.

9



Proof. Case (a). The L2-norm does not depend on σ which is the only case not requiring
embedding operators. The NtD operator is self-adjoint as a mapping L̃2(∂Ω) → L̃2(∂Ω) and

A∗
1 = (γDF σ0

N )∗ − (γDF σ∗
N )∗ = A1.

Case (b). By the definition of the norm in H̃
1/2
σ0 (∂Ω), we have ‖A2j‖H̃

1/2
σ0

= ‖F σ0
D (A2j)‖H̃1

σ0
,

and moreover, we observe

F σ0
D (A2j) = F σ0

D (γDF σ0
N (j)− i+γDF σ∗

N (i−j)))
= F σ0

N (j)− F σ0
D (i+γDF σ∗

N (i−j)) = A3j,

i.e. ‖A2j‖H̃
1/2
σ0

= ‖A3j‖H̃1
σ0

and the iterations for A∗
2A2 and A∗

3A3 are the same. Therefore, it

suffices to consider only A3. To this end, we split A3 as follows A3j = Cj−Dj with Cj = F σ0
N (j)

and Dj = F σ0
D (i+γDF σ∗

N (i−j)), respectively. By Lemma 4.3 we have

C∗u = σ0
∂
∂nF σ0

D (γDu),

and Lemmas 4.1-4.3 and Lemma 4.5 imply

D∗u = (i−)∗ ◦ (γDF σ∗
N )∗ ◦ (i+)∗ ◦ (F σ0

D )∗u
= σ0

∂
∂nF σ0

D ◦ γDF σ∗
N ◦ σ∗ ∂

∂nF σ∗
D ◦ γDF σ∗

N ◦ σ0
∂
∂nF σ0

D ◦ γDu

= σ0
∂
∂nF σ0

D ◦ γDF σ∗
N ◦ σ0

∂
∂nF σ0

D ◦ γDu.

Combining these adjoint operators and recalling the definition of the operator E gives

A∗
3A3j = (C∗C − C∗D −D∗C + D∗D)j

= j − σ0
∂

∂n
F σ0

D (γDF σ∗
N (j))− σ0

∂
∂nF σ0

D ◦ γDF σ∗
N ◦ σ0

∂
∂nF σ0

D ◦ γD ◦ F σ0
N (j)

+σ0
∂
∂nF σ0

D ◦ γDF σ∗
N ◦ σ0

∂
∂nF σ0

D ◦ γDF σ0
D (γDF σ∗

N (j))

= j − 2σ0
∂
∂nF σ0

D (γDF σ∗
N (j)) + σ0

∂
∂nF σ0

D ◦ γDF σ∗
N ◦ σ0

∂
∂nF σ0

D ◦ γD(F σ∗
N (j))

= (1− E)2j.

Case (c). Again we split the operator A4 as A4j = Cj −Dj with C and D as in Case (b).
As opposed to Case (b), F σ0

N , respectively F σ0
D , is a mapping H̃

−1/2
σ0 (∂Ω) → L2(Ω), respectively

H̃
1/2
σ0 (∂Ω) → L2(Ω). With the help of the results in Section 4 and taking into account the

definitions of u and z, we obtain

C∗u = σ0
∂
∂nF σ0

D (γDz),

and similarly we have

D∗u = (i−)∗ ◦ (γDF σ∗
N )∗ ◦ (i+)∗ ◦ (F σ0

D )∗u
= σ0

∂
∂nF σ0

D ◦ γDF σ∗
N ◦ σ0

∂
∂nF σ0

D ◦ γDz.

Combining these adjoint operators we obtain C∗(C −D) = σ0
∂
∂nF σ0

D (γDz) where z is the weak
solution of −divσ0∇ = F σ0

N (1 − E)j with constant Neumann data. Similarly, we compute
D∗(C −D) and the definition of Ẽ gives the third assertion.

10



Case (d). We appeal again to the splitting A5j = Cj − Dj with Cj = F σ0
N (j) and

Dj = F σ0
D (i+γDF σ∗

N (j)). Now F σ0
N , respectively γDF σ∗

N , acts as a mapping L̃2(∂Ω) → H̃1
σ0

(Ω),
respectively L̃2(∂Ω) → H̃

1/2
σ∗ (∂Ω). Using the results in Section 4, we deduce that

C∗u = γDu

and

D∗u = (γDF σ∗
N )∗ ◦ (i+)∗ ◦ (F σ0

D )∗u
= γDF σ∗

N ◦ σ0
∂
∂nF σ0

D ◦ γDu.

The fourth assertion follows directly from these two adjoint operators and identity (7).
Case (e). We once again appeal to the splitting A6j = Cj − Dj with C and D as in Case

(d). Recall that F σ0
N , respectively F σ0

D , is a mapping L̃2(∂Ω) → L2(Ω), respectively H̃
1/2
σ0 (∂Ω) →

L2(Ω). With the definitions of u and z, we obtain

C∗u = γDz

and

D∗u = (γDF σ∗
N )∗ ◦ (i+)∗ ◦ (F σ0

D )∗u
= γDF σ∗

N ◦ σ0
∂
∂nF σ0

D ◦ γDz.

The last assertion follows easily from these adjoint operators. �

Remark 5.2 (1) The description of A∗A has been chosen for the convenience of analytic com-
parison. For numerical implementations it is more convenient to use e.g. γDF σ0

N ◦ (1 − E) =
γDF σ0

N − γDF σ∗
N .

(2) The power method for case (b) can be simplified to jn+1 = A1jn

‖A1jn‖ , which is the classical
case treated already in [13].

Remark 5.3 We conclude this section with a remark on the functional introduced in Remark
3.1. For X = H̃

−1/2
σ0 (∂Ω) this can be simplified by using the Riesz map H̃

−1/2
σ0 (∂Ω) → H̃

1/2
σ0 (∂Ω),

which is the NtD-map γDF σ0
N . We apply the adjoint of the Riesz map and obtain:

〈j, γDF σ0
N (j)− γDF σ∗

N (j)〉
H̃

−1/2
σ0

×H̃
1/2
σ0

= 〈j, (1− E)j〉
H̃

−1/2
σ0

.

The operator (1−E) is selfadjoint as a mapping H̃
−1/2
σ0 (∂Ω) → H̃

−1/2
σ0 (∂Ω). In addition (1−E)

is a postive operator in a neigborhood of σ∗, hence, the functional of Remark 3.1 yields the same
optimal currents as A2 above.

6 Numerical experiments

This section consists of two parts. In the first, we present some numerical results on the con-
struction of optimal currents by maximizing the discrepancy functionals introduced in Section
3. We will always implement the power method which requires us to compute iterations with
A∗

kAk, k = 1, .., 6, see Section 5. The second part is devoted to a comparison of these different
optimal currents in terms of their usefulness for solving the inverse EIT problem. As a full re-
construction scheme is beyond the scope of this article, we will restrict ourselves to a numerical
implementation of a simplified sparsity scheme and compare the resulting reconstructions.
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Figure 1: The first three optimal currents for (a) Case 1, (b) Cases 2 and 3, (c) Case 4, (d) Case
5, and (e) Case 6.

6.1 Numerical computation of optimal EIT currents

As in other numerical studies we use a test problem which aims at detecting small inclusions
within a homogeneous background. For a survey on this topic see, for example, [2, 4]. The
domain Ω is taken to be a unit disk and the background conductivity is set to σ0 = 1 which is
also always our choice of the initial estimate σ0.

We have tested the computation of the optimal currents with a single inclusion at different
locations as well as with multiple inclusions of varying conductivity. The influence of the function
space settings on the resulting optimal current is well illustrated in the following test scheme:
we choose two circular inclusions, one centred at (0,−0.6) with a radius 0.3 and another centred
at (−0.7, 0) with a radius 0.2. Both inhomogeneities have a conductivity 6.

The Dirichlet and Neumann problems were discretized using piecewise linear finite elements
with 1032 finite elements. The initial guesses j0 for optimal currents (OC) are generated ran-
domly, and we have always computed n = 1000 iterations of jn+1 = A∗Ajn/‖A∗Ajn‖. With the
exception of Case 3, the convergence of the power method is rather fast and typically n = 20 or
fewer iterations are sufficient to obtain a good approximation of the optima current. In addi-
tion, we have computed the eigenfunctions of A∗A corresponding to the second and third largest
eigenvalues by subsequent orthogonalization using a Gram-Schmidt procedure. The iteration
applies to the orthogonal basis in the spirit of classical QR algorithm [11]. The converged profile
of the first three optimal currents are shown in Figure 1, where θ refers to the angular coordinate
on the boundary ∂Ω.

As expected the optimal currents are localized at those parts of the boundary which are
close to the inclusions. The optimal current of Case 1 is similar to Cases 5 and 6. However,
Case 4 has the sharpest localization, i.e. the optimal current decays quickly to zero away from
the inclusions and it allows a clean discrimination between the two inclusions. Nevertheless, all
these four cases can locate correctly the position of the inhomogeneities.

Surprisingly, Cases 2 and 3 fail to produce any physically interesting optimal currents. A
closer examination of the iteration of Case 3 reveals that the final step in each iteration is the
computation of Neumann boundary data. Hence the iterates are elements of H

−1/2
σ0 (∂Ω) which is

a set of measures rather than a set of functions. The oscillations observed in the optimal currents
reflect the mesh size of the discretization. The oscillations increase for finer discretizations but
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Table 1: The error of the reconstruction for Test 1 with 1% noise.
Case 1 2,3 4 5 6

1st OC 1.692 - 1.573 1.619 1.664
2nd OC 1.439 - 1.437 1.444 1.421

the envelope is stable. Nevertheless, the optimal currents computed for Case 3 seem nonphysical
and the locations of the optimal current are completely misleading.

The iteration of Case 4 also involves the computation of Neumann boundary data as a final
step. However, this iteration also involves an intermediate solution of a Neumann problem,
which yields elements in H̃1

σ0
(Ω). This can be regarded as an intermediate smoothing and leads

to a stabilization of the iteration procedure.
The eigenfunctions corresponding to the second and third largest eigenvalues exhibit addi-

tional features. Those for Cases 1, 5 and 6 are quite similar, and those for Case 4 remain more
narrowly supported around the positions of the inhomogeneities. Intuitively we might expect
that this would lead to better reconstructions. The difference between these two categories ap-
pears to originate from the different norms for the fluxes j: the former uses L̃2(∂Ω), whereas
the latter uses H̃

−1/2
σ0 (∂Ω).

6.2 Evaluation of the different optimal currents

Each of the optimal currents discussed in this paper is derived from maximizing a specific
functional. How can we decide which of these different optimal currents is the best? For this we
need an additional criterion which is independent of the functionals. We have chosen a criterion
which allows us to illustrate the potential of these optimal currents for reconstructing local
inhomogeneities. Since such a conductivity distribution exhibits a sparse structure we use a
sparse reconstruction scheme. We expect that this will not only allow us to locate the inclusions
but will, in addition, give qualitatively acceptable reconstruction values.

Our sparse reconstruction algorithm is based on the iterated soft shrinkage scheme Sλ for
non-linear operator equations developed in [21, 1, 3]. This scheme requires us to compute the
derivative with respect to σ of the following functional

J(σ) =
∫

Ω
σ|∇(F σ

N (j)− F σ
D(ϕδ))|2dx

where ϕδ is the measured potential data of an EIT experiment with optimal current j. The
iterated soft shrinkage scheme for updating σ proceeds now by computing the usual gradient
descent step followed by a soft shrinkage step

σ1 = Ssα

(
σ0 − sJ ′(σ0)

)
,

where s is the step size determined by Armijo’s rule and α is the threshold parameter. The
shrinkage operator Sλ promotes the sparse structure of the reconstructions. It can be shown
that for the functional J(σ), the gradient J ′(σ0) is given by

J ′(σ0) = |∇F σ0
D (ϕδ)|2 − |∇F σ0

N (j)|2.

In addition we have incorporated a smoothing of J ′(σ0) using an inverse Laplacian in order to
stabilize the iteration.

The sparsity-promoting reconstructions using the optimal currents are shown in Figure 2,
where the results for Cases 2 and 3 are not presented due to their poor quality. The threshold
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Figure 2: (a) exact σ∗ and numerical reconstruction with the first optimal current of (b) Case
1, (c) Case (4), (d) Case 5 and (e) Case 6.

Table 2: The error of the reconstruction for Test 2 with 1% noise.
Case 1 2,3 4 5 6

1st OC 1.575 - 1.575 1.723 1.578
2nd OC 1.609 - 1.615 1.658 1.656

parameter assumes the role of the regularization parameter and its value was taken to be α =
5 × 10−4. For the results presented, 1% relative noise was added to the exact data which were
generated using a finer finite element mesh with 4128 finite elements. The algorithm was stopped
after 400 iterations.

The reconstructions accurately determine the location of inhomogeneities for all remaining
cases (Cases 1, 4, 5 and 6), and the results are practically identical. Note that the smaller
inclusion is less well resolved compared to the larger one. Nonetheless, the estimate remains
acceptable taking into account the fact that we have used only one optimal current. Most
interestingly, the magnitude of the larger inclusion was correctly retrieved and this contrasts
sharply with most existing methods that typically determine only the location with reasonable
precision. To measure the accuracy of the reconstructions, we compute the error ‖σ∗ − σ‖L2 .
The errors for these reconstructions are shown in Table 1. The errors are largely comparable
with each other, with that for Case 4 being slightly smaller.

We also perform the reconstruction with the eigenfunctions for the second largest eigenvalues,
which seem to be localized on the boundary close to the smaller inclusion. The results are
shown in Figure 3 and we observe that the numerical results are comparable with those using
the optimal currents. An interesting observation is that the location of the smaller inclusion
is more accurately and sharply resolved compared to those in Figure 2, and consequently, the
accuracy is improved slightly, see Table 1. This indicates that this eigenfunction contains more
information about the smaller inclusion, than the first one.

To further evaluate these optimal currents, we consider a more challenging test: the inclusion
has again conductivity 6 but it is now centered at (0,−0.1) with radius 0.3. Again the inho-
mogeneity has conductivity 6. For all cases, the threshold parameter was set to 2 × 10−3, and
the algorithm was stopped after 1000 iterations. The reconstruction results using the optimal
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Figure 3: (a) exact σ∗ and numerical reconstruction with the second optimal current of (b) Case
1, (c) Case (4), (d) Case 5 and (e) Case 6.
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Figure 4: (a) exact σ∗ and numerical reconstruction with the first optimal current of (b) Case
1, (c) Case 4, (d) Case 5 and (e) Case 6.
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currents are shown in Figure 4. Since the inclusion is located far away from the boundary, a
single optimal current does not contain enough information for accurately reconstructing the
conductivity. In particular, for all the cases, the retrieved magnitude is significantly smaller
than the exact one. Nonetheless, the location of the inclusion is acceptable for all cases. Again,
the results in Cases 1, 4 and 6 are practically identical, see also Table 2 for the reconstruction
errors, and that Case 5 is slightly inferior. For this example, the current corresponding to the
second largest eigenvalue delivers slightly less accurate results although it is still informative,
see Table 2.
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[6] E. Novak and H. Woźniakowski. Approximation of Infinitely Differentiable Multi-
variate Functions Is Intractable. Preprint 6, DFG-SPP 1324, January 2009.

[7] J. Ma and G. Plonka. A Review of Curvelets and Recent Applications. Preprint 7,
DFG-SPP 1324, February 2009.

[8] L. Denis, D. A. Lorenz, and D. Trede. Greedy Solution of Ill-Posed Problems: Error
Bounds and Exact Inversion. Preprint 8, DFG-SPP 1324, April 2009.

[9] U. Friedrich. A Two Parameter Generalization of Lions’ Nonoverlapping Domain
Decomposition Method for Linear Elliptic PDEs. Preprint 9, DFG-SPP 1324, April
2009.

[10] K. Bredies and D. A. Lorenz. Minimization of Non-smooth, Non-convex Functionals
by Iterative Thresholding. Preprint 10, DFG-SPP 1324, April 2009.

[11] K. Bredies and D. A. Lorenz. Regularization with Non-convex Separable Con-
straints. Preprint 11, DFG-SPP 1324, April 2009.
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