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1 Introduction

In this article, we analyze numerical schemes for the evaluation of

S(f) := E[f(Y )],

where Y = (Yt)t∈[0,1] is a solution to a multivariate stochastic differential equation driven by
a multidimensional Lévy process, and f is a Borel measurable mapping from the Skorokhod
space of R

dY -valued functions over the time interval [0, 1] into the real numbers that is Lipschitz
continuous with respect to the supremum norm.

This is a classical problem which appears for instance in finance, where Y models the risk
neutral stock price and f denotes the payoff of a (possibly path dependent) option, and in the
past several concepts have been employed for dealing with it. We refer in particular to [PT97],
[Rub03], and [JKMP05] for an analysis of the Euler scheme for Lévy-driven SDEs.

Recently, Giles [Gil08b] introduced the so called multilevel Monte Carlo method in the context
of stochastic differential equations, and this turned out to be very efficient when Y is a continuous
diffusion. Indeed, it can even be shown that it is -in some sense- optimal [CDMR08], see also
[Gil08a, Avi09] for further recent results and [MR09] for a survey and further references. In this
article, we analyze a multilevel Monte Carlo algorithm for Lévy driven stochastic differential
equations. We use approximations that simulate large jumps of the Lévy process and neglect
small ones, while the Wiener process is treated as in the Euler scheme. We control the worst
case error over the class of all Lipschitz functionals with Lipschitz constant one. Moreover, we
relate the approximation error to the computational cost of the algorithm. For Lévy processes
with small Blumenthal-Getoor index, we find the same asymptotics as obtained in Giles [Gil08b]
in the classical setting, i.e., the order of the error in the computational time n is n−1/2(log n)3/2.
For large Blumenthal-Getoor index the asymptotics are dominated by the Lévy process, where
the critical index is one.

1.1 Notation and results

Let us now introduce the main notation. We denote by | · | the Euclidean norm for vectors as well
as the Frobenius norm for matrices. For h > 0, we put Bh = {x ∈ R

dX : |x| < h}. Moreover, we
let D[0, 1] denote the space of càdlàg functions from [0, 1] to R

dY , where R
dY is the state space of

Y to be defined below. The space D[0, 1] is endowed with the σ-field induced by the projections on
the marginals (or, equivalently, the Borel-σ-field for the Skorokhod topology). Often, we consider
supremum norm on D[0, 1] and we denote ‖f‖ = supt∈[0,1] |f(t)| for f ∈ D[0, 1]. Furthermore,
the set of Borel measurable functions f : D[0, 1] → R, that are Lipschitz continuous with
Lipschitz constant one with respect to the supremum norm is denoted by Lip(1). In general,
we write f ∼ g iff lim f/g = 1, while f . g stands for lim sup f/g ≤ 1. Finally, f ≈ g means
0 < lim inf f/g ≤ lim sup f/g < ∞, and f - g means lim sup f/g < ∞.

In the following, X = (Xt)t≥0 denotes a dX -dimensional L2-Lévy process with Lévy mea-
sure ν, drift parameter b and Gaussian covariance matrix ΣΣ∗, see Section 2. The parameters
ν, ΣΣ∗ and b uniquely determine the distribution of the Lévy process on D[0, 1].

We consider the stochastic integral equation

Yt = y0 +

∫ t

0
a(Ys−) dXs (1)
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with deterministic initial value y0 ∈ R
dY . We impose a standard Lipschitz assumption on the

function a, which implies, in particular, existence and strong uniqueness of the solution:

Assumption. For a fixed K < ∞, the function a : R
dY → R

dY ×dX satisfies

|a(y) − a(y′)| ≤ K|y − y′|

for all y, y′ ∈ R
dY . Furthermore, we have

|a(y0)| ≤ K, 0 <

∫
|x|2 ν(dx) ≤ K2, |Σ| ≤ K and |b| ≤ K.

For a general account on Lévy processes we refer the reader to the books by [Ber98] and
[Sat99]. Moreover, concerning stochastic analysis, we refer the reader to the books by Protter
[Pro05] and Applebaum [App04].

We consider a class A of multilevel Monte Carlo algorithms together with a cost function
cost : A → [0,∞) that are introduced explicitly in Section 4. For each algorithm Ŝ ∈ A, we
denote by Ŝ(f) a real-valued random variable representing the random output of the algorithm
when applied to a given measurable function f : D[0, 1] → R. We work in the real number model
of computation, which means that we assume that arithmetic operations with real numbers and
comparisons can be done in one time unit. Our cost function represents the runtime of the
algorithm reasonably well when supposing that

• one can sample from the distribution ν|Bc
h
/ν(Bc

h) for sufficiently small h > 0 and the
uniform distribution on [0, 1] in constant time,

• one can evaluate a at any point y ∈ R
dY in constant time, and

• f can be evaluated for piecewise constant functions in less than a constant multiple of its
breakpoints plus one time units.

Indeed, in that case, the average runtime to evaluate Ŝ(f) is less than a constant multiple of
cost(Ŝ). We denote the worst case error of an algorithm Ŝ ∈ A over all functions f ∈ Lip(1) by

e2(Ŝ) = sup
f∈Lip(1)

E[|S(f) − Ŝ(f)|2]. (2)

Finally, we analyze the minimum of e(Ŝ) over the class of all algorithms Ŝ ∈ A with cost bounded
by n,

eA(n) = inf
bS∈A:

cost(bS)≤n

e(Ŝ) , n ≥ 1.

Our main findings are summarized in the following theorem. Algorithms that satisfy these error
bounds are provided in Section 4.

Theorem 1. Let g : (0,∞) → (0,∞) denote a decreasing and invertible function such that

∫ |x|2
h2

∧ 1 ν(dx) ≤ g(h) for all h > 0.
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(i) If the driving process X has no Brownian component, i.e., Σ = 0, and if there exists γ > 0
such that

g(h) -
1

h(log 1/h)1+γ
(3)

as h ↓ 0, then

eA(n) -
1√
n

.

(ii) If there exists γ ≥ 1/2 such that

g(h) -
(log 1/h)γ

h
,

as h ↓ 0, then

eA(n) -
1√
n

(log n)γ+1.

(iii) If there exists γ > 1 with

g(
γ

2
h) ≥ 2g(h) (4)

for all sufficiently small h > 0, then

eA(n) -
√

n g−1(n).

Remark 1. Part (ii) and (iii) deal with stochastic differential equations with a Brownian com-
ponent in the driving process X, i.e. Σ 6= 0, see Section 2. Essentially part (ii) and (iii) cover
all reasonable cases with Σ 6= 0. When γ = 1/2 in (ii), the asymptotics are the same as in
the classical diffusion setting analyzed in [Gil08b]. Similarly, as in our proof one can also treat
different terms of lower order instead of log. Certainly, it also makes sense to consider γ < 1/2,
when Σ = 0. The computations are similar and therefore omitted. Part (iii) covers, in particular,
all cases where g is regularly varying at 0 with exponent strictly smaller than −1. In this case

it is possible to choose g(h) =
∫ |x|2

h2 ∧ 1 ν(dx).

In terms of the Blumenthal-Getoor index

β := inf
{

p > 0 :

∫

B1

|x|p ν(dx) < ∞
}
∈ [0, 2]

we get the following corollary.

Corollary 1.

sup{γ ≥ 0 : eA(n) - n−γ} ≥
( 1

β
− 1

2

)
∧ 1

2
.
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1.2 Examples

We now apply our results of Theorem 1 to some common examples of driving Lévy processes.

• Jump diffusion processes are Brownian motions interlaced with a compound Poisson pro-
cess. In finance, special cases of these are used, e.g., in the Kou or the Merton model, to
model the log price process. The compound Poisson process has finite Lévy measure and

thus the integral
∫ |x|2

h2 ∧ 1 ν(dx) is bounded by a constant. Hence, the tradeoff between

cost and error is the same as in the pure Gaussian case, i.e. eA(n) - n−1/2(log n)3/2.

• Since α-stable processes only satisfy our assumption of second moments in the special
case of Brownian Motion (α = 2), we consider processes where the jumps have α-stable
behaviour around 0 and are truncated at some given size u > 0. The Lévy measure then
has Lebesgue-density

ν(x) =
c1

x1+α
1(0,u)(x) +

c2

|x|1+α
1(−u,0)(x)

and the complexity functional for small h > 0 is bounded by

∫ |x|2
h2

∧ 1 ν(dx) ≤ Ch−α = g(h).

with a constant C > 0 depending on c1, c2, u and α.

For α < 1 part (i) can be used because (3) is fulfilled for γ > 0 and h ↓ 0. The asymptotic

error for cost n thus behaves like eA(n) - n− 1
2 .

In the case with α > 1 part (iii) can be used with γ = 2
α−1

α > 1 and the error bound for

cost n fulfills eA(n) - n−( 1
α
− 1

2
).

The case α = 1 can be treated via (ii). However, this is suboptimal since in this case
the error without Gaussian term is smaller than the one with Gaussain term. Similar
computations as in the proof of Theorem 1 show that for the truncated 1-stable Lévy
process one has eA(n) - n− 1

2 log n.

2 Basic Facts

The distribution of the driving Lévy process X is characterized by the parameters b ∈ R
dX , Σ ∈

R
dX×dX and ν, which is a Borel measure on R

dX\{0} and satisfies

0 <

∫
|x|2ν(dx) < ∞.

We sketch a construction of X with a view towards simulation in the multilevel setting. This
construction is based on the L2-approximation of Lévy processes as it is presented in [Pro05]
and [App04].

Consider a stochastic process (N(t, A))t≥0,A∈B(RdX \{0}) on some probability space (Ω, A, P )
with the following properties. For every ω ∈ Ω the mapping [0, t] × A 7→ N(t, A)(ω) induces a
σ-finite counting measure on B(R+ × (RdX\{0})). For every A ∈ B(RdX\{0}) that is bounded
away from zero the process (N(t, A))t≥0 is a Poisson process with intensity ν(A). For pairwise
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disjoint sets A1, . . . , Ar ∈ B(RdX\{0}) the stochastic processes (N(t, A1))t≥0, . . . , (N(t, Ar))t≥0

are independent.
Then N(t, .) P -a.s. defines a finite measure on Bc

h with values in N0. The integral
∫
Bc

h
xN(t, dx)

thus is a random finite sum, which gives rise to a compound Poisson process. More specifically
put λ(h) = ν(Bc

h) < ∞, which satisfies λ(h) > 0 for sufficiently small h > 0. In this case
µ(h) = ν|Bc

h
/λ(h) defines a probability measure on R

dX\{0} such that

∫

Bc
h

xN(t, dx)
d
=

Nt∑

i=1

ξi, (5)

where
d
= denotes equality in distribution, (Nt)t≥0 is a Poisson process with intensity λ(h) and

(ξi)i∈N is an i.i.d. sequence of random variables with distribution µ(h) and independent of (Nt)t≥0.
Its expectation calculates to E

[∫
Bc

h
xN(t, dx)

]
= F0(h)t, where we set

F0(h) =

∫

Bc
h

x ν(dx).

The compensated process L(h) = (L(h)

t )t≥0, given by

L(h)

t =

∫

Bc
h

xN(t, dx) − tF0(h), (6)

is an L2-martingale, and the same holds true for its L2-limit L = (Lt)t≥0 = limh↓0 L(h), see, e.g.,
Applebaum [App04].

With W denoting a dX -dimensional Brownian motion independent of L, we define the Lévy
process X by

Xt = ΣWt + Lt + bt. (7)

We add that the Lévy-Itô-decomposition guarantees that every L2-Lévy process has a represen-
tation (7).

3 A Coupled Euler Scheme

The multilevel Monte Carlo algorithm introduced in Section 4 is based on a hierarchy of coupled
Euler schemes for the approximation of the solution process Y of the SDE (1). In every single
Euler scheme we approximate X in the following way. At first we neglect all the jumps with
size smaller than h. The jumps of size at least h induce a random time discretization, which,
because of the Brownian component, is refined so that the step sizes are at most ε. Finally W
as well as the drift component are approximated by piecewise constant functions with respect to
the refined time discretization. In this way, we get an approximation X̂ (h,ǫ) of X. The multilevel
approach requires simulation of the joint distribution of X̂ (h,ǫ) and X̂ (h′,ε′) for different values of
h′ > h > 0 and ε′ > ε > 0. More precisely, we proceed as follows.

For any càdlàg process L we denote by ∆Lt = Lt − limsրt Ls the jump-discontinuity at
time t. The jump times of L(h) are then given by T (h)

0 = 0 and

T (h)

k = inf{t > T (h)

k−1 : ∆L(h)

t 6= 0}
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for k ≥ 1. The time differences T (h)

k − T (h)

k−1 form an i.i.d. sequence of random variables that
are exponentially distributed with parameter λ(h). Furthermore, this sequence is independent of
the sequence of jump heights ∆L(h)

T
(h)
k

, which is i.i.d. with distribution µ(h), and on every interval

[T (h)

k , T (h)

k+1) the process L(h) is linear with slope −F0(h). See (5) and (6).

The processes ∆L(h′) and ∆(L(h) − L(h′)) are independent with values in {0} ∪ Bc
h′ and

{0} ∪ Bc
h\Bc

h′ , respectively, and therefore the jumps of the process L(h′) can be obtained from
those of L(h) by

∆L(h′)

t = ∆L(h)

t · 1
{|∆L

(h)
t |>h′}

.

We conclude that the simulation of the joint distribution of (L(h), L(h′)) only requires samples
from the jump times and jump heights T (h)

k and ∆L(h)

T
(h)
k

, respectively, which amounts to sampling

from µ(h) and from an exponential distribution.
Because of the Brownian component we refine the time discretization by T (h,ε)

0 = 0 and

T (h,ε)

j = inf{T (h)

k > T (h,ε)

j−1 : k ∈ N} ∧ (T (h,ε)

j−1 + ε) (8)

for j ≥ 1. Summarizing, X is approximated at the discretization times Tj = T (h,ε)

j by X̂ (h,ǫ)

0 = 0
and

X̂ (h,ǫ)

Tj
= X̂ (h,ǫ)

Tj−1
+ Σ(WTj

− WTj−1) + ∆L(h)

Tj
+ (b − F0(h))(Tj − Tj−1)

for j ≥ 1. Observe that
X̂ (h,ǫ)

Tj
= ΣWTj

+ L(h)

Tj
+ bTj .

To simulate the Brownian components of the coupled processes (X̂ (h,ǫ), X̂ (h′,ε′)), we refine

the sequence of jump times T (h)

k to get (T (h,ε)

j )j∈N0 and (T (h′,ε′)

j )j∈N0 , respectively. Since W and

L are independent, the process W is easily simulated at all times (T (h,ε)

j )j∈N0 and (T (h′,ε′)

j )j∈N0

that are in [0, 1] by sampling from a normal distribution.
For the SDE (1) the Euler scheme with the driving process (ΣWt + L(h)

t + bt)t≥0 and the
random time discretization (Tj)j∈N0 = (T (h,ε)

j )j∈N0 is defined by Ŷ (h,ǫ)

0 = y0 and

Ŷ (h,ǫ)

Tj
= Ŷ (h,ǫ)

Tj−1
+ a(Ŷ (h,ǫ)

Tj−1
)(X̂ (h,ǫ)

Tj
− X̂ (h,ǫ)

Tj−1
) (9)

for j ≥ 1. Furthermore Ŷ (h,ǫ)

t = Ŷ (h,ǫ)

Tj
for t ∈ [Tj , Tj+1). In the multilevel approach the solution

process Y of the SDE (1) is approximated via coupled Euler schemes (Ŷ (h,ǫ), Ŷ (h′,ε′)), which are
obtained by applying the Euler scheme (9) to the coupled driving processes X̂ (h,ǫ) and X̂ (h′,ε′)

with their random discretization times T (h,ε)

j and T (h′,ε′)

j , respectively.

4 The Multilevel Monte Carlo Algorithm

We fix two positive and decreasing sequences (εk)k∈N and (hk)k∈N, and we put Y (k)

t = Ŷ
(hk,ǫk)

t .
For technical reasons we define Y (k)

t for all t ≥ 0, although we are typically only interested in
Y (k) := (Y (k)

t )t∈[0,1]. For m ∈ N and a given measurable function f : D[0, 1] → R with f(Y (k))
being integrable for k = 1, . . . , m, we write E[f(Y (m))] as telescoping sum

E[f(Y (m))] = E[f(Y (1))] +
m∑

k=2

E[f(Y (k)) − f(Y (k−1))].
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In the multilevel approach each expectation on the right-hand side is approximated seperately
by means of independent classical Monte Carlo approximations. For k = 2, . . . , m we denote by
nk the number of replications for the approximation of E[f(Y (k)) − f(Y (k−1))] and by n1 the
number of replications for the approximation of E[f(Y (1))]. For (Z(k)

j,1 , Z(k)

j,2)j=1,...,nk
being i.i.d.

copies of the coupled Euler scheme (Y (k−1), Y (k)) for k = 2, . . . , m and (Z(1)

j )j=1,...,n1 being i.i.d.
copies of Y (1), the corresponding multilevel Monte Carlo algorithm is given by

Ŝ(f) =
1

n1

n1∑

j=1

f(Z(1)

j ) +
m∑

k=2

1

nk

nk∑

j=1

[
f(Z(k)

j,2) − f(Z(k)

j,1)
]
.

The algorithm Ŝ is uniquely described by the parameters m and (nk, hk, εk)k=1,...,m so that we

formally identify the algorithm Ŝ with these parameters. We denote by A the set of all algorithms
Ŝ that are of this form.

The error of the algorithm

For measurable functions f : D[0, 1] → R with f(Y ), f(Y (1)), . . . , f(Y (m)) being square inte-
grable, the mean squared error of Ŝ(f) calculates to

E[|S(f) − Ŝ(f)|2] = |E[f(Y ) − f(Y (m))]|2 + var(Ŝ(f)),

If f is in Lip(1), then

E[|S(f) − Ŝ(f)|2] ≤ E‖Y − Y (m)‖2 +
m∑

k=2

1

nk
E‖Y (k) − Y (k−1)‖2 +

1

n1
E‖Y (1) − y0‖2. (10)

In particular, the upper bound does not depend on the choice of f . Hence (10) remains valid for
the worst case error e2(Ŝ) as defined in (2).

The cost of the algorithm

For a piecewise constant R
dY -valued function y = (yt)t∈[0,1], we denote by Υ(y) its number of

breakpoints. Then the cost of the algorithm Ŝ is defined by the function

cost(Ŝ) =
m∑

k=1

nk E[Υ(Y (k))]. (11)

Note that under the assumptions quoted in Section 1 and if ε1 ≤ 1, the average runtime of the
algorithm Ŝ is indeed less than a constant multiple of cost(Ŝ).

The choice of the parameters

The algorithm Ŝ is completely determined by the parameters m and (nk, εk, hk)k=1,...,m and we
now give the parameters which achieve the error estimates provided in Theorem 1 and which
correspond to algorithms with cost of order at most n. Recall that Theorem 1 depends on an
invertible and decreasing function g : (0,∞) → (0,∞) satisfying

∫ |x|2
h2

∧ 1 ν(dx) ≤ g(h) for all h > 0,
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and we set, for k ∈ N,
εk = 2−k and hk = g−1(2k).

We choose the remaining parameters by

m = inf{k ∈ N : C hk < 1} − 1 and nk = ⌊C hk−1⌋ for k = 1, . . . , m, (12)

where
(i) C = n, (ii) C =

n

(log n)γ+1
, and (iii) C = 1/g−1(n)

in the respective cases. Here we need to assume additionally that g is such that h−2/3 - g(h)
in case (i) and h−1

√
log 1/h - g(h) in case (ii). These parameters optimize (up to constant

multiples) the error estimate induced by equation (10) together with Theorem 2 below.

5 Proofs

Proofing the main result requires asymptotic error bounds for the strong approximation of Y
by Ŷ (h,ǫ) for given ε, h > 0. Therefore we define for h > 0

F (h) =

∫

Bh

|x|2 ν(dx)

to approximate the error that originates from the neglect of the jumps smaller than h. This is
a reasonable choice as we consider an L2 average of the supremum error and as the following
theorem reveals.

Theorem 2. Under Assumption 1.1, there exists a constant κ depending only on K such that
for any ε ∈ (0, 1] and h > 0 with ν(Bc

h) ≤ 1
ε , one has

E

[
sup

t∈[0,1]
|Yt − Ŷ (h,ǫ)

t |2
]
≤ κ

(
ε log(e/ε) + F (h)

)

in the general case and

E

[
sup

t∈[0,1]
|Yt − Ŷ (h,ǫ)

t |2
]
≤ κ

[
F (h) + |b − F0(h)|2ε2

]

in the case without Wiener process, i.e. Σ = 0.

Remark 2. A similar Euler scheme is analyzed in [Rub03]. There it is shown that the appropri-
ately scaled error process (the discrepancy between approximative and real solution) converges
in distribution to a stochastic process. In the cases where this limit theorem is applicable, it is
straight-forward to verify that the estimate provided in Theorem 2 is of the right order.

Remark 3. In the case without Wiener process the term |b − F0(h)|2ε2 is typically of lower
order than F (h), so that we have in most cases that

E

[
sup

t∈[0,1]
|Yt − Ŷ (h,ǫ)

t |2
]

. κF (h).
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The proof of Theorem 2 is based on the analysis of an auxiliary process (Ȳt): We decompose
the Lévy martingale L into a sum of the Lévy martingale L′ = L(h) constituted by the sum of
compensated jumps of size bigger than h and the remaining part L′′ = (Lt −L′

t)t≥0. We denote
X̄ = (ΣWt + L′

t + tb)t≥0, and let Ȳ = (Ȳt)t≥0 be the solution to the integral equation

Ȳt = y0 +

∫ t

0
a(Ȳι(s−)) dX̄s, (13)

where ι(t) = sup[0, t]∩T, and T is the set of random times (Tj)j∈Z+ defined by Tj = T (h,ε)

j as in
(8) in Section 3.

Proposition 1. Under Assumption 1.1, there exists a constant κ depending only on K such
that for any ε ∈ (0, 1] and h > 0 with ν(Bc

h) ≤ 1/ε we have

E

[
sup

t∈[0,1]
|Yt − Ȳt|2

]
≤ κ

(
ε + F (h)

)

in the general case and

E

[
sup

t∈[0,1]
|Yt − Ȳt|2

]
≤ κ

[
F (h) + |b − F0(h)|2ε2

]

in the case without Wiener process, i.e. Σ = 0.

The proof of the proposition relies on the following lemma.

Lemma 1. Under Assumption 1.1, we have

E
[

sup
t∈[0,1]

|Yt − y0|2
]
≤ κ,

where κ is a finite constant depending on K only.

The proof of the lemma can be achieved along the standard argument for proving bounds for
second moments. Indeed, the standard combination of Gronwall’s lemma together with Doob’s
inequality yields the result.

Proof of Proposition 1. For t ≥ 0, we consider Zt = Yt− Ȳt and Z ′
t = Yt− Ȳι(t). We fix a stopping

time τ and let zτ (t) = E[sups∈[0,t∧τ ] |Zs|2]. To indicate that a process is stopped at time τ we
put τ in its superscript. The main task of the proof is to establish an estimate of the form

zτ (t) ≤ α1

∫ t

0
zτ (s) ds + α2

with values α1, α2 > 0 that do not depend on the choice of τ . Then by using a localizing sequence
of stopping times (τn) with finite zτn(1), we deduce from Gronwall’s inequality that

E[ sup
s∈[0,1]

|Ys − Ȳs|2] = lim
n→∞

zτn(1) ≤ α2 exp(α1).

10



We analyze

Zt =

∫ t

0
(a(Ys−) − a(Ȳι(s−))) d(ΣWs + L′

s) +

∫ t

0
a(Ys−) dL′′

s

︸ ︷︷ ︸
=:Mt

+

∫ t

0
(a(Ys−) − a(Ȳι(s−))) bds

(14)

with M = (Mt)t≥0 being a local L2-martingale. By Doob and Lemma 3, we get

E sup
s∈[0,t∧τ ]

|Ms|2 ≤ 4 E

[∫ t∧τ

0
|a(Ys−) − a(Ȳι(s−))|2 d〈ΣW + L′〉s +

∫ t∧τ

0
|a(Ys−)|2 d〈L′′〉s

]
,

where in general for a local L2-martingale A we set 〈A〉t =
∑

j〈A(j)〉t, where 〈A(j)〉 denotes the
predictable compensator of the classical bracket process of the j-th coordinate of A. Note that
d〈ΣW +L′〉t = (|Σ|2+

∫
Bc

h
|x|2 ν(dx)) dt ≤ 2K2 dt and similarly d〈L′′〉t = F (h) dt. Consequently,

by Assumption 1.1 and Fubini’s theorem, we get

E sup
s∈[0,t∧τ ]

|Ms|2 ≤ 8K4

∫ t

0
E[1l{s≤τ}|Z ′τ

s−|2] ds + 4K2F (h)

∫ t

0
E[(|Ys− − y0| + 1)2] ds.

Conversely, by the Cauchy-Schwarz inequality and Fubini’s theorem, one has for t ∈ [0, 1] that

E

[∣∣∣
∫ t∧τ

0
(a(Ys−) − a(Ȳι(s−))) bds

∣∣∣
2]

≤ K4

∫ t

0
E[1l{s≤τ}|Z ′τ

s−|2] ds.

Using that for a, b ∈ R, (a + b)2 ≤ 2a2 + 2b2, we deduce with (14) that

E sup
s∈[0,t∧τ ]

|Zs|2 ≤ 18K4

∫ t

0
E[1l{s≤τ}|Z ′τ

s−|2] ds + 8K2F (h)

∫ t

0
E[(|Ys− − y0| + 1)2] ds.

Since Z ′
t = Zt + Ȳt − Ȳι(t) we conclude that

E sup
s∈[0,t∧τ ]

|Zs|2 ≤ 36K4

∫ t

0

[
E[|Zτ

s−|2] + E[1l{s≤τ}|Ȳs− − Ȳι(s−)|2]
]
ds + 8K2F (h)

∫ t

0
E[(|Ys− − y0| + 1)2] ds.

By Lemma 1, E[sups∈[0,1](|Ys − y0| + 1)2] is bounded by a constant, and we get, for t ∈ [0, 1],

zτ (t) ≤ κ1

[∫ t

0

[
zτ (s) + E[1l{s≤τ}|Ȳs− − Ȳι(s−)|2]

]
ds + F (h)

]
, (15)

where κ1 is a constant that depends only on K.
Next, we provide an appropriate estimate for E[1l{s≤τ}|Ȳt − Ȳι(t)|2]. Since L′ has no jumps on

(ι(t), t) we have

Ȳt − Ȳι(t) = a(Ȳι(t))
[
Σ(Wt − Wι(t)) +

(
b − F0(h)

)
(t − ι(t))

]

so that
E[1l{t≤τ}|Ȳt − Ȳι(t)|2] ≤ 2K2

E[(|Ȳ τ
ι(t) − y0| + 1)2]

[
|Σ|2ε + |b − F0(h)|2ε2

]
.

11



Here we used the independence of the Wiener process and the random times in T. Next, we use
that |Ȳι(t) − y0| ≤ |Yι(t) − y0| + |Zι(t)| to deduce that

E[1l{t≤τ}|Ȳt − Ȳι(t)|2] ≤ 4K2
[
E[(|Y τ

ι(t) − y0| + 1)2] + E[|Zτ
ι(t)|2]

] [
|Σ|2ε + |b − F0(h)|2ε2

]
.

Recall that E[sups∈[0,1](|Ys − y0|+ 1)2] is uniformly bounded. Moreover, by the Cauchy-Schwarz

inequality, |F0(h)|2 ≤ K2ν(Bc
h) ≤ K2/ε so that the right bracket in the latter equation is

uniformly bounded. Consequently, for t ∈ [0, 1],

E[1l{t≤τ}|Ȳt − Ȳι(t)|2] ≤ κ2

[
|Σ|2ε + |b − F0(h)|2ε2 + zτ (t)

]

where κ2 is an appropriate constant that depends only on K.
Inserting this estimate into (15) gives

zτ (t) ≤ κ3

[∫ t

0
zτ (s) ds + |Σ|2ε + |b − F0(h)|2ε2 + F (h)

]
.

for a constant κ3 that depends only on K. If Σ = 0, then the statement of the proposition follows
from the Gronwall inequality. The general case is an immediate consequence of the estimates

|Σ|2ε ≤ K2ε and |b − F0(h)|2ε2 ≤ 2K2(ε2 + ε) ≤ 4K2ε,

where we used again that |F0(h)|2 ≤ K2/ε.

For the proof of Theorem 2, we need a further lemma.

Lemma 2. Let r ∈ N and (Gj)j=0,1,...,r denote a filtration. Moreover, let, for j = 0, . . . , r − 1,
Uj and Vj denote non-negative random variables such that Uj is Gj-measurable, and Vj is Gj+1-
measurable and independent of Gj. Then one has

E
[

max
j=0,...,r−1

UjVj

]
≤ E

[
max

j=0,...,r−1
Uj

]
· E

[
max

j=0,...,r−1
Vj

]
.

Proof. Without loss of generality we can and will assume that (Uj) is monotonically increasing.
Otherwise, we can prove the result for (Ũj) given by Ũj = maxk≤j Uk instead, and then deduce
the result for the original sequence (Uj).

We proceed by induction. For r = 1 the statement is trivial, since U0 and V0 are independent
random variables. Next, we let r ≥ 1 arbitrary and note that

E[ max
j=0,...,r

UjVj ] = E[ max
j=1,...,r

UjVj ] + E[(U0V0 − max
j=1,...,r

UjVj)
+].

Using the monotonicity of (Uj), we get that

E[(U0V0 − max
j=1,...,r

UjVj)
+|G0] ≤ U0 E[(V0 − max

j=1,...,r
Vj)

+|G0] = U0 E[(V0 − max
j=1,...,r

Vj)
+].

Next, we use the induction hypothesis for E[maxj=1,...,r UjVj ] to deduce that

E[ max
j=0,...,r

UjVj ] ≤ E[Ur] E[ max
j=1,...,r

Vj ] + E[U0] E[(V0 − max
j=1,...,r

Vj)
+]

≤ E[Ur] E[ max
j=0,...,r

Vj ].

12



Proof of Theorem 2. By Proposition 1, it remains to find an appropriate upper bound for
E[supt∈[0,1] |Ȳt − Ŷt|2] where we denote Ŷt = Ŷ (h,ǫ)

t . First note that for all j ∈ N, one has
∆LTj

= ∆L′
Tj

and

L′
Tj+1

= L′
Tj

+ ∆L′
Tj+1

− (Tj+1 − Tj)F0(h)

so that by definition, the processes (Ȳt) and (Ŷt) coincide almost surely for all times in T (see
(13) and (9)). Hence,

Ȳt − Ŷt = Ȳt − Ȳι(t) = a(Ȳι(t))Σ(Wt − Wι(t))︸ ︷︷ ︸
=:At

+ a(Ȳι(t))
(
b − F0(h)

)
(t − ι(t))

︸ ︷︷ ︸
=:Bt

.

Since two neighboring points in T are at most ε units apart we get

E
[

sup
t∈[0,1]

|Bt|2
]
≤ K2

E[(‖Ȳ − y0‖ + 1)2]|b − F0(h)|2ε2. (16)

It remains to analyze

E
[

sup
t∈[0,1]

|At|2
]
≤ K2|Σ|2 E

[
sup

t∈[0,1]
(|Ȳι(t) − y0| + 1)2|Wt − Wι(t)|2

]
.

First suppose that (L′
t) is a deterministic piecewise linear càdlàg path. Then the times (Tj)

are deterministic and we denote by r the minimal index j with Tj ≥ 1. We estimate

E
[

sup
t∈[0,1]

|At|2
]
≤ K2 |Σ|2 E

[
sup

j=0,...,r−1

(
(|ȲTj

− y0| + 1)2 · sup
t∈[Tj ,Tj+1∧1)

|Wt − WTj
|2

)]
.

Next, we apply Lemma 2 with Uj = (|ȲTj
− y0| + 1)2, Vj = supt∈[Tj ,Tj+1∧1) |Wt − WTj

|2 and
Gj = σ(Wt : t ≤ Tj) to conclude that

E
[

sup
t∈[0,1]

|At|2
]
≤ K2|Σ|2 E

[
sup

j=0,...,r−1
(|ȲTj

−y0| + 1)2
]
· E

[
sup

j=0,...,r−1
sup

t∈[Tj ,Tj+1∧1)
|Wt − WTj

|2
]
.

By Lévy’s modulus of continuity, the term

‖W‖ϕ := sup
0≤s<t≤1

|Wt − Ws|
ϕ(t − s)

is almost surely finite for ϕ : [0, 1] → [0,∞), δ 7→
√

δ log(e/δ). Hence we get (for instance with
the isoperimetric inequality) that E‖W‖2

ϕ is finite. Recalling that neighboring points in T are at
most ε units apart, we conclude with the monotonicity of ϕ on [0, 1] that

E
[

sup
j=0,...,r−1

sup
t∈[Tj ,Tj+1∧1)

|Wt − WTj
|2

]
≤ E

[
‖W‖2

ϕ

]
ϕ(ε)2

so that

E
[

sup
t∈[0,1]

|At|2
]
≤ K2|Σ|2 E

[
sup

j=0,...,r−1
(|ȲTj

−y0| + 1)2
]
E
[
‖W‖2

ϕ

]
ϕ(ε)2. (17)

In the general case (L′
t) is a Lévy process that is independent of the Wiener process (Wt).

Disintegrating the Lévy process allows us to apply the above result and to retrieve (17) also for
random processes (L′

t).
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Combining (16) and (17), we get

E[‖Ȳ − Ŷ ‖2] ≤ 2K2
E[(‖Ȳ − y0‖ + 1)2]

(
|Σ|2 E

[
‖W‖2

ϕ

]
ϕ(ε)2 + |b − F0(h)|2ε2

)
.

Next, note that by, Proposition 1 and Lemma 1, E[(‖Ȳ − y0‖ + 1)2] is bounded from above by
some constant depending on K only. Consequently, there exists a constant κ with

E[‖Ȳ − Ŷ ‖2] ≤ κ
(
|Σ|2 ϕ(ε)2 + |b − F0(h)|2ε2

)
.

Together with Proposition 1, one immediately obtains the statement for the case without Wiener
process. In order to obtain the statement of the general case, we again use that |

∫
Bc

h
x ν(dx)|2 ≤

K2/ε due to the Cauchy-Schwarz inequality.

Proof of part (i) of Theorem 1

We can assume without loss of generality that

1

h2/3
- g(h) -

1

h(log 1/h)1+γ
, (18)

since otherwise, we can modify g in such a way that the new g is larger than the old one and
enjoys the wanted properties. We consider a multilevel Monte Carlo algorithm Ŝ (as introduced
in Section 4) with hk = g−1(2k) and εk = 2−k for k ∈ Z+. For technical reasons, we also define ε0

and h0 although they do not appear in the algorithm. The parameters m ∈ N and n1, . . . , nm ∈ N

are specified below. Note that

ν(Bc
hk

) ≤ g(hk) = 1/εk and εk ≤ 1, (19)

so that by Theorem 2, we have

E[‖Y (k) − Y (k−1)‖2] ≤ 2E[‖Y − Y (k)‖2] + 2E[‖Y − Y (k−1)‖2]

≤ κ1

[
F (hk−1) + |b − F0(hk)|2ε2

k−1

]
.

for some constant κ1 > 0. By Lemma 1 and Theorem 2, E[‖Y (1) − y0‖2] is bounded from above
by some constant depending on K only. Hence, equation (10) together with Theorem 2 imply
the existence of a constant κ2 such that

e2(Ŝ) ≤ κ2

m+1∑

k=1

1

nk

[
F (hk−1) + |b − F0(hk)|2ε2

k−1

]
, (20)

where we set nm+1 = 1. Next, we analyze the terms in (20). Using assumption (3), we have, for
a sufficiently small v ∈ (0, 1) and an appropriate constant κ3,

|F0(hk)| ≤
∫

|x| ν(dx) ≤ 1

v

∫
|x|(v ∨ |x|) ν(dx) ≤ 1

v

∫

Bc
v

|x|2 ν(dx) +

∫ v

0
ν(Bc

u) du

≤ 1

v

∫
|x|2 ν(dx) + κ3

∫ v

0

1

u(log 1/u)1+γ
du.
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Both integrals are finite. Moreover, we have

F (hk) ≤ g(hk) h2
k = 2kg−1(2k)2, (21)

and using (18) we get that

1

y3/2
- g−1(y) -

1

y(log y)1+γ
as y → ∞. (22)

Hence, we have 2kg−1(2k)2 % 2−2k = ε2
k as k tends to infinity, and there exists a constant κ4

such that

e2(Ŝ) ≤ κ4

m+1∑

k=1

1

nk
2k−1g−1(2k−1)2.

We shall now fix m and n1, . . . , nm. For a given parameter Z ≥ 1/g−1(1), we choose m =
m(Z) = inf{k ∈ N : Zg−1(2k) < 1} − 1. Moreover, we set nk = nk(Z) = ⌊Zg−1(2k−1)⌋ for
k = 1, . . . , m, and set again nm+1 = 1. Then 1/nk ≤ 2/(Zg−1(2k−1)) for k = 1, . . . , m + 1, so
that

e2(Ŝ) ≤ κ4

m+1∑

k=1

1

nk
2k−1g−1(2k−1)2 ≤ 2κ4

1

Z

m+1∑

k=1

2k−1g−1(2k−1).

By (22), 2kg−1(2k) - k−(1+γ) and the latter sum is uniformly bounded for all m. Hence, there
exists a constant κ5 depending only on g and K such that

e2(Ŝ) ≤ κ5
1

Z
.

It remains to analyze the cost of the algorithm. The expected number of breakpoints of Y (k)

is less than 1/εk + ν(Bc
hk

) ≤ 2k+1 (see (19)) so that

cost(Ŝ) ≤
m∑

k=1

2k+1nk. (23)

Hence,

cost(Ŝ) ≤ 4Z
m∑

k=1

2k−1g−1(2k−1) ≤ κ6Z,

where κ6 > 0 is an appropriate constant.

Proof of part (ii) of Theorem 1

We proceed similarly as in the proof of part (i). We assume without loss of generality that g
satisfies

√
log 1/h

h
- g(h) -

(log 1/h)γ

h
, (24)

since, otherwise, we can enlarge g appropriately. In analogy to the proof of part (i), we choose
hk = g−1(2k) and εk = 2−k for k ∈ Z+, and we note that estimates (19) and (21) remain valid.
Next, we deduce with equation (10) and Theorem 2 that, for some constant κ1,

e2(Ŝ) ≤ κ1

m+1∑

k=1

1

nk

[
F (hk−1)+εk−1 log

e

εk−1

]
≤ κ1

m+1∑

k=1

1

nk

[
2k−1g−1(2k−1)2+2−(k−1) log(e2k−1)

]
,
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where again nm+1 = 1. Note that (24) implies that

√
log y

y
- g−1(y) -

(log y)γ

y
as y → ∞, (25)

so that, in particular, 2kg−1(2k)2 % 2−k log(e2k) as k tends to infinity. Hence, we find a constant
κ2 such that

e2(Ŝ) ≤ κ2

m+1∑

k=1

1

nk
2k−1g−1(2k−1)2.

For a parameter Z ≥ e∨ (1/g−1(1)), we choose m = m(Z) = inf{k ∈ N : Zg−1(2k) < 1}− 1,
and we set nk = nk(Z) = ⌊Zg−1(2k−1)⌋ for k = 1, . . . , m. Then we get with (25) that

e2(Ŝ) ≤ 2κ2
1

Z

m+1∑

k=1

2k−1g−1(2k−1) ≤ κ3
1

Z
mγ+1

for an appropriate constant κ3. By definition, Zg−1(2m) ≥ 1 so that, by equation (24),

m ≤ log g(
1

Z
)/ log 2 - log Z as Z → ∞.

Consequently, there exists a constant κ4 such that

e2(Ŝ) ≤ κ4
(log Z)γ+1

Z
.

Similarly, we get for the cost function

cost(Ŝ) ≤
m∑

k=1

2k+1nk ≤ 4Z
m∑

k=1

2k−1g−1(2k−1) ≤ κ5Z(log Z)γ+1.

Next, we choose

Z = Z(n) =
1

2κ5

n

(log n)γ+1

for n ≥ e sufficiently large such that Z ≥ e ∨ (1/g−1(1)). Then

cost(Ŝ) ≤ κ5Z(log Z)γ+1 ∼ 1

2
n,

and we have, for all sufficiently large n, cost(Ŝ) ≤ n. Conversely, we find

e2(Ŝ) ≤ κ4
(log Z)γ+1

Z
≈ (log n)2(γ+1)

n
.
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Proof of part (iii) of Theorem 1

First note that property (4) is equivalent to

γ

2
g−1(u) ≤ g−1(2u) (26)

for all sufficiently large u > 0. This implies that there exists a finite constant κ1 depending only
on g such that for all k, l ∈ Z+ with k ≤ l one has

g−1(2k) ≤ κ1

(2

γ

)l−k
g−1(2l). (27)

We proceed similar as in the proof of part (i) and consider Ŝ ∈ A with hk = g−1(2k) and
εk = 2−k for k ∈ Z+. The maximal index m and the number of iterations nk are fixed later in
the discussion. Again estimates (19) and (21) remain valid and we get with Theorem 2

e2(Ŝ) ≤ κ2

m+1∑

k=1

1

nk

[
F (hk−1)+εk−1 log

e

εk−1

]
≤ κ2

m+1∑

k=1

1

nk

[
g−1(2k−1)22k−1+2−(k−1) log(e2k−1)

]
,

for a constant κ2 and nm+1 = 1 as before. By (26), we have g−1(2k) % (γ/2)k and recalling that
γ > 1 we conclude that 2−k log(e2k) - g−1(2k)22k as k tends to infinity. Hence, there exists a
constant κ3 with

e2(Ŝ) ≤ κ3

m+1∑

k=1

1

nk
2k−1g−1(2k−1)2.

Conversely, we again estimate the cost by

cost(Ŝ) ≤
m∑

k=1

2k+1nk.

Now we specify m and n1, . . . , nm. For a given parameter Z ≥ 2/g−1(1), we let m = m(Z) =
inf{k ∈ N : Zg−1(2k) < 2} − 1, and set nk = nk(Z) = ⌊Zg−1(2k−1)⌋ for k = 1, . . . , m. Then we
get with (27) that there exists a constant κ4 with

e2(Ŝ) ≤ 2κ3
1

Z

m+1∑

k=1

2k−1g−1(2k−1) ≤ 2κ1κ3
1

Z

m+1∑

k=1

2k−1g−1(2m+1)
(2

γ

)m+1−(k−1)

≤ 2κ1κ3
1

Z
2m+1g−1(2m+1)

m+1∑

k=1

γ−(m+1−(k−1)) ≤ κ4
1

Z
2m+1g−1(2m+1).

Moreover, by (26) one has for sufficiently large m (or, equivalently, for sufficiently large Z) that
Zg−1(2m+1) ≥ γ

2Zg−1(2m) ≥ γ > 1 so that

e2(Ŝ) ≤ κ42
m+1g−1(2m+1)2

Similarly, one obtains
cost(Ŝ) ≤ κ5Z2m+1g−1(2m+1) < 2κ52

m+1.

Next, we choose, for given n ≥ 2κ5, Z > 0 such that m = ⌊log2
n

2κ5
⌋ − 1. Then, clearly,

cost(Ŝ) ≤ n and for sufficiently large n we have

e2(Ŝ) ≤ κ4
n

2κ5
g−1

( n

4κ5

)2
- n g−1(n)2 as n → ∞.

In the last step, we again used property (26).
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Proof of Corollary 1

We assume without loss of generality that β < 2 since otherwise the statement of the corollary
is trivial. We fix β′ ∈ (β, 2] and recall that

C :=

∫

B1

|x|β′

ν(dx)

is finite. We consider ḡ : (0,∞) → (0,∞), h 7→
∫ |x|2

h2 ∧ 1 ν(dx), whose integral we split for
h ∈ (0, 1] into three parts:

ḡ(h) =

∫

Bh

|x|2
h2

ν(dx) +

∫

B1\Bh

1 ν(dx) +

∫

Bc
1

1 ν(dx) =: I1 + I2 + I3.

The last term does not depend on h and we estimate the first two terms by

I1 ≤ h−β′

∫

Bh

|x|β′

ν(dx) ≤ C h−β′

and I2 ≤ h−β′

∫

B1\Bh

|x|β′

ν(dx) ≤ C h−β′

.

Hence, we can choose β′′ ∈ ((β′ ∨ 1), 2] arbitrarily, and a decreasing and invertible function
g : (0,∞) → (0,∞) that dominates ḡ and satisfies g(h) = h−β′′

for all sufficiently small h > 0.
Then for γ = 21−1/β′′

, one has g(γ
2h) = 2g(h) for all sufficiently small h > 0 and we are in the

position to apply Part (iii) of Theorem 1 to get

eA(n) - n
1
2
− 1

β′′ .

In the case where β < 1, one can choose β′ = 1 and β′′ > 1 arbitrarily close to one and gets the
result. Whereas for β ≥ 1, one can choose for any β′′ > β an appropriate β′ and thus retrieve
the statement.

Appendix

We shall use the following consequence of the Itô isometry for Lévy processes.

Lemma 3. Let (At) be a previsible process with state space R
dY ×dX , let (Lt) be a square integrable

R
dX -valued Lévy martingale and denote by 〈L〉 the process given via

〈L〉t =

dX∑

j=1

〈L(j)〉t,

where 〈L(j)〉 denotes the predictable compensator of the classical bracket process for the j-th
coordinate of L. One has, for any stopping time τ with finite expectation E

∫ τ
0 |As|2 d〈L〉s, that

(
∫ t∧τ
0 As dLs)t≥0 is a uniformly square integrable martingale which satisfies

E

∣∣∣
∫ τ

0
As dLs

∣∣∣
2
≤ E

∫ τ

0
|As|2 d〈L〉s.

In general the estimate can be strengthened by replacing the Frobenius norm by the matrix
norm induced by the Euclidean norm. For the convenience of the reader we provide a proof of
the lemma.
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Proof. Let ν denote the Lévy measure of L and ΣΣ∗ the covariance of its Wiener component.
Let Q : R

dX → R
dX denote the self-adjoint operator given by

Qx = ΣΣ∗x +

∫
〈x, y〉 y ν(dy).

We recall the Itô isometry for Lévy processes. One has for a previsible process (As) with

E

∫ τ

0
|AsQ

1/2|2 ds < ∞,

that (
∫ t∧τ
0 As dLs)t≥0 is a uniformly square integrable martingale with

E

∣∣∣
∫ τ

0
As dLs

∣∣∣
2

= E

∫ τ

0
|AsQ

1/2|2 ds.

The statement now follows immediately by noticing that

|AsQ
1/2|2 ≤ |As|2 tr(Q) and

∫ τ

0
|As|2 tr(Q) ds =

∫ τ

0
|As|2 d〈L〉s.
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