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ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS

SEBASTIAN KESTLER AND KARSTEN URBAN

Abstract. In this paper, we introduce an adaptive wavelet method for oper-
ator equations on unbounded domains. We use wavelet bases on R

n to equiv-
alently express the operator equation in terms of a well-conditioned discrete
problem on sequence spaces. By realizing an approximate adaptive operator
application also for unbounded domains, we obtain a scheme that is convergent
at an asymptotically optimal rate. As an alternative, we introduce a simplified
version of this algorithm. In both cases, we use anisotropic wavelet bases in
the multivariate case. We show the quantitative performance of the scheme
by various numerical experiments.

1. Introduction

Operator equations on unbounded domains are relevant in various fields where
no boundary conditions, but only the asymptotic behavior of the solution is known.
Examples include radiation or wave propagation processes as well as valuation prob-
lems in finance. In many cases, the asymptotic nature of the solution allows to trun-
cate the computational domain to a bounded one and to perform all computations
by standard methods on that bounded domain. Obviously, this requires a careful
compromise of accuracy (sufficiently large truncation domain) and computational
complexity (possibly small truncation domain). However, in more complex situa-
tions (like for complex structured financial products), such an a priori truncation
is not straightforward.

There are several known methods to numerically treat problems on unbounded
domains such as infinite elements, inverted finite elements, FEM-BEM coupling
and others. In this paper, we introduce an adaptive wavelet method for operator
equations on unbounded domains. The idea is as follows. Wavelet bases on Sobolev
spaces Hs(Rn) can easily be constructed in terms of dilations and integer translates
of some mother wavelets ψe with e ∈ E := {1, . . . , 2n − 1},
(1.1) ΨR

n

:= {ψj,e,k : j ∈ Z, e ∈ E,k ∈ Z
n}, ψj,e,k(x) := 2nj/2ψe(2

jx− k),

for x ∈ R
n. Thus, one can follow the idea from [6] to transform the original operator

equation Au = f into an equivalent well-posed problem Au = f on sequence spaces
ℓ2 for the wavelet coefficients. This idea has been used e.g. in [2, 6, 7, 15, 16, 24]
(see also [28]) with wavelet bases on bounded domains. This approach results in
adaptive wavelet methods that have been proven to converge at an optimal rate as
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2 SEBASTIAN KESTLER AND KARSTEN URBAN

compared with the best N -term approximation w.r.t. the same basis. In order to
highlight the differences to problems on unbounded domains, let us mention that a
wavelet basis on a bounded domain Ω ⊂ R

n typically takes the form

(1.2) ΨΩ := {ψj,k : j ≥ j0,k ∈ Ij},

where |suppψj,k| ∼ 2−j, but ψj,k may not result by scaling and translating mother

wavelets, e.g. [4, 10, 12, 15]. Both ΨR
n

and ΨΩ consist of infinitely many basis
functions. Whereas ΨR

n

consists of all dilates and translates, ΨΩ has a fixed mini-
mal level j0 (depending on Ω as well as the type of wavelets) and the location index
k ∈ Ij ranges over a finite index set Ij with #Ij ∼ 2jn.

If we can manage to design an adaptive wavelet method that is able to select
appropriate subsets out of Z × E × Z

n, then we can –in principle– use the same
adaptive schemes as on Ω. This is precisely the path we follow in this paper.
We introduce an adaptive selection procedure on unbounded domains and derive
an asymptotically optimal adaptive wavelet method. Let us mention that this
approach offers some interesting features:

• Though possible, the construction of wavelet bases on general domains Ω is
technically challenging. Here, we completely circumvent the need of constructing
a basis on a possibly complicated domain and use the most simple situation that
is possible for wavelets, namely, the shift-invariant case.

• Adaptive methods are particularly favorable if the solution has local effects like
a singularity of the derivative at a single point. Such effects can result from three
different sources, namely the domain, the operator or the right-hand side. The
first source does not appear for problems on R

n. For the remaining two, certain
a priori information is available. In fact, for example in the case A = −∆+I, the
wavelet decomposition of the right-hand side f is already a good prediction for
the relevant coefficients of the solution. Thus, this can be used as initial index
set in order to improve the efficiency of the method.

• We do not need to truncate the domain, the scheme automatically detects the sig-
nificant wavelets and determines a ‘computational domain’ automatically. Thus,
our method allows to solve a PDE problem on an unbounded domain by a com-
pactly supported and locally refinable basis.

• This approach concerning the treatment of unbounded domains can easily be
generalized to higher space dimensions, nonlocal operators or nonlinear problems.
In fact, one can easily use our framework in methods to treat high-dimensional
[24] or nonlinear problems [8].

Nevertheless, it is a priori not clear how actually the resolution of the asymptotic
boundary conditions realized by adaptive wavelet schemes look like. Moreover, as
we have to take into account an infinite number of translation indices on each level
(recall that in a bounded setting, this number is finite), the question arises how
fast the asymptotic behavior of the best N-term approximation is reached by the
algorithm.

The remainder of this paper is organized as follows. In Section 2, we review the
main ingredients of adaptive wavelet methods. Section 3 contains the modification
and extension to unbounded domains. We describe intensive numerical experiments
in Section 4 and finish with some conclusions and an outlook in Section 5.
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2. Adaptive Wavelet Methods

2.1. Elliptic operator equations. Let H be a Hilbert space (e.g. H1(Rn)) and
H ′ its dual w.r.t. L2(R

n) (e.g. H−1(Rn)) where we denote by 〈 ·, · 〉 the duality
pairing in H ′×H . For a linear operator A : H → H ′ and a right-hand side f ∈ H ′,
we are concerned with the numerical solution of the operator equation for u ∈ H

(2.1) Au = f in H ′.

We assume that the bilinear form a(·, ·) : H ×H → R defined by a(·, ·) := 〈A ·, · 〉
is continuous and coercive, i.e., there exist constants 0 < cA ≤ CA <∞ such that

cA‖v‖2H ≤ a(v, v), ∀v ∈ H,(2.2)

|a(w, v)| ≤ CA‖w‖H‖v‖H , ∀v, w ∈ H.(2.3)

In this article, we focus on PDE problems defined on H1(Rn).

2.2. Wavelets. For the discretization of (2.1), we use a wavelet basis Ψ. We start
by the univariate case n = 1 since we use this as a building block also for higher
space dimensions.

2.2.1. Wavelet bases for H1(R). It is well-known that for n = 1, the wavelet bases
Ψ = {ψj,k : j, k ∈ Z}, ψj,k(x) := 2j/2ψ(2jx − k), x ∈ R, constructed e.g. in [9, 13]
form Riesz bases of L2(R). Moreover, it can be shown that (considering Ψ such
as v ∈ ℓ2(Z

2) as column vectors) the properly scaled functions DΨ := {2−jψj,k :
j, k ∈ Z} form a Riesz basis of H1(R), i.e., there exist constants 0 < cΨ ≤ CΨ <∞
such that

(2.4) cΨ‖v‖ℓ2 ≤ ‖dTDΨ‖H1(R) ≤ CΨ‖v‖ℓ2 , v ∈ ℓ2(Z
2).

To shorten notation, as long as it cannot be misunderstood, we skip the index set
for norms and scalar products. In the sequel we shall only consider biorthogonal
wavelet bases from [9].

In order to avoid arbitrarily coarse levels j → −∞, one can also consider a
minimal level −∞ < j0 <∞ and Ψ = {ψj,k : j ≥ j0 − 1, k ∈ Z} with ψj,k j ≥ j0 as

above and so called scaling functions ψj0−1,k = 2j0/2φ(2j0 ·−k), k ∈ Z, [20]. Here, φ
is a refinable function such as a cardinal B-spline. A basic assumption is that φ and
ψ are compactly supported and therefore we have in particular that |supp ψj,k| ∼
2−j. Another important feature of the wavelet basis Ψ is its polynomial exactness

of order d and the number d̃ ≥ d of vanishing moments. Both parameters depend
on the particular choice of φ and ψ. Often, we abbreviate the double index (j, k)
by λ and denote the level j by |λ|. Moreover, if a minimal level j0 > −∞ is used,
we set J := {(j, k) : j ≥ j0 − 1, k ∈ Z}.

2.2.2. Tensor product wavelet bases for n > 1. In higher dimensions, one can use
the wavelet basis ΨR

n

defined in (1.1) which is an isotropic basis and is based upon
a multiresolution analysis (see e.g. [28]). In this article, we will concentrate on
anisotropic wavelets which are generalizations of isotropic ones and have shown
some advantages in applications, in particular in higher space dimensions, see e.g.
[15, 22, 24]. A (Riesz) tensor product wavelet basis Ψ of L2(R

n) can be simply
constructed by the tensor product of n wavelet bases Ψ(1), . . . ,Ψ(n) of L2(R), i.e.,
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Ψ := Ψ(1) ⊗ · · · ⊗ Ψ(n). Since H1(Rn) is isomorphic to
⋂n

k=1

⊗n
m=1H

δmk(R) with
δmk the Kronecker delta and H0(R) := L2(R), it also holds that (cf. e.g. [17])

(2.5) DΨ :=
{
2−|λ|∞

n⊗

m=1

ψ
(m)
λm

: λ = (λ(1), . . . , λ(n)) ∈ J
}
,

where |λ|∞ := |j|∞ := maxm=1,...n |λ(m)| and J := Z
2n, is a Riesz basis of H1(Rn).

Hence, the norm equivalence (2.4) also holds for tensor product wavelet bases where
the constants cΨ and CΨ have to be adopted. We emphasize, that as in the uni-

variate case, we can bound the minimal level j0 = (j
(1)
0 , . . . , j

(n)
0 ) in the basis Ψ

by using scaling functions on levels j
(1)
0 , . . . , j

(n)
n in the different space directions.

In this case, we set J := J (1) × · · · × J (n). In the sequel, we only use anisotropic
tensor product wavelet bases as they are best suited for problems on R

n, n > 1. As
univariate wavelet bases are a special case of a tensor wavelet basis, we only need
the notations for tensor bases.

2.3. Wavelet discretization. Now we use a tensor wavelet basis Ψ := {ψλ : λ ∈
J} to transform (2.1) into a well-conditioned discrete operator equation. From the
Riesz basis property of DΨ, we infer that for the solution u to (2.1) there exists a
unique u ∈ ℓ2(J) with u = uTDΨ. This means that u is the (unknown) sequence
of wavelet coefficients of u. Thus, (2.1) is equivalent to the infinite linear system

(2.6) Au = f ,

where A := (〈ADΨ,DΨ 〉)T and f := 〈 f,DΨ 〉. Note, that (2.6) is well-posed
on ℓ2(J) since by (2.2), (2.3) and (2.4), the bilinear form a(v,v) := 〈Av,v 〉ℓ2 =
a(vTDΨ,vTDΨ) satisfies

(2.7) c1‖v‖ℓ2 ≤ a(v,v) ≤ c2‖v‖ℓ2 , v ∈ ℓ2(J),

with c1 := cΨcA and c2 := CΨCA. Therefore, a(·, ·) is coercive and, by an anal-
ogous argumentation using (2.3), also continuous. For this reason, the operator
A : ℓ2(J) → ℓ2(J) is continuous (with continuity constant c2) and coercive (with
coercivity constant c1). Moreover, from (2.7) follows that A : ℓ2(J) → ℓ2(J) is
boundedly invertible with operator norms on ℓ2(J)

‖A‖ := sup
v∈ℓ2(J)

‖Av‖ℓ2
‖v‖ℓ2

≤ c2, ‖A−1‖ := sup
v∈ℓ2(J)

‖A−1v‖ℓ2
‖v‖ℓ2

≤ c−1
1 .

The condition of A is defined by κ(A) := ‖A‖‖A−1‖ and is bounded which is in
fact a crucial property for the numerical treatment.

Setting ‖v‖a := a(v,v) for v ∈ ℓ2(J), we see that the energy norm ‖ · ‖a is
equivalent to the norm ‖ · ‖ℓ2 on ℓ2(J), i.e., ‖v‖a ∼ ‖v‖ℓ2 , v ∈ ℓ2(J). We can also
define another norm for v ∈ ℓ2(J) by ‖v‖A := ‖Av‖ℓ2 for which we have

(2.8) ‖v‖A ∼ ‖v‖ℓ2 ∼ ‖vTDΨ‖H , ∀v ∈ ℓ2(J).

To avoid the use of various constants, we write C . D if there exists a constant c > 0
such that C ≤ cD. Analogously, we define &. We use C ∼ D if C . D and C & D.
In the sequel, we shall need the restriction of the infinite matrix A and infinite
vectors v ∈ ℓ2(J) to finite index sets Λ ⊂ J. For this purpose, we introduce for
v ∈ ℓ2(J) the projection PΛv := v|ℓ2(Λ). Analogously, we set AΛ := (PΛA)|ℓ2(Λ),
fΛ := PΛf and vΛ := PΛv. Thus, we obtain the finite Galerkin system

(2.9) AΛuΛ = fΛ.
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One possible interpretation of many adaptive schemes is to find a sequence of indices

Λ(0),Λ(1),Λ(2), . . . so that the corresponding Galerkin solutions u(k) of (2.9) for

Λ = Λ(k) converge possibly fast against u with as few active wavelet coefficients as
possible.

2.4. Nonlinear approximation theory. The analysis of adaptive schemes auto-
matically leads to nonlinear approximation theory. The reason is that we wish to
approximate the unknown solution u with as few wavelet coefficients as possible.
Thus, the optimum would be a quasi best N-term approximation uN of u with
# supp uN = N , i.e., with some constant 0 < C <∞

(2.10) ‖u− uN‖ℓ2 ≤ CσN (u), σN (u) := inf
w∈ΣN

‖u−w‖ℓ2 ,

where ΣN := {v ∈ ℓ2(J) : # supp v ≤ N} is a nonlinear manifold in ℓ2(J). A
scheme realizing this is called asymptotically optimal provided that the number of
required operations is linear in the number of active unknowns.

It is a well-known fact from nonlinear approximation theory that the rate of decay
of the bestN -term approximation is related to decay rates of the wavelet coefficients
which in turn is related to the Besov regularity of the function to be approximated.
In order to formulate this property, we need weak ℓτ (J)-spaces defined as follows
(cf. [14]). For each 0 < τ < 2 and v ∈ ℓ2(J), we define |v|ℓwτ := supn≥1 n

1/τv∗n,
where v∗n is the n-th largest entry in modulus of v and v∗ := (v∗n)n∈N. Then we
set ℓwτ (J) := {v ∈ ℓ2(J) : |v|ℓwτ < ∞} with the corresponding norm ‖v‖ℓwτ :=
|v|ℓwτ + ‖v‖ℓ2 , v ∈ ℓwτ . With this notation at hand, σN (u) decays with a fixed rate
s > 0 if u ∈ ℓwτ (J) for

(2.11)
1

τ
= s+

1

2
.

In this case, there exists a constant Cτ > 0 depending on τ such that (see [6,
Proposition 3.2])

(2.12) σN (u) ≤ Cτ‖u‖ℓwτ N−s.

Hence, the best possible value s∗ for which (2.12) holds, is the optimal rate. It
turns out that this is related to the Besov regularity of the underlying function.

For n = 1, it is known that for 0 < s < d−1 (with d being the polynomial exact-
ness), we have ‖u‖Bs+1

τ (Lτ (R))
∼ ‖u‖ℓτ , provided that u = uTDΨ ∈ Bs+1

τ (Lτ (R)).

In particular, this means that independent of the Besov regularity of u, s is bounded
from above by d−1, which depends only on the wavelet basis Ψ. For larger values of
s, u is in general no longer contained in ℓτ (J). Concluding, for operator equations
on H1(R), we can set s∗ = d− 1 if u ∈ Bs+1

τ (Lτ (R)).
For n > 1, there is a significant difference between isotropic and anisotropic

wavelets. In the isotropic case, one has s∗ = d−1
n , which means that the best rate

deteriorates with increasing space dimension n, [5, Theorem 30.7] . For anisotropic
wavelets, it is known from [18, 22, 24, 26] that if u ∈ ⋂n

k=1

⊗ n
τ m=1B

s+δmk
τ (Lτ (R)),

then u ∈ ℓwτ (J) for 0 < s < d − 1. Here, ⊗τ is a so called τ -tensor product
introduced in [22]. Thus, also for n > 1, we can set s∗ = d− 1 provided that we use
anisotropic wavelets and the solution of (2.1) is sufficiently smooth in the above
Besov sense.
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2.5. Optimality and locality. Before we come to the formulation of adaptive
wavelet methods, we need one more ingredient. In order to obtain a best possible
method, it is not enough to generate a scheme which converges as fast as a best N -
term approximation. In fact, we also need to be able to actually compute such an
approximation with at most linear complexity. One key ingredient is that wavelets
allow for a compression of a large class of operators due to their locality and their
vanishing moments. An operator A : ℓ2(J) → ℓ2(J) is said to be in the class Bs

if there are two positive, summable sequences (αj)j≥0 and (βj)j≥0 such that for
every j ∈ N0 there exists a matrix Aj with at most 2jαj nonzero entries per row
and column such that

(2.13) ‖A−Aj‖ ≤ βj2
−js.

Compression estimates which fit into the setting of (2.13) have been discussed in
detail for different type of operators for example in [11, 23, 24]. This property can
be used for the design of efficient algorithms as we shall review now. If we define
v[j] as a best 2j term approximation to v ∈ ℓwτ (J) (e.g. the first 2j entries of v∗),
then it holds

(2.14) ‖v − v[j]‖ℓ2 ≤ ‖v‖As 2−js, ‖v‖As := sup
N≥0

(N + 1)sσN (v),

if τ is chosen as in (2.11). One can use this observation to show that if A ∈ Bs,
then it is a bounded operator on ℓwτ (J) and also derive a method for approximating
an infinite matrix-vector product Av.

2.6. An optimal adaptive wavelet algorithm. Now, we describe the adaptive
wavelet solverORIG-ADWAV from [16] which we used as a basis for our extension
to unbounded domains. The core scheme is shown in Algorithm 1. We start with
a real number ν−1 to be explained below and a desired tolerance ε > 0. Finally, we
need to choose constants α, γ, θ, ω (see, e.g. [16] for possible choices):

• 0 < ω < α < 1 such that α+ω
1−ω < κ(A)−

1
2 ,

• 0 < γ < 1
6κ(A)−1/2 α−ω

1+ω and θ > 0.

Algorithm 1 [u(ε),Λ(ε)] = ORIG-ADWAV[ν−1, ε]

1: Λ(0) = ∅, k := 0, w(0) := 0
2: repeat

3: [Λ(k+1), νk] = GROW[w(k), θνk−1, ε]
4: g(k+1) = PΛ(k+1)(RHS[γνk])

5: w(k+1) = GALSOLVE[Λ(k+1),g(k+1),w(k), (1 + γ)νk, γνk]
6: k = k + 1
7: until νk ≤ ε
8: u(ε) = w(k), Λ(ε) = Λ(k)

Before we detail the subroutines called within ORIG-ADWAV, let us recall
the properties of this adaptive wavelet scheme.

Theorem 2.1 ([16, Theorem 2.7]). The output w = u(ε) of the routine ORIG-
ADWAV[ν−1, ε] satisfies ‖Aw − f‖ℓ2 ≤ ε. If ν−1 ∼ ‖f‖ℓ2 & ε, and u ∈ ℓwτ (J) for

some s < s∗, 1
τ = s+ 1

2 , then #supp w . ε−1/s|u|1/sℓwτ
and the number of arithmetic
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operations and storage locations is bounded by some absolute multiple of the same

expression. �

Now, we are going to detail all subroutines involved in ORIG-ADWAV. Within
ORIG-ADWAV routineGROW shown in Algorithm 2 enlarges the current index

set Λ(k) in such a way that the new index set Λ(k+1) guarantees a fixed error
reduction in terms of the so called saturation property

(2.15) ‖PΛ(k+1)(AuΛ(k) − f)‖ℓ2 ≥ β‖AuΛ(k) − f‖ℓ2
for some 0 < β < 1. Then, due to Galerkin orthogonality (cf. [6, Lemma 4.1]), one
has the following error reduction ‖u− uΛ(k+1)‖a ≤ (1 − c2

c1
β2)1/2 ‖u− uΛ(k)‖a.

Algorithm 2 GROW[w, ν̄, ε] → [Λ, ν]

1: Define ζ := 2 ων̄
1−ω .

2: repeat
3: ζ := ζ/2, r :=RHS[ζ/2]−APPLY[w, ζ/2],
4: until ν := ‖r‖ℓ2 + ζ ≤ ε or ζ ≤ ω‖r‖ℓ2
5: if ν > ε then
6: determine a minimal set Λ ⊃ supp w such that ‖PΛr‖ ≥ α‖r‖ℓ2 .
7: else
8: set Λ := ∅.
9: end if

Under the same assumptions as in Theorem 2.1 and if w ∈ ℓwτ (J), then the
number of operations and storage locations required by [Λ, ν] = GROW[w, ν̄, ε] is

bounded by some absolute multiple of min{ν̄, ν}−1/s[|w|1/sℓwτ
+|u|1/sℓwτ

+ν̄1/s(# supp w+

1)]. Moreover, we have ν ≥ ‖Aw− f‖ℓ2 and, in case of ν > ε, the saturation prop-
erty

(2.16)
α− ω

1 + ω
ν ≤ ‖PΛ(Aw − f)‖ℓ2 , #(Λ\supp w) . ν−1/s|u|ℓwτ

holds with the constants α and ω described above.
The routine RHS[δ] produces an approximation f̄ to f such that ‖f − f̄‖ℓ2 ≤

δ. Finally, GALSOLVE (short for Galerkin solver) produces an approximate
solution w̃Λ with ‖AΛw̃Λ − fΛ‖ ≤ ε starting with an initial guess wΛ satisfying
‖AΛwΛ − fΛ‖ ≤ δ.

Algorithm 3 GALSOLVE[Λ, fΛ,wΛ, δ, ε] → [w̃Λ]

1: Determine AJ in the sense of (2.13) with J = J(ε) as small as possible and
‖A−AJ‖ ≤ ε

3 .

2: Assemble B := PΛ[
1
2 (AJ +A∗

J)]|ℓ2(Λ) with A∗
J being the adjoint of AJ .

3: Compute r0 := fΛ −PΛ(APPLY[wΛ ,
ε
3 ]).

4: Determine x as the solution of Bx = r0 and set w̃Λ = wΛ + x.

One key ingredient both in GROW and GALSOLVE is the routine APPLY
shown in Algorithm 4 which is an adaptive approximate application of the biinfinite
operator A to a given compactly supported input v with the following properties.
The output w = APPLY[v, η] satisfies ‖Av − w‖ℓ2 ≤ η as well as supp w .
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‖v‖1/sℓwτ
η−

1
s provided that v ∈ ℓwτ (J),

1
τ = s+ 1

2 , see [6, Properties 6.4]. We remark

that necessary sorting operations in GROW and APPLY which are not of linear
complexity can be replaced by approximative sorting procedures introduced in [1,
15] without destroying the approximation properties.

Algorithm 4 APPLY[v, η] → w

1: Set N := #supp v

2: Set k(η) as the smallest integer such that 2k(η) ≥ η−
1
s ‖v‖

1
s

ℓwτ (J).

3: Compute v[0],v[i] − v[i−1] for i = 1, . . . , ⌊logN⌋ and set v[i] := v for i > logN .

4: Determine k ≤ k(η) minimal such that 2−ks‖v‖ℓwτ ≤ η.
5: Compute w := wk := Akv[0] +Ak−1(v[1] − v[0]) + · · ·+A0(v[k] − v[k−1]).

3. Adaptive wavelet algorithms on unbounded domains

3.1. Choice of a minimal level. As already mentioned above, we can bound the
minimal level j0 for the anisotropic wavelet basis Ψ on R

n by using scaling functions.
These have a significant impact for the approximation. As an example, a function
that is piecewise constant can be represented by very few scaling functions (often
B-splines), whereas one would need many wavelets. This shows that for efficiency
reasons, we need to introduce a minimal level. We propose to use the right-hand
side f ∈ H−1(Rn) for this. Since f ∈ H−1(Rn), the norm equivalence (2.5) ensures

(3.1) 0 <
∑

j∈Zn

∑

k∈Zn

2−|j|∞ |〈 f, ψj,k 〉| <∞.

This means that we have (at least theoretically) access to the largest values of
2−|j|∞|〈 f, ψj,k 〉| by looking only at some finite index set Λ. Thus, we introduce the
following routine to determine an estimate for j0. In Section 4 below, we investigate
the effect of j0 to the efficiency of the adaptive algorithm.

Algorithm 5 INITIALIZE→ [Λ0, j0]

1: Compute a sufficiently large index set Λ such that
⋃

λ∈Λ supp ψλ contains all
singularities and the “bulk” of f .

2: For all λ ∈ Λ, compute f0,λ := 2−|λ|∞ |〈 f, ψλ 〉| for f0 = (f0,λ)λ∈Λ.
3: Compute f∗0 := (f∗0,λ1

, f∗0,λ2
, . . .) and set j0 := |λ1|.

4: Insert the scaling indices (j0 − 1,ki) into Λ0 for i = 1, ...,K, where K is the

smallest integer such that
⋃K

i=1 supp ψ(j0−1,ki) contains all singularities of f . If
there are no singularities, set K = 1.

We insert the initialization into the original method in Algorithm 1 and obtain
Algorithm 6 below. The unchanged parts are shown in gray.

3.2. Some computational aspects of the unbounded domain setting.

Determination of the constants. It is known that the quantitative efficiency of AD-
WAV is quite sensitive to the choice of its parameters. In particular, a good
estimate of κ(A) and the constants in (2.13) should be available.
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Algorithm 6 [u(ε),Λ(ε)] = ADWAV[ν−1, ε]

1: j0 = INITIALIZE

2: Λ(0) = ∅, k := 0, w(0) := 0
3: repeat

4: [Λ(k+1), νk] = GROW[w(k), θνk−1, ε]
5: g(k+1) = PΛ(k+1)(RHS[γνk])

6: w(k+1) = GALSOLVE[Λ(k+1),g(k+1),w(k), (1 + γ)νk, γνk]
7: k = k + 1
8: until νk ≤ ε
9: u(ε) = w(k), Λ(ε) = Λ(k)

Computation of the right-hand side. We assume the availability of a right-hand side
f ∈ H ′ in wavelet coordinates. This is usually achieved by the assumption that
the analytic form of f is known. In this case, one knows exactly which entries in
f have to be calculated. If this is not the case, however, a very careful scan of
the right-hand side data is necessary since otherwise the adaptive wavelet method
might not be able to catch parts of the solution.

Realization of GROW. The new index set Λ(k+1) is obtained by GROW which

adds wavelet indices to Λ(k). We do not have any control on this selection process
which might be problem in the unbounded domain case. Moreover, as already stated
above, it might be more efficient to add certain scaling function indices instead of
wavelet indices.

Convergence and optimality. As it can be seen from the proofs of the optimality
result in Theorem 2.1 in [16], the properties of the routines ORIG-ADWAV do
depend neither on the number of translation indices in the underlying wavelet basis
nor on the minimal level, but only on the adherence of the solution u to ℓwτ (J).
Moreover, as the size of the index set Λ in INITIALIZE can be kept small in
comparison to supp u(ε), the complexity of this initial routine does not influence
the overall complexity of ADWAV in comparison to ORIG-ADWAV which leads
to one of the main results of this paper.

Theorem 3.1. Under the same assumptions as in Theorem 2.1 and independent

of the minimal level j0 in Ψ, it holds that ‖Aw − f‖ℓ2 ≤ ε where w = u(ε) is the

output of ADWAV[ν−1, ε]. Moreover, the overall complexity is bounded by some

multiple of supp w . ε−1/s|u|1/sℓwτ
. 2

Remark 3.2. The quantitative efficiency and the proven convergence of AD-
WAV depends strongly on the quality of the mentioned estimates for the required
constants, e.g. κ(A) and the choice of the parameters α, γ, ω, θ. Though these esti-
mates are accessible, the actual estimate for a given PDE might not be easy at all,
in particular when convection or reaction terms may be varying. This is e.g. the
case for the valuation of financial products. For this reason, we propose a simpli-
fied adaptive wavelet algorithm referred to as S-ADWAV that requires much less
requirements at the price of non-proven convergence.

3.3. A simplified adaptive wavelet algorithm. The simplified adaptive wavelet
algorithm we present in this paragraph is a slight modification and adaption of the
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algorithm proposed in [2, 28]. To our knowledge, there is no proof of convergence
or optimality. Nevertheless, numerical experiments have shown that this adaptive
wavelet algorithm performs very well in practice. The simplified algorithm passes

on the usage of the routines RHS and APPLY, but explicitly determines Λ(k+1)

from Λ(k). This is done by a heuristically motivated approach. We still have to
solve Galerkin systems AΛ(k)uΛ(k) = fΛ(k) for k = 1, 2, . . . in each iteration.

3.3.1. Numerical solution of the Galerkin system. In each iteration of the algorithm,
we have to solve a Galerkin system (2.9) for an index set Λ. But in general one
only solves a perturbed linear system

(3.2) ÃΛũΛ = f̃Λ + s̃Λ

with ‖s̃Λ‖ℓ2 < tol iter, tol iter > 0 a given tolerance, instead of solving (2.9) exactly.
These perturbations may arise from numerical integration or, for the stiffness ma-
trix, also from matrix compression techniques. We estimate the error as follows.

Proposition 3.3. Let Λ be a finite subset of J and assume that ‖AΛ− ÃΛ‖ < ηA
with ηA < c1 and ‖fΛ − f̃Λ‖ℓ2 < ηf . Then, it holds that

(3.3) ‖uΛ − ũΛ‖ℓ2 ≤ c−1
1

( ηA
c1 − ηA

(
ηf + ‖fΛ‖ℓ2 + tol iter

)
+ ηf + tol iter

)
,

where uΛ is the solution of (2.9) and ũΛ is a solution of (3.2).

Proof. First, we prove continuity and coercivity of ÃΛ on ℓ2(Λ). From the assump-
tions, we infer from (2.7) that for all wΛ,vΛ ∈ ℓ2(Λ)

|〈 ÃΛwΛ,vΛ 〉ℓ2 | ≤ (ηA + c2)‖wΛ‖ℓ2‖vΛ‖ℓ2 ,
such as for all vΛ ∈ ℓ2(Λ) we have

(3.4) (c1 − ηA)‖vΛ‖ℓ2 ≤ 〈 ÃΛvΛ,vΛ 〉ℓ2 .
Now, the following estimate is straightforward:

‖uΛ − ũΛ‖2ℓ2 ≤ c−1
1 〈AΛ(uΛ − ũΛ),uΛ − ũΛ 〉ℓ2

≤ c−1
1 〈AΛuΛ − ÃΛũΛ + ÃΛũΛ −AΛũΛ,uΛ − ũΛ 〉ℓ2

≤ c−1
1

(
‖(AΛ − ÃΛ)ũΛ‖ℓ2‖uΛ − ũΛ‖ℓ2 + 〈 fΛ − f̃Λ − s̃Λ,uΛ − ũΛ 〉ℓ2

)

≤ c−1
1 ‖uΛ − ũΛ‖ℓ2 (ηA‖ũΛ‖ℓ2 + ηf + tol iter) .

From estimate (3.4) we finally get

(3.5) ‖ũΛ‖ℓ2 ≤ (c1 − ηA)−1‖f̃Λ + s̃Λ‖ℓ2 ≤ (c1 − ηA)−1 (ηf + ‖fΛ‖ℓ2 + tol iter) ,

which proves the claim. �

From Proposition 3.3, we infer that there is no gain if one of the tolerances ηf ,
ηA or tol iter is much smaller than the others. For this reason, we assume from now
on that

ηf ∼ tol iter, and ηA < min{c1, tol iter},
so that (3.3) can be replaced by ‖uΛ − ũΛ‖ℓ2 . tol iter ‖fΛ‖ℓ2 . In particular, we
have in mind to use a sparse, compressed matrix AJ,Λ = PΛAJ |ℓ2(Λ) for A ∈ Bs

to solve the Galerkin system (2.9) approximately. But in order to use the results
from Proposition 3.3, we should have (at least rough) estimates of the constants
αj , βj and s in (2.13). Otherwise, the above error estimate for the perturbed linear
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system are no longer valid. Under the assumption that this is possible, we propose
the following routine to solve appearing linear systems.

Algorithm 7 LINSOLVE[Λ,wΛ, tol iter] → ũΛ

1: Estimate J ∈ N such that ‖AΛ −AJ,Λ‖ℓ2 < min{c1, tol iter}.
2: Compute f̃Λ such that ‖fΛ − f̃Λ‖ℓ2 < tol iter.
3: Use a linear system solver like CG or GMRES with initial guess wΛ to compute

ũΛ such that ‖AJ,ΛũΛ − f̃Λ‖ℓ2 ≤ tol iter.

As the assembling of f̃Λ and of the sparse matrixAJ,Λ can be obtained in O(#Λ)
operations, the complexity of LINSOLVE is of the same order. Moreover, it holds
‖uΛ − ũΛ‖ℓ2 . tol iter‖fΛ‖ℓ2 .

3.3.2. Residual computation. The main part of the computation time of the AD-
WAV algorithm is used by APPLY for the computation of index sets satisfying
the saturation property (2.15). Alternatively, coming from an index set Λ and the
corresponding Galerkin system (2.9), one can compute a finite so called security

zone Λ̂ ⊃ Λ using Algorithm 8 (see [28, p.235]) for a constant c > 0 using the
following notation for λ = (λ1, . . . , λn) ∈ Λ, namely |λ|1 := |λ1|+ · · ·+ |λn|.

Algorithm 8 C[Λ, c] → Λ̂

1: For each λ = (λ1, . . . , λn) ∈ Λ, compute for i = 1, . . . , n

C(λi, c) := {µ ∈ J (i) : |supp ψµ ∩ c · supp ψλi
| > 0, |λi| ≤ |µ| ≤ |λi|+ 1}

where c · supp ψλ is the contracted support of ψλ by the factor c around its
barycenter.

2: Define C(λ, c) := {µ ∈ C(λ1, c)× · · · × C(λn, c) : |µ|1 ≤ |λ|1 + 1}.
3: Set Λ̂ :=

⋃
λ∈Λ C(λ, c).

Depending on the underlying wavelet basis, there exists a constant C such that
# C(λ, c) ≤ (n+ 1)Cn where C is chosen such that

max
i∈{1,...,n}

max
λ∈J (i)

#{µ ∈ J (i) : |supp ψµ ∩ c · supp ψλ| > 0, |λ| = |µ|} ≤ C, and

max
i∈{1,...,n}

max
λ∈J (i)

#{µ ∈ J (i) : |supp ψµ ∩ c · supp ψλ| > 0, |λ| = |µ|+ 1} ≤ C.

Thus, the overall complexity of C is bounded by some multiple of (n+1)Cn ·#Λ.

We stress that the particular construction of a security zone Λ̂ is crucial to solve
an operator equation on an unbounded domain. As it can be seen from Algorithm
8, Λ is not only expanded by wavelets on higher levels, but also by additional
scaling functions. This will later on permit an adaptive truncation of the formerly
unbounded computational domain.

As an estimate of the (full) residual AuΛ − f of the Galerkin solution uΛ from
(2.9), one now takes

(3.6) r
Λ̂
:= P

Λ̂
(AuΛ − f),
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where Λ̂ is the output of C[Λ, c]. To reduce the complexity of the residual compu-
tation, we alternatively compute

(3.7) r̃
Λ̂
:= P

Λ̂
(AJ,ΛũΛ − f̃),

using the compressed matrix AJ,Λ and an approximate solution ũΛ from (3.2). For
the next result we need the following notation: If vΛ is a vector in ℓ2(Λ) with finite

support Λ, then v
Λ̂

denotes its extension by zeros to Λ̂.

Proposition 3.4. Let Λ, Λ̂ be finite subsets of J with Λ̂ ⊃ Λ and assume that the

assumptions from Proposition 3.3 hold. Then, by setting Ã
Λ̂
:= AJ,Λ̂ for suffciently

large J , we have

(3.8) ‖r̃
Λ̂
− r

Λ̂
‖ℓ2 . tol iter ‖fΛ̂‖ℓ2.

Proof. By definition, we have for vΛ ∈ ℓ2(Λ) that ‖v
Λ̂
‖ℓ2 = ‖vΛ‖ℓ2 and, moreover,

A
Λ̂
v
Λ̂
= P

Λ̂
AvΛ. Using this, we get the following estimate:

‖(AJ,Λ̂ũΛ̂
− f̃

Λ̂
)− (A

Λ̂
u
Λ̂
− f

Λ̂
)‖ℓ2 ≤ ‖uΛ‖ℓ2‖AΛ̂

−AJ,Λ̂‖
+ ‖AJ,Λ̂‖‖ũΛ − uΛ‖ℓ2 + ‖f

Λ̂
− f̃

Λ̂
‖ℓ2 .

From Proposition 3.3 we get that ‖ũΛ − uΛ‖ℓ2 . tol iter ‖fΛ‖ℓ2 . Moreover, similar
as in (3.5), we see that ‖uΛ‖ℓ2‖AΛ̂

−AJ,Λ̂‖ . tol iter ‖fΛ‖ℓ2 . �

At this point we remember that replacing the exact, infinite residual AuΛ − f
by r̃

Λ̂
is an heuristic approach. On one hand, there is no proof of the existence of

0 < β < 1 such that ‖P
Λ̂
(AuΛ − f)‖ℓ2 ≥ β‖AuΛ − f‖ℓ2 . On the other hand, the

advantage is that we do not need APPLY or RHS. If we use Λ̂ =C[Λ, c], then

due the sparsity of AJ,Λ̂ and the fact that #Λ̂ . #Λ, the routine RESIDUAL is

of complexity O(#Λ).

Algorithm 9 RESIDUAL[Λ̂, ũΛ, tol iter] → r̃
Λ̂

1: Estimate J ∈ N such that ‖A
Λ̂
−AJ,Λ̂‖ℓ2 < min{c1, tol iter}.

2: Compute r̃
Λ̂

according to (3.7).

3.3.3. Coefficient thresholding. Obviously, if we call iteratively Λ(k+1) = C(Λ(k), c)

starting with some initial set Λ(0), then the sizes of the index sets (Λ(k))k∈N grow
exponentially fast. For this reason, we have to keep the index sets for which we
call C small. This is realized by thresholding the wavelet coefficients in ũΛ(k) and
in the estimated residual r̃Λ(k) . For this purpose, Algorithm 10 realizes a threshold
on finitely supported vectors v and returns a vector v̄ such that ‖v− v̄‖ℓ2 ≤ δ for
a given tolerance 0 < δ. Here, also approximate sorting procedures from [1, 15] can
be used, so that THRESH is also of linear complexity.

For convenience, let us now see what the effect of THRESH is when it is used
to threshold the output of LINSOLVE. Therefore, let uΛ be the solution of (2.9)
and ũΛ be the output of LINSOLVE[Λ,wΛ, tol iter] for some starting point wΛ.
Then, as ‖uΛ − ũΛ‖ℓ2 . tol iter‖fΛ‖ℓ2 , it holds for ū =THRESH[ũΛ, tol iter] that

‖uΛ − ū‖ℓ2 . tol iter(1 + ‖fΛ‖ℓ2),
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Algorithm 10 THRESH[v, δ] → v̄

1: Sort the vector v = (vλ)λ∈supp v by decreasing order which yields the sorted
vector v∗ = (v∗

(i,λi)
)i=1,...,M whereM := #(supp v) and (i,λi) for i = 1, . . . ,M

indicate the ordering in v∗ such as the corresponding index in supp v.
2: Compute ‖v‖ℓ2 . The vector v and its support Λ are given by v :=

(vλi
)i=1,...,K and Λ := {λ1, . . . ,λK} where K is the smallest integer such that∑K

i=1 |v∗
(i,λi)

|2 ≥ ‖v‖2ℓ2 − δ2.

where supp ū ⊆ Λ. That is, we get an approximation of order tol iter to the Galerkin
solution uΛ but in general with a much smaller support. This observation can also
be made for the residual computation. Let rΛ be the residual defined in (3.6)

and r̃
Λ̂

=RESIDUAL[Λ̂, ũΛ, tol iter]. Then, by Proposition 3.4, ‖r
Λ̂
− r̃

Λ̂
‖ℓ2 .

tol iter‖fΛ̂‖ℓ2 . Thus, for r̄ =THRESH[r̃
Λ̂
, tol iter], it holds ‖rΛ̂ − r̄‖ℓ2 . tol iter(1 +

‖f
Λ̂
‖ℓ2), where, as above, the support r̄ is in general much smaller than Λ̂.

3.3.4. The simplified algorithm S-ADWAV. Now that we have all necessary rou-
tines together, we can now describe the complete algorithm. The S-ADWAV
algorithm described in detail in Algorithm 11 below computes in each iteration
an approximate solution w(k) to the Galerkin system AΛcand.

k
w(k) = fΛcand.

k
where

Λcand.
k is referred to as the set of candidate indices, i.e., indices that can be acti-

vated in the current iteration. The target precision for solving the linear system is
tol iter. As already stated above, we have to keep index sets for which we call the C
routine small. Therefore, with the (approximate) Galerkin solution w(k) at hand,
we threshold this vector in order to obtain the active wavelet coefficients u(k) that
satisfy ‖u(k) − w(k)‖ℓ2 ≤ tol iter. Its support Λ(k) := supp u(k) is referred to as

the set of active indices. Around the support of u(k), the security zone Λ̂k is con-
structed using the routine C and the residual r

Λ̂k
= P

Λ̂k
(Au(k)−f) is computed. If

‖r
Λ̂k

‖ℓ2 is smaller than the given target tolerance, then we accept u(k) as solution.

Otherwise, a new candidate set of activable indices Λcand.
k+1 is constructed by thresh-

olding the residual r
Λ̂
. As we always use the same tolerance tol iter for thresholding

and the numerical solution of the Galerkin system, the approximation errors we
generate are all of order tol iter (see Propositions 3.3 and 3.4 such as Paragraph
3.3.3). But if we fix this tolerance, it may happen that the algorithm stagnates
before the target accuracy ε is reached. Namely, by thresholding the approximate
Galerkin solution w(k), it may occur that no higher levels or translation indices
on the coarsest level are added in the course of the algorithm and we end up with

Λ(k) = Λ(k+1). Therefore, in addition to the algorithm described in [2] and [28], we
decrease the threshold tolerance tol iter by factor 1

2 if the difference of the relative

residuals of two iterations is too close to zero. Thus, in case of Λ(k+1) = Λ(k),
the threshold tolerance is decreased and therefore, we obtain w(k) = w(k+1) but
supp u(k+1) ⊇ supp u(k) which means that also finer information on high levels or
further translations on the coarsest level remain in the set of active indices. More-
over, as cycles of type Λk = Λk+m for some k ≥ 2 cannot not be theoretically
excluded, we add an inner loop with a maximal number M of iterations which
prevents such loops and ensures that the tolerance tol iter decreases.



14 SEBASTIAN KESTLER AND KARSTEN URBAN

Algorithm 11 [u(ε),Λ(ε)] = S-ADWAV[ε]

Let h > 0 be a control width, M a fixed number of inner loops, c > 0 and
tol iter > 0 an initial tolerance.

1: [j0,Λ
cand.
1,1 ] = INITIALIZE

2: for k = 1, 2, 3, . . . do
3: for m = 1, 2, . . . ,M do
4: w(k,m) = LINSOLVE[Λcand.

k,m ,u(k−1,m), tol iter]

5: u(k,m) = THRESH[w(k,m), tol iter]

6: Λ(k,m) = supp u(k,m); Λ̂k,m = C[Λ(k,m), c]

7: r(k,m) = RESIDUAL[Λ̂k,m,u
(k,m), tol iter]

8: if ‖r(k,m)‖ℓ2 ≤ ε‖f
Λ̂k,m

‖ℓ2 then

9: u(ε) := u(k,m), Λ(ε) := Λ(k,m); EXIT
10: end if
11: r̄(k) = THRESH[r(k,m), tol iter]; Λ

cand.
k+1,m = supp u(k) ∪ supp r̄(k,m)

12: if
∣∣∣ ‖r(k,m)‖ℓ2

‖P
Λ̂k,m

f‖ℓ2
− ‖r(k−1,m)‖ℓ2

‖P
Λ̂k−1,m

f‖ℓ2

∣∣∣ < h then

13: BREAK
14: end if
15: end for
16: tol iter =

1
2 tol iter

17: end for

At this point, it is important to note that the adaptive truncation of a com-
putational domain, i.e., the support of the computed solutions supp (u(m,k))TDΨ,

is done implicitly. Every time C[Λ(k,m), c] is called, additional scaling function

indices on the coarsest level are added to the security zone Λ̂
(k,m)

. If now these
added scaling function indices are relevant for a more precise approximation of the
solution, their corresponding value in r(k,m) is relatively large and they will be
added in the new candidate Λcand.

k+1,m set after the call of THRESH[r(k,m), tol iter].
This proceeding provides the possibility that in each iteration, the computational
domain can be extended, but also truncated as we have another call of THRESH
after the solution of the Galerkin system. We emphasize that this is in difference
to ADWAV where we do not have this control. Therefore, the call of THRESH
in line 5 of Algorithm 11 is not only necessary to reduce the complexity but also to
estimate if further scaling function translation indices are relevant. Otherwise, the
computational domain would grow too fast.

3.3.5. Complexity. Although there is no proof for the convergence of S-ADWAV,
we emphasize that the complexity in each iteration is bounded by some constant

multiple of O(Λ(k,m)) which can be derived directly from the complexity of the
subroutines.

4. Numerical experiments

In this section, we demonstrate the performance of the presented adaptive wavelet
algorithms for some examples in 1D and 2D where we used the biorthogonal wavelets
from [9]. We compare approximation rates with a best N-term approximation and
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demonstrate the adaptive truncation of the computational domain. All examples
are realized in C++ using the software libraries FLENS and LAWA, [19, 27].

4.1. Examples in one dimension. We start with some examples in 1D, namely
instances of a Helmholtz problem as well as a convection-diffusion problem.

4.1.1. Helmholtz problems. We start with the following Helmholtz problem onH1(R),

(4.1) −u′′(x) + u(x) = f(x), x ∈ R, lim
|x|→∞

u(x) = 0, u ∈ H1(R),

for f ∈ H−1(R). Note that the operator fulfills all required assumptions. We
consider six different choices of the right-hand side f which permit a reference
solution in closed form. The solutions are shown in Figure 4.1. We have chosen
these particular examples due to the following reasons:
(P1) Global, smooth solution.
(P2) Global solution with peak, large significant domain.
(P3) Global solution with 2 peaks.
(P4) Compactly supported, smooth solution.
(P5) Compactly supported function with strong gradient.
(P6) Global, piecewise defined solution with strong peak.
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Figure 4.1. Solutions ui for the Helmholtz problems (P1)-(P6).

4.1.2. Comparison of the adaptive algorithms. We start by comparing S-ADWAV
and ADWAV with respect to approximation rates and CPU times. For ADWAV
we used the parameters θ = 0.5, such as α = 0.307, ω = 0.01, γ = 0.016 and

κ(A) ≈ 9.3 for d = d̃ = 2 and α = 0.185, ω = 0.01, γ = 0.005 and κ(A) ≈ 26.5.
The parameters were chosen in a way that GROW terminates within one iteration
and α sufficiently large such that the constant for the saturation property (2.15)
α−ω
1+ω in (2.16) takes a large value. At the same time ω should not be too small as
then APPLY is called with a very small target accuracy which deteriorates the
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quantitative efficiency. Concerning the parameters of S-ADWAV, here we used
tol iter = 0.1, c = 0.25, h = 0.0001 and M = 10 for all examples.

Representative for all examples, we consider (P1) and (P3) in Figure 4.2. The
graphs on the left-hand side of Figure 4.2 show the error versus the number of
used wavelets, i.e., the slope indicates the rate of convergence. In all cases that we
have tested, both schemes show the same asymptotic behavior, but ADWAV is
quantitatively slightly better and the sizes of the estimated index set Λ(k) do not
decrease as in Figure 4.2(a) S-ADWAV for (P1). In the graphs on the right-hand
side of Figure 4.2, we have plotted the corresponding error estimator, i.e., the output
νk of GROW and the output of RESIDUAL, against the CPU time (wall clock
time in seconds). In all our test cases, S-ADWAV performs slightly better, again
having the same asymptotic performance. Although we have no proven convergence
or optimality result for S-ADWAV, we observe the same asymptotic behaviour as
for ADWAV, also for the other examples. However, comparing the required CPU
times we also have to take into account that the algorithms require different data
structures. Optimized data structures for adaptive algorithms are a current field of
research and are not our subject here.
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Figure 4.2. Comparison of S-ADWAV and ADWAV. Left: er-
ror in ‖ · ‖A, right: Required CPU time.

By this first experiment, we do not intend to make a suggestion which algorithm
to use. We rather aim to show that both algorithms can be used to solve PDE
problems on R

n and also to highlight differences between the algorithms without
any weighting. In the following, we present results for S-ADWAV but keep in
mind that ADWAV would give comparable numbers if the involved constants are
estimated sufficiently well.

4.1.3. Convergence Rates. Now, we use S-ADWAV to solve the Helmholtz prob-
lems (P2), (P4), (P5) and (P6). In Figure 4.3, we show the rate of convergence and
compare it with the rate of a best N -term approximation measured in ‖ · ‖ℓ2 . In

Figure 4.3, we use linear wavelets (d = d̃ = 2) and quadratic ones (d = d̃ = 3). In
all cases, we obtain the optimal rate. The error of the solution by S-ADWAV is
always measured in ‖ · ‖A.

We also see in Figure 4.3(c) that a best N-term approximation might converge
faster than with the best possible rate if N is not sufficiently large. Even in this
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Figure 4.3. Convergence rates for (P2), (P4), (P5) and (P6) for
d = 2 and d = 3 in comparison to a best N-term approximation.

case, however, it is remarkable that S-ADWAV still converges as fast as a best
N-term approximation. The approximation rates in Figure 4.3 are computed for
the indicated minimal level determined by INITIALIZE.

4.1.4. Adaptive truncation of the computational domain. Besides the convergence
in ‖·‖A, it is particularly interesting how the adaptive wavelet algorithms adaptively
truncate the computational domain, i.e., the support of the calculated approximate
solution uΛ = uT

ΛΨ. Results for (P1), (P3), (P5) and (P6) can be found in Table
4.1 and Figure 4.4. For all examples, we started S-ADWAV with an initial set Λ0

consisting only of one scaling index such as ADWAV which starts with an empty
set.

In Figure 4.4, the supports of the approximate solution obtained by S-ADWAV
are shown. These plots are to be read as follows: On the x-axis, the support supp uΛ
of the corresponding function is shown. Each plotted rectangle corresponds to one
index λ ∈ Λ. The coloring of a rectangle for the index λ indicates the relative size of
the corresponding coefficient uλ. Here, the more intensive the color, the larger the
corresponding coefficient, black indicates a relative large coefficients whereas gray
indicates a relatively small coefficients. On the y-axis, the level on the indices is
plotted where at the bottom one finds the indices corresponding to scaling functions
and above those corresponding to wavelets. The number of rectangles on each level
indicates how many scaling functions respectively wavelets are used to cover the
indicated interval range.
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S-ADWAV ADWAV
It. #Λ [a, b] L∞(R) It. #Λ [a, b] L∞(R)

(P1)
7 54 [−24, 24] < 3.0 · 10−2 32 52 [−24, 24] < 2.0 · 10−2

13 90 [−24, 24] < 7.5 · 10−3 42 93 [−24, 24] < 5.5 · 10−3

23 233 [−24, 24] < 1.6 · 10−3 57 228 [−24, 24] < 1.7 · 10−3

(P5)
6 52 [−2, 3] < 4.5 · 10−1 51 52 [−2, 2] < 1.6 · 10−1

8 139 [−2, 3] < 8.5 · 10−2 91 140 [−2, 3] < 1.4 · 10−1

10 272 [−2, 3] < 6.5 · 10−3 123 273 [−2, 3] < 3.3 · 10−2

(P6)
21 51 [−16, 16] < 8.0 · 10−3 38 56 [−16, 16] < 3.5 · 10−3

30 92 [−24, 16] < 2.0 · 10−3 47 94 [−32, 16] < 1.8 · 10−3

50 239 [−56, 16] < 4.0 · 10−4 63 229 [−56, 16] < 6.0 · 10−4

Table 4.1. Adaptive computational domain [a, b] with linear wavelets.
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Figure 4.4. Support of uΛ obtained by S-ADWAV with d = d̃ = 2.

Obviously, S-ADWAV is capable to work out singularities of the solution. We
see that for (P5), the homogeneous Dirichlet boundary conditions are treated as
singularities as the solution u5 is not smooth on R. Nevertheless, we observe that
the boundary conditions are resolved with increasing level where S-ADWAV per-
forms better. For all examples, one can observe also a decreasing ‖ · ‖L∞(R) error.
Moreover, for an increasing number of iterations, not only singularities are resolved
with a higher precision, also the computational domain for non-local examples is
enlarged w.r.t. to the current accuracy in the algorithm. It can also be observed
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that the asymptotic behaviour of the solution to (P6) is detected by both algo-
rithms. For x → +∞, we have u5(x) . 1

x3 , whereas for x → −∞, u5(x) . 1
x2 .

Thus, we need more scaling functions for x < 0.01 to obtain a good approximation
than for x > 0.01.

4.1.5. A convection-diffusion problem. For the Helmholtz examples one might argue
that it would also be possible to a determine a computational domain a priori and
then to use standard methods for PDEs on bounded domains. In order to treat a
problem where this is not that obvious, we consider a convection diffusion problem
of the form

(4.2) −u′′(x) + βu′(x) + u(x) = f1(x), x ∈ R,

using the right-hand side from (P1) which also fulfills all required assumptions
(cf. e.g. [3]). For increasing values of β, the solution exhibits a strong layer at
x = 0, see the left part of Figure 4.5. On the right side of Figure 4.5 we see
the adaptive truncation of the computational domain. In particular, the layer is
detected automatically. We stress the fact that in our setting a stabilization is
not required, as there is no boundary. However, a stabilization for convection
dominated problems for very large values of |β| is still necessary.

-2

 0

 2

 4

 6

 8

 10

 12

-20  0  20  40  60  80

x

u
f

-3

-3

-2

-1

0

1

2

 0  50  100  150

y

x

Figure 4.5. Solution u, right-hand side f (left), and estimated

index set (d = d̃ = 2 and j0 = −3) (right) for (4.2) with β = 20.

4.2. Examples in two dimensions. Finally, we consider some bivariate prob-
lems. As above, we consider the Helmholtz problem on H1(R2), i.e.,

(4.3) −∆u+ u = f, u ∈ H1(R2),

for f ∈ H−1(R2). Here, we consider the following examples:

(P7) u7(x1, x2) := e−
(x1+0.1)2

10 · e−
(x2−0.1)2

2 ,

(P8) u8(x1, x2) := e−2|x1−
1
3 | · e−

(x2−
1
3
)2

10 ,

(P9) u9(x1, x2) := e−
√

(x1−0.1)2+(x2−0.1)2 .

(P10) u10(x1, x2) = e−(2(x1−0.1)2+(x1−0.1)·(x2−0.1)+(x2−0.1)2).

The tensor product structure of the reference solutions u7 and u8 permits us, at
last in theory, to obtain the best possible approximation s∗ = d − 1 for (P7) and
(P8). Concerning (P9), to our knowledge there does not exist a theoretical proof
as e.g. in [21] that u9 is sufficiently smooth to obtain the optimal rate. It is known
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that u9 ∈ H1(R2) but u9 6∈ H2(R2). The function u10 is of Schwartz type and thus
has the required tensor regularity. We emphasize that the tensor product structure
and the symmetry of the solutions was not exploited in the numerical solution. We
use anisotropic wavelet bases for the simulation.

4.2.1. Convergence rates. We shall investigate whether it is possible to obtain the
best possible approximation rate s∗ = d − 1 with S-ADWAV. In addition, we
compute a best N-term approximation. The error of the computed N-term approx-
imation uN is measured in the ℓ2-norm, i.e., ‖u− uN‖ℓ2 .

The results for the tensor examples (P7) and (P8) are shown in Figure 4.6. We
observe that the best possible convergence rate is not exactly obtained for (P7)
or only asymptotically (P8). In particular for (P7) and wavelets of order d = 3
with j0 = (−3,−2), we only measured a rate of s = 1.85 which is still higher than
the best possible for an isotropic wavelet basis which would be s = 1. For linear
wavelets and j0 = (−2,−2), s = 0.95 was realized. For (P8), we used j0 = (0,−3)
for linear wavelets and j0 = (1,−3) for the quadratic ones. This result is not really
surprising since the number of degrees of freedom in two dimensions is much higher
than in only one space dimension (curse of dimension), see also [15] for similar
observations. Note that this is a matter of the bases that we used and not of the
algorithm that in fact performs in an optimal way.
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Figure 4.6. Convergence rate (measured in ‖ · ‖H) for the 2D examples.

The minimal level j0 has been estimated by INITIALIZE. We see that the
estimates of j0 influence the start of the asymptotic regime. Here, the minimal
level j0 = (0,−3) indicates that the corresponding solution as a larger support in
x2-direction and therefore, scaling functions in the x2-direction should be chosen
on a smaller minimal level than in x1-direction. This also shows that anisotropic
wavelets are useful here.

For (P9) which does not have a tensor structure, we observed that the approxi-
mation rate for d = 2 is almost the expected optimal value. As it can be seen from
Figure 4.7(a), the optimal rate is not reached for d = 3 but is still better than in
the isotropic case. On the other hand, we do observe the optimal rates for (P10)
which is also not of tensor product structure but has the required regularity. Even
though we do not have a proof, our results seem to indicate that u9 is lacking the
required tensor regularity.
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Figure 4.7. Convergence rate (measured in ‖ · ‖A), (P9) left,
(P10) right.

Next, we show that it makes sense to invest into a better estimate of the minimal
level for higher dimensional computations, see Figure 4.8, where we have tested an
improved estimate for j0. We observe that there is a significant quantitative differ-
ence. This effect can also be observed in one dimension where it is less significant.
To obtain such a better estimate of j0, we computed in INITIALZE the values

2−max{|λ1|,|λ2|}〈 f, ψλ1 ⊗ ψλ2 〉, λ1 ∈ Λ1, λ2 ∈ Λ2,

where the index sets Λ1, Λ2 also contain scaling coefficients on different (!) mini-
mal levels j0. Obviously, the computational effort is larger and not all calculated
coefficients can later be used in the algorithm. We also see from this experiment
that RESIDUAL is a reliable estimator for the approximation error which has
also been observed for the other examples.
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Figure 4.8. Convergence rate (measured in ‖ · ‖H) for different j0.

4.2.2. Adaptive truncation of the computational domain. As in the one-dimensional
setting, we show that S-ADWAV not only produces approximations that converge
in the H1-norm, but also estimates a convenient computational domain. As we can
see from Figure 4.9 and 4.7(a), the algorithm does not need many iterations to find
a finite support for the approximation of the solution of (P7).
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In case of problem (P8), this estimate takes more iterations due to the singularity
in x1 direction. We see that this singularity is detected and a higher resolution is
obtained with an increasing number of iterations.

We remark that the computational domains are not symmetric for none of the
two examples as the solutions are not symmetric to a scaling function grid point.
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Figure 4.9. Absolute errors |u(x)− uΛ(x)|.

5. Conclusions and Outlook

We have introduced an adaptive wavelet method for operator problems on R
n.

We have shown that the method converges and is asymptotically optimal. We have
seen the benefit of using anisotropic wavelet bases in the multivariate case. We have
also introduced a simplified adaptive wavelet method without prove of optimality
but with very good quantitative numerical results. The performance of the scheme
has been demonstrated by a variety of numerical experiments in 1D and 2D. It has
been shown that the scheme also performs quantitatively very well.

This opens the door to several questions which will be subject to future research.
The extension to different kind of problems (nonlinear, integral equations, obstacle
problems, etc.) has already been mentioned in the introduction. Moreover, a cou-
pling with the space-time adaptive method proposed in [25] might be interesting.
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