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1 Introduction

Approximating multi-variate functions defined on boundedndins inNV dimensions
using classical discretization schemes is infeasible ifginér dimensions: the number
of grid points grows exponentially in the number of dimensid.e.n”, wheren is the
number of grid points in one dimension. One possible way grawvme these difficul-
ties is to use sparse grids or hyperbolic cross spaces whemplexity reduces to
n(logn)N~! or evenn. Such approximation spaces go back to [3, 40] and were studie
for example in [29, 14, 48, 41, 15, 30, 22, 23, 38, 25], see thissurvey [7] and ref-
erences therein. Provided that the function possessesiriaarcsense more regularity
the approximation rate is independent of or up to logarithfactors independent of
the number of dimensions. In particular the functions hauseta member of so-called
spaces of dominating mixed smoothness which were firstdotred by Nikolskil and
studied by several authors, see the monographs [29, 2, 85jederences therein, as
well as the more recent work [43].

Approximating multi-variate functions defined on twbole spaceomplicates the sit-
uation. In order to obtain an approximation in a finite numbkterms one needs
further information on the decay of the functions. One guesivay to describe such
a behavior is to introduce weighted spaces. Combining bequirements leads to
weighted Sobolev spaces of mixed order.

Inthe present work we study the approximation of functiorsich spaces by anisotropic
tensor products of wavelets. In particular we are intetestehe approximation rate
which can be achieved. Similar results have been obtain@d]nwhere only the func-
tion itself is square integrable with respect to a polyndmigight function. Approx-
imation results in unweighted Besov-Sobolev-Triebelerkin spaces of dominating
mixed order defined on the whole space have been studied]in [25

In our approach we construct wavelet bases in higher dimeadby building an-
isotropic tensor-products of a biorthogonal and compastijyported multi-resolution
analysis [28] in one or a few variables, see also [23] in theeaH a bounded domain.
As wavelets one may take Daubechies wavelets [12], theHmiganal wavelet bases of
B-splines [11], as well as orthogonal and piecewise polyabmulti-wavelets [17].

As a central result of this article we characterize weigt8etiolev spaces of mixed
order in terms of wavelet coefficients. We restrict ourseheeweight functions which
do not vary too much on any cube of fixed size, including wefghttions of exponen-
tial [36] and polynomial [24] type. In fact these functionre @ subset oft\°-weights
[34]. As a main tool we use localized norms, see for exam@®g [& similar result for
unweighted Sobolev spaces on a bounded domain has beeneasbiai[22, 23]. For
the more general class of Besov-Sobolev-Triebel-Lizoskiaces a characterization in
terms of wavelets has been studied in the case of unweigptezks with dominat-
ing mixed smoothness in [43] and for weighted spaces in [&#]only in the case of
isotropic regularity.

With the help of the equivalent discrete norm we are able ¢mtifly potentially im-

portant contributions in the wavelet decomposition andtlaeeefore able to construct
efficient approximations, see also [23, 25]. In order to mbgaiantitative results on the
approximation rate we restrict ourselves to a class of wdigictions of exponential
type. Finally we arrive at a sparse grid in both the spatiardmate as well as the
level of the wavelet. Under certain regularity assumptions obtains approximation



rates which are independent of the number of dimensions. edemthe constant in
the error estimate may depend exponentially on the numbdinansions, which ren-
ders the method applicable only for a moderate number of mimas. In these cases,
due to the stability and the compact support of the basistiumg, these spaces are a
good choice as ansatz spaces for a Galerkin discretizatioartesponding operator
equations.

Our motivation and main application is the electronic Sdimger equation, see for
example [44] and references therein for an introductioméosubject. Interpreting the
regularity result in terms of exponentially weighted Sa@wsdpaces of mixed order, we
can show that the wave functions of bounded states can inskeegproximated at a
rate which is independent of the number of electrons. Howegain, the constants
show an exponential dependence on the number of electroiigty the applicability
of this discretization to the case of small atoms or molezule

We will proceed along the following line. In Section 2 we vdifine weighted Sobolev
spaces of mixed order and construct localized norms. Ini@e8tthe norm equiva-

lence between the weighted Sobolev spaces of mixed ordea amgighted sum of

wavelet coefficients is derived. Based on this norm equigdeonvergence rates in
the case of an exponential weight functions are derived @i@e4. In the last Section

5 the bounded states of the electronic Schrédinger equatem@approximated on an
antisymmetrized sparse grid; finally numerical resultstii@ helium ground state are
presented.

2 Weighted Sobolev spaces of mixed order

In this section weighted Sobolev spaces of mixed order dneatke Classically weighted
Sobolev spaces occur for example in the analysis of elljpidial differential equa-
tions, see for example [27]. In our case, however, we conaenon functions defined
on the whole space, where the weight quantifies the decaggyopf the function and
its derivatives. Such spaces are well known and can also hergiezed to weighted
Besov- or Triebel-Lizorkin spaces [34]. However isotropégularity, as treated in
the latter work, does not lead to efficient approximationsnofti-variate functions.
For that reason we combine the idea of weighted spaces wétbespof dominating
mixed smoothness that occur naturally in the approximaifanulti-variate functions
on sparse grids, see for example [29, 2, 35, 43] for the treatiof spaces of dominat-
ing mixed smoothness, as well as the survey [7] and refesethegein. Such spaces
were already considered in [24] for the approximation of dmbed states of the elec-
tronic Schrodinger equation. In addition to the existerfami@ed derivatives the func-
tion was supposed to be bounded with respect th%aspace with polynomial weights.

In our case we define weighted Sobolev spaces of mixed oragrsomore general
class of weight functions, including weights of expondritipe. More specifically we
consider a subset o1!°¢ norms defined in [34]. Besides the function itself also its
derivatives up to the given order should also be boundednggpect to the weighted
L2-norm. In our definition we are guided by the regularity réstdior the bounded
states of the electronic Schrédinger equation proved tgcen[44], which can be
interpreted in terms of these spaces, see Section 5.

Following the definition we construct an equivalent normloese spaces. Thereby we
use the so called localization principle, see for exampB.[#s a consequence the



weighted norm can be written equivalently as a weighted simmweighted norms on
overlapping cubes. Later in Section 3 this will be the keytfar characterization of
these spaces in terms of weighted wavelet coefficients.

2.1 Definition

In the following we define the weighted Sobolev space of migeder and specify
the class of weight functions we will investigate. Thoughwi#é later only consider
functions defined on the whole space we allow for an arbito@en subse2 C RV,
This is because in Subsection 2.2 we will need the correspgnohweighted spaces
on cubes for the formulation of the equivalent localizednmor~or the definition of
spaces of fractional order we use the real interpolationrihérst given in [32]. In
Appendix A we assembled the main definition as well as refagen

In view of the main application, the regularity of boundedtss in the electronic
Schrédinger equation (Section 5), we partition the coatdie € RV in d-tupels,
ie.

£:($1,...,mN), IBiGRd fori=1,...,N.

In the case mentioned this reflects the fact thats the position of the-th electron

in a three dimensional spacé & 3). In our notation/N-dimensional variables are
marked with an arrow whild-dimensional variables are written in bold. Furthermore
we denote by - |, the/” norm, wherel < p < cc.

Definition 1. Letd, N > 1,m,k € N, Q ¢ R* be an open subset anda positive
weight function o). Define the sett*™ < (N4)N of multi-indices as

N

Ak’m = {&mix + &iso | i*qlaXN |amix,i|1 S ka Z |aiso,i|1 S m} (1)
o i=1

The weighted Sobolev space of mixed ordé,f;i’)’f(Q,w) is given by the set of all
measurable functionssuch thatu, u) mix,w k,m, is finite where

(U, V) mix,w k,m,Q = Z / O%u(Z)0%v(&) w(d) dz.
Q

acAk.m

Thereby (-, -Ymix,w.k.m. defines an inner product oHr’f;i’)’f(Q,w), with associated
norm || - ||mix,w,k,m.q. FOr fractional order of smoothness> 0 define the space
through interpolation theory

H>™(Qw) = [H&Q(Q,w),Hsl’iT(Q,w) . k=1s], 0 =s/k.

2

In this definition, classical unweighted Sobolev spakés()), @ c R, are included
also for fractionak (take N = 1 andm = 0). In addition one may interpolate once
more to obtain mixed spaces with fractional order of isatr@moothness.

Classically one introduces unweighted Sobolev spacesxddrder as the intersec-
tion of tensor product spaces [22, 23], i.e.

N N
Hs,m((Rd)N) — m Hm'€i+5.1((Rd)N), Hf((Rd)N) _ ®Ht1(Rd) (2)
i=1

mix
i=1



whereg; is thei-th unit vector,l = (1,...,1) € RY. and the tensor product of Hilbert
spaces is used [33]. In Appendix A, Corollary 19, it is showattooth definitions are
equivalent.

As already mentioned we will need the weighted spaces ontlydrcase of functions
defined on the whole spa@®?". Furthermore we restrict ourselves to the following
class of weight functions.

Definition 2. Letd, N > 1 andw be a positive weight function oR%"Y. Thenw is
calledlocally slowly varyingf there exists a constant,, such that for allg, j € R
with | — 9|oo < 1

w(y) < Cy w(Z). 3
In particular the point evaluation af should be well defined.
For weight function of this type the maximum value inside &eus bounded by a

multiple of the value at the center. Moreover a short cateutadirectly shows that this
is also true for the minimum; more precisely

Cotw(@) < w(@) < Cpw(X)

w

for all # 4 € R such that# — 4|, < 1. Furthermore if one applies the inequality
recursively one can proof the existence of dependent o', such that

w(@) § el

for all # € R, Therefore the slowly varying weight functions can only\grexpo-
nentially. These kind of functions are a special casd'pf weights defined in [34].

2.2 Localized norm

In the following we will derive an equivalent norm on the weigd Sobolev spaces
of mixed order. This norm is a weighted sum of unweighted $mboorms of mixed
order on cubes, where the cubes cover the whole space. Tligkdecomposition is
called the localization principle, see for example [42]otder to prove the equivalence
we rely on the properties of the slowly varying weight funati see Definition 2.

First let us define the localized norm on the weighted Sobspaces of mixed order.

Definition 3. Letd, N > 1, m € N, s > 0 be given and letv be a locally slowly
varying weight function ofR?" . Define forf € Z4" the cubes

Q;={F R ||Z € <1}
centered af and the norm

”u”Iznix,w,s,m,loc = Z ’U}Z Hqunix,s,m,Qza U}Z = w(‘e)
fezdN

for smooth enough functions: R4V — R.



Now for integer order spaces it is easy to see that the so defimen is equivalent to
the original one.

Lemma 4. Letd, N > 1, m,k € N andw be a locally slowly varying function on
RN Then the norm equivalence

C’l;l HuHrznix,w,k,m S HuHrznix,w,k,m,loc S w ”u”mlxw k,m*

holds in the spacél’;” (RN, w), whereC,, is defined in Equatiog3). The con-

mix

stants are thereby mdependenmj andu.

Proof. In the first step we prove the left inequality. Since the cu{@@ | lc ZdN}
cover the spacRY

HuHmlxw S — Z Z / |Da w(:?:) dz.

Ce7dN aeAkm

Using the Hélder inequality and the properties of the wefghttion shows the left
inequality. In order to show the right inequality note that &ll multi-indicesa: €
Ak,m

> we/ | D%u(a)|? d;z:/w ID%u(@)][ Y wy] .
£ezdN R E3€Qy
Each summand in the square bracket can be estimateg byC',, w(&), sincez and

¢ differ in the| - |o-norm at most by one. Summing up the multi-indices proves the
assertion. O

To show that also for fractional both norms are equivalent one uses interpolation
theory, see Appendix A.

Theorem 5. Letd, N > 1, m € N, s > 0 andw be a locally slowly varying weight
function onR*Y. Then the norm equivalence

Cyt lully [[ul ully
umlwamN umlstmlOCNCw umlstm

holds for functions. in ;% (R4, w), whereC,, is defined in Equatioi3). The
constants are thereby independentf andw.

Proof. In the case ok € N Lemma 4 shows the assertion. Otherwiseket [s],
i.e. the smallest integer bigger or equabndd = s/k. The K-functionals

KQ(tvu) inf ||U valwam—i_tzHU”mlxwkm
vGH:ﬂ’:((Rd)N w)
2 _ 2 2
K (t7 u, QZ) - vEHl}g};(QZ) || U”mlx 0,m,Qz +t HU”mix,k,m,Qz'

are central in the proof. The firgt-functional is used for constructing the norms on
Hy: (RN, w) defined on the whole spa&Y. The second(-functional leads to
unweighted norms on the spacHg (Q;) defined on the cubeg;, which will be
used for the localized norm.



In the first part of the proof we show the right inequality. Rdirt > 0 let v*(¢) €
HE? (RN, w) be a function such that

mix

”u - v ( )Hmlxw 0,m +t2 HU ( )”mlxw k,m < 2K2(t’u) (4)
It follows that

£czaN

<Y u / 1 =0 @ i, + 10 Oliem ]
fezdN

Now due to the Theorem of Monotone Convergence
o0
—1—20 *
HuH?nlstmloc S / t -2 [HU v (t)||12nix,w,(),m,loc+t2 ||1) ( )Hmlxwkmloc] dt

<c/ 2 [ — 0% ()t 0+ 2 1070 P .

where in the second step the norm equivalence of Lemma 4 veals Using Equation
(4) shows the first assertion.

In the second part we show the left inequality. For that paqdetv;;( ) e H" e (Qp)

mix

be given for allé € 4~ and allt > 0 such that

Hu - 1)»( )Hmlx 0,m,Qz + t2||1)~( )”le k,m,Qp < 2K2(t7ua QZ) (5)

Furthermore let be an infinitely differentiable function such that
w5 = (- — f), supp(¢z) C Qp, beziN
forms a partition of unity. The function

Z <pﬂvﬂ

fez.aN

is an element o7 ((R?)N,w), which we will show in the following. Using the

mix

properties of the partition of unlty and the locally slowlgrying weight function gives

HU*(t)HIQnix,w,k,mS Z ||QDZ’U§(t)” 1xwkm~ Z ’LUZH’U ||lekae (6)

fez.aN Zc7dN

Here the boundedness gfand its derivatives was used. Each summand can be esti-
mated by

t2 ||v;(t)”?nix,k,m,Qz S 2 Kz(tv Uu, QZ) = 49t20/ 7_1_20K2(t7 u, QZ) dr
t

< 461 / SR (10, Q) dr = 4082 [l g,
0

due to the monotonicity of thK—functionaI Inserting this inequality in Equation (6)
gives the estimatév™*(t) where the constant depends

||m1x w,k,m ~ HuHmlx w,s,m,loc’



ont. Using the estimatéu||? < Cullull? of the first part of the

mix,w,s,m,loc ~ mix,w,s,m
proof shows that* (t) is an element of 77" (R?)N,w) for all t > 0. Therefore one

can use*(t) to estimate thé(-functional:
K2t ) < Jlu = 0" (O fix,0.m + 10" OB 5m

S S e )1 PR o v 3] W
fez.aN

where we again used the properties of the partition of umityw sincesupp(y;) C

Qp

K2(ta u) 5 Cw Z ’lUZ [”u - ’U% (t))”IQnix,O,m,Qz + t2||v2(t)”?nix,k,m,Qz}
fezdN

S Cy Z wg K3(t,u, Qp),

Fez.aN

where in the last inequality Equation (5) was used. Hence

120 < Co / ST wy K20, Q)] dt.

£eziN

Finally using the Theorem of Monotone Convergence givesfisertion. O

3 Wauvelet characterization of weighted Sobolev spaces
of mixed order

In this section we characterize weighted Sobolev spacesxathorder by a weighted
sum of wavelet coefficients. These norm equivalences aettat key for constructing
efficient approximations, see Section 4. Due to their laedidn in space and fre-
guency wavelets are a suitable tool for the study of funcsipaces, see for example
[9, 13] for an introduction to wavelets. Wavelets consétatstable basis for a wide
variety of function spaces, comprising isotropic Sobolad 8esov spaces (see for
example [9]), weighted Besov- and Triebel-Lizorkin spaf28], as well as Sobolev
[30, 22, 23] and Besov-Triebel-Lizorkin spaces [43] of ntbader. In this work we
study the case of Hilbert spaces with anisotropic smoothagén [23] combined with
weighted norms [26]. However we restrict ourselves to thepser case of Sobolev
spaces and weights given in Definition 2. It remains for fetwork to extend the ob-
tained results to Besov and Triebel-Lizorkin spaces of shiaaler and more general
weights.

3.1 Wavelet bases

In this part we construct an anisotropic basis for #é-dimensional spaces by ten-
sorizing compactly supported biorthogonal waveletd iimensions. Ford > 1 as-
sume that two sets of functions Irf (R4)

U={yy|reV}, T={)|reV}.



are given, wherd is a suitable set of indices. The elemeiifse ¥ andy, € ¥ are
calledprimal anddual waveletsrespectively. The sets are assumed to be biorthogonal
in L2(R%), i.e.

Wx, ¥n) 2@y = O AN € V.

We assume that the multi-indices = (e,j,k) € V consists of three partss €
{0,1,...,n.} specifies theypeof function,j € N thelevelandk ¢ Z? thetransla-
tion. Each functiony,, is then given by

Pa(x) = 20429 (22 — k), A= (e,5,k)

and analogously also fap,. In this way classical constructions like Daubechies
wavelets [12], biorthogonal wavelets [11], as well as muitivelets like [17] are in-
cluded.

Furthermore the wavelets are assumed to be uniformly cotlymampported, i.e. there
exists a constargtsuch that forale € {0,1,...,n.}

supp ¢, supp(®) C Be(0), @)

whereB, (x) denotes a ball centered inwith radiusr. Consequently the support of
the wavelet)y, A = (e, 4, k), is contained in a ball centereda = 2~/ k with radius
277¢. The termz), = 277k is called thecenterof the wavelet.

In addition we assume thdlt is a stable basis for a whole range of Sobolev spaces.
More precisely we assume that there exits a constan0 such thatforalD < s < 7
the norm equivalence

[Jul|3 ~ Z 229N a2, ux = (P, w) p2(ray (8)
rev

holds for allu € H*(R?). Herej()\) gives the levej of a multi index\ = (¢, 5, k).

The existence of such bases is well known, see for exampleE[gjecially the bases
mentioned above, i.e. Daubechies wavelets [12], biorthabwavelets [11] and the
orthogonal multi-wavelets based éhsplines [17], fulfill the prerequisites.

Now given such a set of biorthogonal based variables we construct a biorthogonal
set of bases faf NV variables. For that purpose define a multi-index (A1, ..., Ay) €
V¥ and the corresponding functions

N B N B
¢;=®¢A“ ¢x=®¢xi
i=1 =1
through the tensor product. Then the sets
U={y; [ XeVV), U={y;|xeVV]

are biorthogonal bases ib*((R?)") as can be readily shown. Now the level of a
waveletyy is given by a vecto(X) = ((A1),--.,4(An)). Furthermore define the
centerof the wavelet by ; = (z,,..., %y ).



3.2 Norm equivalence

Having fixed the prerequisites for the wavelet basig M variables we will show that
these bases are stable for a wide range of weighted Sobdeespf mixed order.
As a first step we will show that the wavelet coefficients chemaze the unweighted
Sobolev spaces of mixed order. For that purpose we procead &he lines of [23]

where the case of a bounded domain was studied. The key tordloé ip the fact

that the unweighted Sobolev spaces of mixed order, Defiitiocan be written as
an intersection of tensor product spaces, see Corollan\ii¢h this result one can
proceed as in [23] which leads to the following result.

Theorem 6. Letm € N ands > 0 be given such that + s < 7, wherer is the upper
bound of the norm equivalen¢®). For ease of notation define

’imix(x) = 2\;(X)|1’ Hiso(x) = 2|3(X)\00’ Hs,m(x) = Kipj (X) iy (X)
and the discrete norm
|||u|||1211ix,s,m = Z Hg,m(x) |UX|23 Uy = <’[/~)Xa U>L2(R‘“V)'
XevnN

Then the norm equivalendle||mix,s.m ~ [[|t/|lmix,s,m holds in the case of unweighted
Sobolev spacél;; ((R4)") of mixed order.

Note that in general the constants in the norm equival@ndgnix,s,m ~ ||| - lmix.s,m
depend exponentially on the number of dimensions. Theffagtg, /s, correspond to
the mixed/isotropic regularity, see also the index4kt” in Equation (1). In a second
step we prove the case of weighted spaces by reducing it toabe of unweighted
spaces. This is achieved by using the localized norm of Stibse2.2 and the compact
support of both the primal and dual wavelet.

Theorem 7. Letd, N > 1, m € Nands > 0 such thatm + s < 7, wherer is
the upper bound of the norm equivaler(& Furthermore letw be a locally slowly
varying weight function oR?" . Define the discrete norm

|||u|||12nix,w,s,m = Z w(£X) Iiim(/\) |’U’X|2’ Uy = <an u>L2(RdN)'
XevN
mix

Then the norm equivalence i)/ (RN, w)

Cw"™ ull3 < Ml < Cufllull; 9)

mix,w,s,m ~J |||u|||mix,w,s,m ~ mix,w,s,m
holds. Hereng = [{] + 4, where¢ determines the size of the support of the wavelets,
see Equatior(7).
Proof. In the first part of the proof we show the left inequality. Hoat purpose define
V= {X e vV ’ supp(¢5) N Qg # 0}, ¢eziN,

i.e. the set of all indices, such that the support of the espwading wavelet intersects
the cubel);. Then

HuHmix’S’m’Qz - H qz u}ﬂ/’i} mix,s,m,Qz = H qz u}ﬂ/’i}

)\EVZ )\GVZ

)
mix,s,m

10



where in the last step we used the fact that also the mixed wdrfnactional order
grows if the domain is increased. Using the norm equivalémmee Theorem 6 gives

Hqunix,s,m,Qz 5 Z Kgm()\) |U’X|2
XGVZ
i 0Nk dN i . .
Summing up all translationsc Z** with the appropriate weights; leads to
||u||12nix,w,s,m7locs Z [ Z wz] Iﬂ‘/g,m()\) |uxl2
XevN EXev;

A fixed wavelet indexx € V2V is contained only in those index sely, where|Z; —
Z|oo < ¢ + 1. Now due to the locally slowly varying weight function it folvs that

ully SO Y7 w(@) w2, (V) Jugl.

mix,w,s,m,loc ~>

XevN

Using the norm equivalence of Theorem 5 and tald]‘iépr4 instead ofC/$12 for
reasons of symmetryJ, > 1) one obtains the left inequality.

In the second part we prove the right inequality. Centraht® froof is the fact that
the projectorgyy, u) 12 (ravy act only locally due to the compact support of the dual
wavelets. Define by

@zZ{XEVN’i“XeQz}, ZEZdN

the set of all indices, such that the centgrof the corresponding wavelet is contained
inthe cubey) ;. Based on these sets define the union of all supports of thespmmding
dual wavelets, i.e.

Qg =J{suppds | X e Vgl
Using the properties of the weight function gives

> w(@s) w2,V uz? S Cuw Y wy k2, (N) [uzl, (10)

Xev; Xevy

where the coefficients are defined by = <1/~)X, u)r2rany. Since the dual wavelets
J’X have compact support, the coefficientsfor Xe @z only depend on the function
values ofu on QZ- Now construct an infinitely continuous differentiable &tion ¢

such that
. 1 ZeQs
“’“""):{o lyeg, 18— il > 1
ntgeg, 1% — Yloo 2

and define the corresponding translatigns= (- — q) for € € 74N, Sinceyy is
equal to one oi);

uyx = <1/~’X7‘PZU>L2(RGLN), Xe @Z

11



forall £ € ZN. Inserting this into Equation (10) gives
= 2 Y 2 2 N\ [ /o], 2
Z ’LU(.’BX) Hs,m(/\) |UX| < Ow Wy Z Hs,m(/\) |<¢X7 'Y} U>L2(]RdN)| y
Xev; Xevn
where the sum has already been extended to all indices”™ . Now using the norm

equivalence for the unweighted case, see Theorem 6, itAfslio

Y w(@s) K7 ) lugl® S Cu wyg llpgull; < Cuw wy |ull;

s,m mix,s,m ~J mix,s,m,supp ¢z’
XE@Z
where the Holder inequality was used. Summing ug alZ" gives

Z w(£X) Iiim(AH’U/XP 5 Cw Z ’U}Z ||u||12nix,s,m,supp 7
XevnN PezdN

Here we used the fact that each indeis contained in only finite many index 3&755.
Now we coversuppy; with the cubeg); and obtain

Z w(‘,ﬁX) Hgm(x)|uX|2 S Cw Z [ Z wf’] ||u||12nix,s,m,Qz'

XevnN £ezdN gl QzNsupp g #0

Due to definition ofs, for fixedZ all indices¢’ contained in the sum fulfilé — £'|, <
&+ 2. Hence

Z w(£X) Kim(/\)|uX|2 S Ci[)ﬂ—’_3 Z ’U}Z Hqunix,s,m,Qz‘
XevN fezdN

Using the norm equivalence of Theorem 5 finishes the proof. O

Again, in general the constants in the norm equivalencertpgponentially on the
number of dimensions. This fact will limit the applicabyibf the discretization scheme
to a moderate number of dimensions.

4 Approximation results

In this section we construct approximation spaces for fonstin weighted Sobolev
spaces of mixed order. In the most general setting let a paieighted Sobolev spaces
of mixed orderY” C X be given, where

X = Hy" (RON,w), Y = Hy (RN, w)
for appropriate orders and weight functions. Given a funrcti € Y and a tolerance
e > 0 we want to find an approximation. given by a finite linear combination of

wavelets such that the errgu. — u.||x measured with respect to the norm &his
belowe. In particular we are interested in the rate of convergenitle respect to
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the terms needed in the linear combination of wavelets. Npoegisely we want to
determine the asymptotic behavior of the quantities

E, = inf inf —
" .viléx Husnlip:l eV, e = x
dimV,=n

describing the approximation error for the best linear spgenerated by, wavelets
for the unit ball inY". Similar results, also in the case of besterm approximations,
were obtained for example in [41, 15, 30, 22, 23, 25].

For the construction of corresponding approximation spageproceed as in [22, 23]
leading to optimized sparse grid spaces [6]. In particukauuge the norm equivalence
derived in the last section to identify the important cdmitions.

Since the functions are defined on the whole spga¢¥ one has to assume certain
decay properties of the function in order to achieve finiteehsional approximation
spaces. In terms of weight functions has to increase in a certain sense more rapidly
thanw’. As a consequence we end up with sparse grid spaces whertnbdgel and
the center of the wavelets are restricted simultaneoustyilé&8 approximation results
with respect to a redundant set of functions have been aatam[24], where however
only the function itself and not its derivatives decayed jpodynomial sense; see the
end of this section for a discussion of this case.

In a first step we will construct approximation spaces for geeeral problem. Af-
terwards we determine the rate of convergence only for aicefamily of weight
functions. In view of our main example, the electronic Sclimger equation (Section
5), we restrict ourselves to a family of weight functions gpenential type.

We begin with the definition of a general index set of wavetetfficients for construct-
ing an approximation.

Definition 8. LetT < 1 and a functiorp : R*Y — R be given. For all > 0 define
the index set

AT = {Xe VV| = p(@) ~ [iVh + TIi (Ve = =T +TJ}  (11)
of wavelet coefficients. The corresponding spafes| Xe AT(J)} are calledopti-
mized general sparse grid spaces

One sees that simultaneous restrictions on both the fé\ieland the positiorz ;; of
the wavelet are imposed. Based on this index set we construgpproximation and
use the norm equivalence of the last section to estimatectheacy.

Theorem 9. Letd, N > 1, m,m’ € Nands,s" > 0 suchthats + m,s’ + m’ < 7,
wherer is the upper bound of the norm equivaler(8¢ Furthermore assume that
s—s >m' — m. Letw’ andw be locally slowly varying weight functions. Given a
functionu € H,,1 (RY)",w) define forJ > 0 an approximation

Uy = Z uwa, ux = <’L/~Jx,u>L2(RdN),

XEAT (J)
where the parameters of the index A%t(J), Equation(11), are given by

T m’ —m’ ) logz(w/w').
2(s—4¢")

s— s
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Settings = (s — s’) — (m’ — m) the error can be bounded by
2 26—
||u - uJHmix,w’,s/,m/ 5 OZ§/ 01717}5/ 2 UJ”U”mix,w,s,m

asymptotically for/ — oo, where the constants are independenfpf,’ andw. Here
C, andC,, are the constants of the locally varying weight functienand w’, see
Definition 2, andn, is defined in Theorem 7.

Proof. Using the norm equivalence from Equation (9) it follows fréma definition of
Uy that

2
”u - uJ”IQnix,w’,s’,m’ = H Z uxz!]XHmix,w’,s’,m’
XgAT ()
SCOw Y W (@) K2 (Vugl*.
XgAT ()

Now the definition ofA” (/) implies that

-

= 2
w\xry —
( )\) sm( z Z 220J’ ) QAT(J)
— 2 14
w (mX) Ky m’(/\)
Hence
HU - uJ”mlxw ,s',m/ N n£ 2_20J Z £X )‘) |’U’X|2
XevN
Using the norm equivalence once more proves the assertion. O

The theorem shows that arbitrary accuracy can be achiewstded that/ is chosen
big enough. Note however that the index set is not univerkal:a functionu €
H;: (RN, w) the orders of differentiability andm as well as the weight function
w enter into the definition of the index s&f (/). In the determination of convergence
rates this fact is of no importance, whereas in applicatioms has to estimate the
corresponding parameters. However the function to be appeded is often given
implicitly as the solution of a corresponding equation.His tase one may use adaptive
methods to determine the index set for example by using agapavelet methods
[10], even in high space dimensions [37]. In this way one Benffom a possibly
higher non-linear approximation rate.

Now in order to determine the approximation rate we havelaigdhe approximation
error to the cardinality of the index SAE(J) as defined in the theorem. For that pur-
pose we have to specify the weight functiangandw’. In view of our main example,
the electronic Schrodinger equation (Section 5), we @shurselves to a family of
weight functions of exponential type. However also for othveight functions, i.e. of
polynomial type, one can deduce approximation rates in dzgimay.

Definition 10. Letd, N > 1 andy > 0. Define the weight function

N

wy(&) = [[ el

i=1

onR¥. Form € Nands > 0 the spacef.;;" (RY)", w,) is calledexponentially

mix

weighted Sobolev space of mixed order
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It can be directly verified that., is indeed a slowly varying weight function since
wy(§) < Cyws(T), Cy =V, (12)

for all #,4 € R such that|# — 4| < 1. Note that the constar®., depends
exponentially on the number of dimensions.

In the rest of the work we restrict ourselves to the case tbtt tveight functionsw
andw’ are of this type. As only the quotient of both enters into tlsewakssion we can
assume without loss of generality that the pair of subspaag®sw given by

X = Hy' (RDN), Y = Hyl (RN, w,).

mix mix

for some~y > 0. Now for this choice the functiom in the index setA,f(J) from
Theorem 9 is given by

N
@) = Bl (@), (@)= Y [ (19
=1

In Figure 1 forN = 2 andd = 1 the setsA;Fl(J) are sketched for the parameters
T = 0.5,0,—1andJ = 3,6. There each dot corresponds to the center of a wavelet.
As J increases the region of discretization grows and as welkaglets of finer levels
are included in the sparse grid spaces.

In order to derive approximation rates it remains to estintae number of elements
in A;{(J) with respect to the level. We begin by proving a few preparatory results
about combinatorics.

Lemma 11. Letj € N. Then

HieNY[ljh =4} SG+DY (14)
where the constant is independengof-urthermore for0 < k£ < j
Hi eNV]Ijh =4, |fle =k} S (G =k + DV (15)
andfork >0
H e NV[1jh =4, flee <J/N +E} S (k+ DV (16)

where the constants are independent ahd k.

Proof. The first statement directly follows from the number of pbasies for dis-
tributing j balls intoV places, see also [7].

For the second estimate setting one entryfk the rest of the entries sum upe- k.
Using the last result it follows that there are at mgstj — k + 1) ~2 possibilities.

For the last assertion it suffices to takas a multiple ofV. Fork = 0 all entries ofj

are equal tg)/N. Now in order to fulfill|j|., < j/N + k one may increaséentries,

1 < ¢ < N —1, at most byk. The total sum of added values, at mékt has to be
balanced by the remaininy — ¢ entries. Using combinatorics one may estimate the
number of elements in the set by

N—-1 N-1
;<£>k< v - 2—1 )52()1@ (k6 + 1N < (k+ 1)V
which finishes the proof. O
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Figure 1: Sketch of the index sezté[l(J) for N = 2,d = 1 and the weighp,, Equa-
tion (13), for different parametef8 = 0.5,0, —1 andJ = 3, 6. Each dot corresponds
to the center of support of a wavelet.

The constant in the last estimate, Equation (16), howevgenids exponentially on the
number of dimensiond/. For a discussion see the end of this section. In addition we
need the following result.

Lemma 12. Letn,m € N, J > 0 anda > 0. Then
L] .
DG+ (T —j+1)me™ S Jme! (17)
3=0

for J — oo, where the constant is independentiof

Proof. Forallm,n ¢ N

LJ] J
Zj" (J —j)™ e 5/ 2" (J—x)"e*de =1F1(14+n,2+m+n,alk),
=0 0

where, F} is the the Kummer confluent hypergeometric function. Fes oo the right
hand side converges ta! J"e*’ [1, Equation 13.1.4]. Now expandir(g + 1) and

(J —j 4+ 1) in Equation (17) into powers gfand(.J — j), respectively, the assertion
follows. O

Finally we can estimate the cardinality of the indexfsg(J) defined in Theorem 9.
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Lemma 13. Letd, N > 1, T < 1 andy > 0. Then the number of elements in the
index serAf(J) for p defined as in EquatiofL3)is given by

9dJ 0<T<1
BAL(J) Sy~ g N1 od] T=0
9(1=T)/(1=T/N)dJ T ~
asymptotically for/ — oo, where the constant is independentiodind-y.

Proof. For a givenj € NV setj = [j]; andk = |j|s. A wavelet indexX with
7(X) = jisin the set\T(J) if the center of suppotE;; satisfies
2(s—s')

Meae [ =0) = TG b,

p1(@z) < Rjw(J), Rju(J) =

The cardinality of the index set

-

{Xe VYN =], m(@) < R},.(J))}
can be bounded by

} H 2sz

=1

N
[Te{x € V]in) =i,
=1

Therefore the number of eIementsAfj(J) can be estimated by

AT (D) S D {71171 = 4 1les = K} (B (
j.k

+1)" o (18)

where the summation runs over appropriate indjcasdk. The caseV = 1 can be
readily shown using Lemma 12, hence from now onNet- 2.

The casé’ = 0: Using Equation (14) gives

L]
AD(J) S Z(] + )Ny dN (] — G4 )N o4 < AN gN—19d]
7=0

where in the second step Lemma 12 was applied.

The casd) < T' < 1: Sincep > 0 it follows from Equation (11) that the summation
indicesj, k in Equation (18) are restricted by

0<j<J and maX(J—%,j/N)Sij-

Now in the lower bound of the first term in the maximum is active if
1-T ~
> _J=J
I2TCTN
We split the summation in Equation (18) according to

(-1 LJ]

SUDIED S

J=0 k=[j/N1  j=[J] k=[J—(J=35)/T]
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Based on Equation (15) and Lemma 12 we crudely estimate gietim by

[J1-1 4 )
< Z Z (G—k+ 1)N—2 ,Y—dN (J—j+ 1)dN2dj < ,Y—dN J(@+1)NodJ
J=0 k=[j/N]

and finally by< 4~4N247 since.J > .J. Here we bounde®”, (J) < v~ (J — j).
For the second sum

LJ) J
> > Gk Ty (T -+ 1) N2
g=[J1 k=[J=(J=§)/T]

we use a finer estimate for the sum o¥ker

4 ) N_2 ) J—J N1 . N-1
S G-k+1) 5{;—(J—T)+1} <(J—j+1)NL
k=[J—(J—35)/T]
Applying Lemma 12 proves the second case.
The casdé’ < 0: In this case the summation indices in Equation (18) areictsd by

0<j< 1-T J—7

— — J=:J, j/N<k<min(4,J— )
_1—T/NJ J, j/N_k_mln(j,J T )

In the upper bound of the second term in the minimum is activejit> J. Now the
summation over the indicgsandk in Equation (18) is split according to

[J1-1 7] [J-(J=35)/T]

PIED IR D IEDD

J=0 k=[j/N1 j=[J1  k=[j/N]

Proceeding as in the cae< 7' < 1 the first sum can be bounded 2§/ since.J > .J.
In the second sum the indéxs restricted by

J J-Jj _ ] = (1 1

2 < - J _ L _ —
NSkl =Nt U-)) ( )
Using Equation (16) the second sum can therefore be bounded b

IN

L) LI=(J=)/T) o
S>> T+ )Ny N[ = ) =TT - k) + 1] 2%
j=[11 k=[j/N]

The summation over gives

[J=(J=45)/T] . N
Yo = -TU =R+ S[ -5 -T—j/N)+1]"
k=[3/N1
/S (j—j + 1)dN+1.
Applying Lemma 12 once more finishes the proof. O

Combining the error estimate and the bound on the numbergreds of freedom we
finally can evaluate the approximation rate.
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Theorem 14.Letd, N > 1,v > 0, m,m’ € Nands’, s > 0 such that’+m/, s+m <
7, wherer is the upper bound of the norm equivaleri8g Furthermore assume that
s —s > m’ —m. Given a functioru € H[ (RN, w,) for eache > 0 there
exists a finite linear combinatiom. of functions{; | X € VV} of the form given in
Theorem 9 such that

||U - Us”mix,s’,m’ S £ ||U||mix.,w,y.,s,m- (19)

Set

1-T m' —m

U:(S—S/)—(m/—m), B:m, T—ﬁ

Then asymptotically the number of summands.ican be bounded by

inel(29) /o

m >m
fue <y N ang/(%) lloge|N-1e= 47 m!' =m
ngns/(%) c—Bd/o m' < m

for e — 0, where the constants are independent@ind . Heren, is defined in
Theorem 7 and’,, in Equation(12).

Proof. Theorem 9 applied to the present situation gives an errandhou
||U - uJHmix,s’,m’ 5 0’7;&/2 2_UJ||U||mix,w.y,s,m-
Denote bye the constant in the inequality which is a multiple@?ﬁ/z. Now letu, =
uy with J = (—log, € + log, ¢)/o. Then Equation (19) is fulfilled and the number of

elements can then be estimated using Lemma 13 which showsskeetion. O

Solving for the degrees of freedamgives the estimate

n-o/d m' >m
||u - UnHmix,s.,m 5 (10g n)U(N_l) . n_"/d m' =m (20)
n_o'/(ﬂd) m/ <m

whereu,, denotes an approximation withterms. As a consequence the approxima-
tion rate for the casen’ > m is independent of the number of dimensiaNsand
deteriorates only by a logarithmic factor for the case= m. In the cas&” — —o0,

i.e. no additional mixed smoothness, the approximatiadat/ (m — m’) of classical
approximation schemes is recovered.

Note however that the constants in Theorem 14 might depepdnextially on the
number of dimensions. This unfavorable scaling is rootetherone hand in the con-
stants in norm equivalence, Theorem 7, and on the other matickiestimate of the
cardinality of the index. Moreover even the mixed norm migitdw exponentially in
the number of dimensions, like in the case of normalized Gaungunctions. This lim-
its the applicability of the discretization scheme to a matienumber of dimensions.

Despite the unbounded domain the approximation rates ¢hjosé¢ for the bounded
domain obtained in [23]. In our cad¢~ plays the role of a characteristic length scale

19



in real space. In contrast to [23], however, we did not stuslyative differential orders
and only integer orders of isotropic smoothness. The latriction can be removed
by using interpolation theory once more.

Similar approximation results for the unbounded domairehasen obtained in [24].
There a function in a Sobolev space of mixed order was apmabed, where only the
function itself decays in a polynomial sense. More pregisetatisfies

N

||U||§1;;;((Rd)N) + Huﬂiz((Rd)N,w) <oo, w(&)= H(1 + |2il2) (21)
i=1

forordersm’+s’ < m+sands—s’ > 0 and polynomial degreés= N, t > 0. The ap-
proximation was constructed using a smooth dyadic pantiticthe Fourier space and

a subsequent multi-level approximation on each patch. Asnaexquence the approx-
imation results apply to all considered ordetsm’, s, s" and are not restricted by the
regularity of the multi-scale approximation at the pricattthe ansatz functions are not
compactly supported in real space. The obtained approximedtes deteriorate with
the polynomial degreé and converges to the rates of Theorem 14 up to logarithmic
factors for the case— ~c.

Using the techniques presented in this section analogtsdeuiwavelet discretization
can be obtained for functions satisfying (21). For that psgin a first step Equation
(21) is expressed equivalently in terms of wavelet coeffilsie

S RN+ w@E)] lugl?, ug = (5, u)pagav).
XevN

Based on the discrete weights, again, one may construcfiaieef approximation by
choosing important contributions. If one uses the expaakweightw., instead one
recovers up to logarithmic terms the result of Theorem 14.

Furthermore the approximation results of Theorem 14 maynipeaved with respect to
the restrictions on the orders, i.e. the requirement s’, m+ s < 7 can be weakened.
For deriving approximation results it suffices to use a Jackgpe estimate. Since in
the wavelet setting the number of vanishing moments maydieehithan the regularity
of the wavelets, the approximation results may be valid foigger range of orders
[16].

5 Application to the electronic Schrédinger equation

In this section we apply our result to the electronic Schngdr equation and present
a numerical example. We want to approximate bounded sta@®ms or molecules
and rely thereby on the regularity results obtained in [¥4&. refer to this work for an
introduction to this subject and pointers to literature.

For the quantum mechanical description of a molecule or ainenhas to discretize
the so called wave function, which is a functionfift (R3Y) if the system is composed
of N electrons. Recently Yserentant [44] showed, that the waretfon has mixed
regularity. Using Theorem 6.9 and Theorem 6.12 of [44] kalione can show via
interpolation theory that the wave function is an elementigf>" (R?)", w, ), pro-
vided thaty is chosen appropriately.
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The quality of the approximation is measured with respettiéoenergy norm i *.
Therefore one can apply the approximation results for tise €a= 0 of the previous
section to derive the approximation rate. Denoteltlie wave function and by,, the
approximation withn terms according to Theorem 14. It follows that

[ = wnlly S (log )N =172 =10,
that is up to logarithmic terms the approximation rate egjuab.

However this result can still be improved by using symmetgperties of the wave
functionu. The Pauli principle requires that the function is antisyetiie with respect
to interchange of certain variables. More specifically

u(P&) = sign(P) u(Z), (22)
whereP is any permutation in the symmetric grodp satisfying

P(@)=3d, = (+Yo...,+Yo =1 ..., —1p). (23)

N times N—N, times

for a fixed spin configuratio&. One can directly verify that the operator
oy 1 . S
(Asu)(Z) = NN N, P.PZ:ﬂ&gn(P)u(Pm),

is an H*'-orthogonal projector on the space of all functions with teeresponding
symmetry. Therefore it follows directly that for an appnmetionu. € H'(R3N)

lu = uellf = [Ju — Ague|]§ + [|(Id — Ag)uelf3- (24)

As a consequence the best approximation of an antisymnfietration is itself again
antisymmetric.

Now instead of approximating on sparse grids introduced in the last section, we take
the antisymmetrized sparse grid spaces

Gz(J) = span{Az5 | X € A(J)},

wherep is given in Equation (13) andg in Equation (11). Since differentand\’ may
span the same subspace, gy = +Azvy,, Or may even vanish, i.é\zy5 = 0,
the given set of indices is redundant. Therefore one needsrfimdices to span the
antisymmetrized sparse grid. In the following we estimat tumber of degrees of
freedom.

Lemma 15. Let N > 1,y > 0 and & be a spin configuration, see Equati¢zg).
Define the set of all indices;(.J) as the set of all indices € A%(.J) such that the
levels in each spin group, i.e.

(j()\i))izl,...,N+ and (j(/\i))i:N++1,...,N

are monotonically decreasing. Th&#;(J) = span{Az1; | X € Az(J)} and the
degrees of freedom can be estimated by

ﬁAﬁ(J) 5 773N X €4m 23,]

asymptotically inJ. Here the constant is independentoénd J.
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Proof. Due to the properties of the operaty it is clear that we can restrict ourselves
to indices where the levels in each spin group decrease.dfarating the number of
elements im z(J) one basically proceeds as in the proof of Lemma 13 in theFase
0. Instead of estimating{j € NV | |j|; = j} in Equation (18) we only consider those
indices; which are in addition monotonically decreasing in each grou.. ., N, and
Ny, +1,...,N. This can be done by using the partition number. #erN this number
p(¢) is defined as the number of monotonically decreasing segséne- /5 > ... of
non-negative integers such that the stim- ¢, + . .. equalsl. One may estimate this
number by

2vV2¢

p(0) < 7

where the constant is independen?psee for example [44]. Now sin¢§|l = j the
indices in both groups too sum up to at mgstTherefore the number of sequences can
be estimated b{(ewz)2 = ¢*v2/. Summing up like in the proof of Lemma 13 shows
the assertion. O

Given the estimate on the accuracy and the number of elemeated we can easily
estimate the convergence rate.

Theorem 16. Lets,y > 0 andu € HS\ ((R*)N,w,) which is antisymmetric in the
sense of Equatio22) for a fixed spin configuratio&. In addition letl + s < 7
wherer is the upper bound of the norm equivaler(8® Then for every > 0 the
antisymmetrized approximatioi. = Azu. from Theorem 9 (setx’ = 1, s’ = 0)
satisfies|u — t.[[1 < € ||u|mix,w,,s,1- ASymptotically the number of summandsiin
can be bounded by

ﬂﬂs 5 Cg”&/(QS) .773N . 64\/2\log25| _573/5

for e — 0, where the constant is independent @nd-y.

Proof. The approximationi. approximates at least as well ag., see Equation (24).
Therefore the estimate of accuracy from Theorem 9 carries tavthe antisymmetric
case. The number of elements can then be calculated usingnadrs. O

Now since the bounded statef an atom or molecule are i /2" (R3)Y, w, ) the
wave functionu can be approximated with a rate

Hu _ Un”l S 82‘/2/3 logy n | ,,171/67

whereu,, is a linear combination of terms. In the case of the transcorrelated equation
one can show that the solutienis an element oHrlr;ilx((R?’)N, w,) [45]. Proceeding
as above one can show that

Hu _ UnHl 5 64/3\/2/3 logyn | n—1/3

for an approximatiom,, consisting of: terms. For a discussion of a wavelet discretiza-
tion of this equation see also [4].

If one compares this result to the one without antisymmeéty{ = 0) one sees that
the exponentV of the logarithmic term has vanished. Therefore the ratedeéd
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Figure 2: Error of the eigenvalue approximation in atomi¢tsiof the lowest eigen-
value of helium with respect to the degrees of freedom, wheeaeference value is
taken from [39]. The approximation is calculated by a Gatediscretization using
adaptively refined anisotropic sparse grids based on |lpreavavelets [8]. The chemi-
cal accuracy is given bykcal/mol. The extrapolated value is calculated using the last
three steps.

independent of the number of electroNs However, the constant behirg might
depend exponentially oV limiting the applicability of the discretization scheme to
small atoms or molecules.

In the following we present numerical results of the compataof the ground state

of helium. For the solution of the six-dimensional Schraginequation we used a
sparse grid based on linear prewavelets [8] in a Galerkicrelization, where we set

d = 1and N = 6. This was done to speed up the application of a vector to the
discretization matrix, see also [47]. One can show that upgdarithmic factors the
same approximation rates can be reached. In addition théaréty assumptions can be
weakened such that the upper bouraf the norm equivalence (8) fulfills+ s/3 <

at the cost of additional logarithmic terms [46].

In Figure 2 the error of the approximation of the lowest eigdune with respect to the
degrees of freedom is shown. The reference value is obt&ioed[39]. The asymp-
totic convergence behaviour starts arourtd and is determined numerically to be
approximately.465. Since the Hamilton operator is self-adjoint the convecgaate

of the eigenvalue is doubled compared to the convergend¢mdiihction with respect

to the energy norm, i.ed'. This value is above the expected rate of convergence of

1/3 which follows from the fact that the wave function istn/ii’l. Indeed the rate is
closer tol /2 which would correspond to a regularity of the wave functi6 1/;*(’1.
Despite the nice convergence rate the error does not reacthtmical accuracy of

1 kcal/mol (approximatelyt .6 mHartree in atomic units) needed in quantum chemistry.
Using aroun®5 million degrees of freedom results in an error of aro@ridmHartree.
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Chemical accuracy is expected to be reached as late as ungrijliton degrees of free-
dom. One may, however, use the convergence behaviour @petate the eigenvalue
to obtain an approximation with an error b7 mHartree just above the chemical accu-
racy. This computation improves the result calculated leysiarse grid combination
technique [20], where an error of approximatéymHartree in the lowest eigenvalue
of helium was obtained using abdi million degrees of freedom in a corresponding
sparse grid.

These results show that even in the most simple case of ashatiom classical sparse
grid constructions reach the desired accuracy only witlatgedfort. Moreover it is
expected that the larger the number of electrons the lateaghimptotic regime sets in.

A possible way out may be to use sparse grid techniques in ic@atidn with well
established discretization schemes in quantum chemistgpod starting point is the
Hartree-Fock wave function which is the best rank one appration of the eigenfunc-
tion corresponding to the lowest eigenvalue. In the so dalstrow ansatz the wave
function is approximated by a product of the Hartree-Fodltsmn and a function to
be determined. Using anisotropic wavelets with aro80@ basis function chemical
accuracy can be reached [18, 19]. A draw back of this apprizatttat the Hartree-
Fock solution fixes the zeros of the approximate wave functithis will likely pre-
vent convergence to the exact wave function. To overconseefféct one may use the
Hartree-Fock wave function as an enrichment to sparse gaces [24, 21]. In this way
the efficiency of the Hartree-Fock solution is combined wgtlaranteed convergence
rates of the sparse grid setting. With this approach smathatand molecules may be
computed with sufficient accuracy; in the case of helium dobahaccuracy is reached
using less than two thousand basis functions. However #weatization scheme is like
all linear methods not size consistent and thus prevergsitathod from being applied
to larger systems.
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A Appendix Interpolation theory

In this appendix we biefly fix the notation needed for applyiea interpolation theory
as introduced by Peetre [32, 31]. For an overview see alsexf@ample [5]. Moreover
we prove that the definition of the unweighted Sobolev spatdsactional mixed
order, Definition 1, coincides with the usual definition vigéeirsection of tensor product
spaces, see Equation (2) and for example [23].

We begin with the definition of interpolation spaces andrigtsburselves to the case
of Hilbert spaces X, | - ||x) and(Y, | - ||y) whereY C X is continuously embedded
in X:

Ifllx <clflly forall feVY.

Here the constantdoes not depend ofi With the help of the interpolation theory we
can construct a family of Hilbert spacgs, Y]y » where0 < 6 < 1 that lie betweert”
andX,i.e.Y C [X,Y]g2 C X. Inthe following we state this more precisely.
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Theorem 17. Let the Hilbert spacesy andY be given as above. Define thé-
functionalas

K*: X xRT =R, (fit) > K*(f:6) = inf [Ilf = g% + ¢ lgll3.
Based on this functional define for< § < 1 the norm

e, = [ K3 ar
and the correspondinignterpolation spacgX, Y]y - as

(X, Yo = {f € X | |fllix.x]sn < }-

Then[X, Y]y 2 is a Hilbert space.

Note that we have restricted ourselves to the case of nestbdrHspaces and the
interpolation withg = 2. An important example is given by the fact that the fractiona
order Sobolev spaces can be characterized as interposqames:

[LQ(Rd),Hm(Rd)] 6.2 _ Hﬁm(Rd)

form € Nand0 < 6 < 1. Proofs for these facts can be found in [5] for example.

In Definition 1 we introduced the fractional order weightesb8lev spaces of mixed
order via interpolation theory. In the following we show tliathe unweighted case
these spaces coincide with the classical definition of Sabspaces of mixed order
through the intersection of tensor product spaces.

In a first step we derive an equivalent norm in terms of the ieouransform of the
function.

Theorem 18. Letd, N > 1, m € Nands > 0. Then the norm equivalence

Hqunix,s,m ~ 1 + |_’ m 1 + |w1| |ﬂ(“3)|2 d‘;}v
RdN

=1

holds in the spacéf;;; ((R)"). Hered denotes the Fourier transform of

mix

Proof. Firstwe prove the norm equivalence for the spaces of inegier /" (R4)V),

mix

wherek € N. It follows from Definition 1 and the properties of the Fourieansform
that

=20 (A =\2 1~
= d .
||u||m1ka /I%dN |: E w }|u(w)| w

aecAk.m

Now due to the structure of*™

R B S N D R U I SR

aecAk.m > lag|i<m a1 1<k lan|1<k

The first factor is equivalent t61 + |&3)™ while the others are equivalent o +
lw:|3)¥, respectively. This finishes the proof in the case of integder.
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Now we turn to the casél;;" (R?)™) wheres ¢ N. According to Definition 1 the
norm of these spaces is given by

oo
Jliicom = [ int = ol + 20 ] 0
nf

wherek = [s] andf = s/k. Using the result in the case of integer order from above
N k
inf [ (1 18B)" [Ja@) - 0@)F + [T (1 + i) " 16(@)2] da.
vEH JRIN i=1
is equivalent to the infimum in the integrand. Now evaluatimg infimum pointwise
one gets
o 1

(@),
1+ 21, (1+|wild)"

One can show that for all > 0 the functionu is indeed an element @i (R?)N).

mix

Finally with the help of this function one may calculate th&erpolation norm explic-
itly leading to the desired assertion. O

With the help of this theorem one may now show that the unwe@jBobolev spaces
of mixed order are intersections of certain tensor prodpatss, see also [23] in the
case of bounded domains. For the definition of tensor praedefatilbert spaces see
for example [33, Section 11.4] or [38, Thm. 2.1] for the momengral case.

Corollary 19. Letd, N > 1, m € Nands > 0. Then
N
HISHITZ((Rd m v €i+s- 1((Rd) )’ HE((Rd)N) _ ®Ht1 (Rd),
=1 3

whereé; is thei-th unit vector and' = (1,...,1) € RV.

Proof. First the norm orHFmay be expressed equivalently as

tl N -
) ~ o H L+ i) (@) 4

see [38, Def. A.2, A.5]. Denote bly- || + the norm on the intersection of the space
H((R4)N) as defined above. Then

2 S+51 -m N N2 1=
||u||mH{N/RdN [ZH 1+ |w; ’ }|u(w)|2 dw.

j=1i=1
Now the first factor in the integrand may be written as

N N

[Z (1+ Iw.jlé)’”] JLO+ i)

j=1 i=1

Since the term in the square bracket is equivalerft te |c§|§)m the assertion directly
follows from Theorem 18. O

26



References

[1] M. Abramowitz and I. A. Stegun, editorddandbook of mathematical functions
with formulas, graphs, and mathematical tabldshn Wiley & Sons, New York,
10th edition, 1972.

[2] T.I. Amanov.Spaces of differentiable functions with dominating mixexiM@tive
(in Russian). Nauka Kazakh. SSR, Alma Ata, 1976.

[3] K. Babenko. Approximation by trigonometric polynonsain a certain class
of periodic functions of several variableSov. Math., Dok|.1:672-675, 1960.
Translation from the Russian appeai2okl. Akad. Nauk SSSE32:1231-1234,
1960.

[4] M. Bachmayr. Hyperbolic Wavelet Discretization of thewd-Electron
Schrédinger Equation in an Explicitly Correlated Formiglat Technical report,
AICES, RWTH Aachen, Preprint AICES-2010/06-2, 2010.

[5] J. Bergh and J. Lofstréminterpolation Spaces Springer, Berlin, Heidelberg,
New York, 1976.

[6] H.-J. Bungartz and M. Griebel. A note on the complexitysotving Poisson’s
equation for spaces of bounded mixed derivativésComplexity 15:167-199,
1999.

[7] H.-J. Bungartz and M. Griebel. Sparse gridsta Numerical3:147-269, 2004.

[8] C. K. ChuiandJ.Z. Wang. On compactly supported splineedets and a duality
principle. Trans. Amer. Math. Soc330:903-916, 1992.

[9] A. Cohen.Numerical analysis of wavelet methoddsevier, Amsterdam, 2003.

[10] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelethods for elliptic
operator equations: Convergence ratdath. Comput.70:27-75, 2001.

[11] A. Cohen, |. Daubechies, and J.-C. Feauveau. Biorthafjoases of compactly
supported wavelet€ommun. Pure Appl. Math45:485-560, 1992.

[12] I. Daubechies. Orthonormal bases of compactly suggortavelets.Commun.
Pure Appl. Math,.41:909-996, 1988.

[13] I. DaubechiesTen lectures on waveletSociety for Industrial and Applied Math-
ematics, Philadelphia, 1992.

[14] F.-J. Delvos. d-variate Boolean interpolationJ. Approx. Theory34:99-114,
1982.

[15] R. A. DeVore, S. V. Konyagin, and V. N. Temlyakov. Hypelizc wavelet approx-
imation. Constr. Approx.14:1-26, 1998.

[16] T. J. Dijkema.Adaptive tensor product wavelet methods for solving P.CED
thesis, Universiteit Utrecht, 2009.

[17] G. C. Donovan, J. S. Geronimo, and D. P. Hardin. Interimg multiresolution
analyses and the construction of piecewise-polynomiakleds. SIAM J. Math.
Anal, 27:1791-1815, 1996.

27



[18] H. Flad, W. Hackbusch, D. Kolb, and R. Schneider. Wavafgproximation of
correlated wave functions. I. Basics.Chem. Phys116:9641-9657, 2002.

[19] H.-J. Flad, W. Hackbusch, H. Luo, D. Kolb, and T. KopruckVavelet approx-
imation of correlated wave functions. Il. Hyperbolic waetsl and adaptive ap-
proximation schemesl. Chem. Phys117:3625-3638, 2002.

[20] J. Garcke and M. Griebel. On the computation of the gigeblems of hydrogen
and helium in strong magnetic and electric fields with thespgrid combination
techniqueJ. Comput. Phys165:694—716, 2000.

[21] M. Griebel and J. Hamaekers. Tensor Product Multistédey-Particle Spaces
with Finite-Order Weights for the Electronic Schrédingeuation. Zeitschrift
fur Physikalische Chemj@24:527-543, 2010.

[22] M. Griebeland S. Knapek. Optimized tensor-productragjmation spacesCon-
str. Approx, 16:525-540, 2000.

[23] M. Griebel and S. Knapek. Optimized general sparse gpigroximation spaces
for operator equationdviath. Comput.78:2223-2257, 2009.

[24] J. Hamaekers.Tensor Product Multiscale Many—Particle Spaces with it
Order Weights for the Electronic Schédinger EquatiéthD thesis, Rheinische-
Friedrich-Wilhelms-Universitat Bonn, 2009.

[25] M. Hansen.Nonlinear approximation and function spaces of dominatiriged
smoothnessPhD thesis, Friedrich-Schiller-Universitat Jena, 2010.

[26] M. lzuki and Y. Sawano. Wavelet bases in the weightedoBesnd Triebel-
Lizorkin spaces with4;°c—weights.\]. Approx. Theoryl61:656 — 673, 2009.

[27] V. A. Kozlov, V. G. Mazya, and J. Rossmanlliptic Boundary Value Problems
in Domains with Point Singularities American Mathematical Society, Provi-
dence, Rhode Island, 1997.

[28] S. G. Mallat. Multiresolution approximations and waateorthonormal bases of
L?(R). Trans. Am. Math. Soc315:69-87, 1989.

[29] S. M. Nikol'skil. Approximation of functions of several variables and imbegdd
theoremsSpringer-Verlag, New York, 1975. Translation from the 8las (Izdat.
“Nauka”, Moscow, 1969).

[30] P. Oswald. OnV-term approximation by Haar functions fi*-norms. J. Math.
Sci, 155:109-128, 2008. Translation from Russian app&andem. Mat., Fun-
dam. Napravl25:106-125, 2007.

[31] J. Peetre.A theory of interpolation of normed spacemlume 39 ofNotas de
Matemética Instituto de Matematica Pura e Aplicada, Rio de Janeir6319

[32] J. Peetre. Nouvelles propriétés d’espaces d'intatpoi. C. R. Acad. Sci., Parjs
256:1424-1426, 1963.

[33] M. Reed and B. SimonMethods of modern mathematical physics. I: Functional
analysis Academic Press, New York, rev. and enl. edition, 1980.

28



[34] V. S. Rychkov. Littlewood-Paley Theory and Functiore8ps withA};’C Weights.
Math. Nachr, 224:145-180, 2001.

[35] H.-J. Schmeisser and H. Triebélopics in Fourier analysis and function spaces.
John Wiley & Sons, Chichester, 1987.

[36] T. Schott. Function Spaces with Exponential Weightslath. Nachr, 189:221—
242,1998.

[37] C. Schwab and R. Stevenson. Adaptive wavelet algostfonelliptic PDE’s on
product domainsMath. Comput.77:71-92, 2008.

[38] W. Sickel and T. Ullrich. Tensor products of SobolevsBe spaces and applica-
tions to approximation from the hyperbolic crodsApprox. Theoryl61(2):748—
786, 2009.

[39] J. S. Sims and S. A. Hagstrom. High-Precision Hy-Cl &koinal Calculations
for the Ground State of Neutral Helium and Helium-Like lomst. J. Quantum
Chem, 90:1600-1609, 2002.

[40] S. Smolyak. Quadrature and interpolation formulagdoisor products of certain
classes of functions (in Russiam)okl. Akad. Nauk SSSB:240-243, 1963.

[41] V. N. Temlyakov.Approximation of periodic functiondNova Science Publishers
Inc., Commack, 1993.

[42] H. Triebel. Theory of function spaces IBirkhduser Verlag, Basel, 1992.

[43] J. Vybiral. Function spaces with dominating mixed sthoess. Diss. Math,
436:1-73, 2006.

[44] H. Yserentant. Regularity and Approximability of Electronic Wave Funaso
Springer, Berlin, Heidelberg, New York, 2010.

[45] H. Yserentant. The Mixed Regularity of Electronic Wawenctions Multiplied
by Explicit Correlation Factors. Technical report, DFGA®&erpunktprogramm
1324, Preprint 49, 2010.

[46] A. Zeiser.Direkte Diskretisierung der Schrédingergleichung auf dén Gittern
PhD thesis, TU Berlin, 2010.

[47] A. Zeiser. Fast Matrix-Vector Multiplication in the &pse-Grid Galerkin Method.
J. Sci. Comput47:328-346, 2011.

[48] C. Zenger. Sparse grids. In W. Hachbusch, edRarallel Algorithms for Partial
Differential Equationsvolume 31 ofNotes on Numerical Fluid Mechanigzages
241-251. Vieweg, 1990.

29



Preprint Series DFG-SPP 1324

http://www.dfg-spp1324.de

Reports

1]

2]

[10]

[11]

R. Ramlau, G. Teschke, and M. Zhariy. A Compressive Landweber Iteration for
Solving Ill-Posed Inverse Problems. Preprint 1, DFG-SPP 1324, September 2008.

G. Plonka. The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform
for Sparse Representation of Two-dimensional Data. Preprint 2, DFG-SPP 1324,
September 2008.

E. Novak and H. Wozniakowski. Optimal Order of Convergence and (In-) Tractabil-
ity of Multivariate Approximation of Smooth Functions. Preprint 3, DFG-SPP
1324, October 2008.

M. Espig, L. Grasedyck, and W. Hackbusch. Black Box Low Tensor Rank Approx-
imation Using Fibre-Crosses. Preprint 4, DFG-SPP 1324, October 2008.

T. Bonesky, S. Dahlke, P. Maass, and T. Raasch. Adaptive Wavelet Methods and
Sparsity Reconstruction for Inverse Heat Conduction Problems. Preprint 5, DFG-
SPP 1324, January 2009.

E. Novak and H. WozZniakowski. Approximation of Infinitely Differentiable Multi-
variate Functions Is Intractable. Preprint 6, DFG-SPP 1324, January 2009.

J. Ma and G. Plonka. A Review of Curvelets and Recent Applications. Preprint 7,
DFG-SPP 1324, February 2009.

L. Denis, D. A. Lorenz, and D. Trede. Greedy Solution of Ill-Posed Problems: Error
Bounds and Exact Inversion. Preprint 8, DFG-SPP 1324, April 2009.

U. Friedrich. A Two Parameter Generalization of Lions’ Nonoverlapping Domain
Decomposition Method for Linear Elliptic PDEs. Preprint 9, DEFG-SPP 1324, April
2009.

K. Bredies and D. A. Lorenz. Minimization of Non-smooth, Non-convex Functionals
by Iterative Thresholding. Preprint 10, DFG-SPP 1324, April 2009.

K. Bredies and D. A. Lorenz. Regularization with Non-convex Separable Con-
straints. Preprint 11, DFG-SPP 1324, April 2009.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Dohler, S. Kunis, and D. Potts. Nonequispaced Hyperbolic Cross Fast Fourier
Transform. Preprint 12, DFG-SPP 1324, April 2009.

C. Bender. Dual Pricing of Multi-Exercise Options under Volume Constraints.
Preprint 13, DFG-SPP 1324, April 2009.

T. Miiller-Gronbach and K. Ritter. Variable Subspace Sampling and Multi-level
Algorithms. Preprint 14, DFG-SPP 1324, May 2009.

G. Plonka, S. Tenorth, and A. Iske. Optimally Sparse Image Representation by the
Easy Path Wavelet Transform. Preprint 15, DFG-SPP 1324, May 2009.

S. Dahlke, E. Novak, and W. Sickel. Optimal Approximation of Elliptic Problems
by Linear and Nonlinear Mappings IV: Errors in Ly and Other Norms. Preprint 16,
DFG-SPP 1324, June 2009.

B. Jin, T. Khan, P. Maass, and M. Pidcock. Function Spaces and Optimal Currents
in Impedance Tomography. Preprint 17, DFG-SPP 1324, June 2009.

G. Plonka and J. Ma. Curvelet-Wavelet Regularized Split Bregman Iteration for
Compressed Sensing. Preprint 18, DFG-SPP 1324, June 2009.

G. Teschke and C. Borries. Accelerated Projected Steepest Descent Method for
Nonlinear Inverse Problems with Sparsity Constraints. Preprint 19, DFG-SPP
1324, July 2009.

L. Grasedyck. Hierarchical Singular Value Decomposition of Tensors. Preprint 20,
DFG-SPP 1324, July 2009.

D. Rudolf. Error Bounds for Computing the Expectation by Markov Chain Monte
Carlo. Preprint 21, DFG-SPP 1324, July 2009.

M. Hansen and W. Sickel. Best m-term Approximation and Lizorkin-Triebel Spaces.
Preprint 22, DFG-SPP 1324, August 2009.

F.J. Hickernell, T. Miiller-Gronbach, B. Niu, and K. Ritter. Multi-level Monte
Carlo Algorithms for Infinite-dimensional Integration on RYN. Preprint 23, DFG-
SPP 1324, August 2009.

S. Dereich and F. Heidenreich. A Multilevel Monte Carlo Algorithm for Lévy Driven
Stochastic Differential Equations. Preprint 24, DFG-SPP 1324, August 2009.

S. Dahlke, M. Fornasier, and T. Raasch. Multilevel Preconditioning for Adaptive
Sparse Optimization. Preprint 25, DFG-SPP 1324, August 2009.



[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

S. Dereich. Multilevel Monte Carlo Algorithms for Lévy-driven SDEs with Gaussian
Correction. Preprint 26, DFG-SPP 1324, August 2009.

G. Plonka, S. Tenorth, and D. Rosca. A New Hybrid Method for Image Approx-
imation using the Easy Path Wavelet Transform. Preprint 27, DFG-SPP 1324,
October 20009.

O. Koch and C. Lubich. Dynamical Low-rank Approximation of Tensors.
Preprint 28, DFG-SPP 1324, November 2009.

E. Faou, V. Gradinaru, and C. Lubich. Computing Semi-classical Quantum Dy-
namics with Hagedorn Wavepackets. Preprint 29, DFG-SPP 1324, November 2009.

D. Conte and C. Lubich. An Error Analysis of the Multi-configuration Time-
dependent Hartree Method of Quantum Dynamics. Preprint 30, DFG-SPP 1324,
November 2009.

C. E. Powell and E. Ullmann. Preconditioning Stochastic Galerkin Saddle Point
Problems. Preprint 31, DFG-SPP 1324, November 2009.

O. G. Ernst and E. Ullmann. Stochastic Galerkin Matrices. Preprint 32, DFG-SPP
1324, November 2009.

F. Lindner and R. L. Schilling. Weak Order for the Discretization of the Stochastic
Heat Equation Driven by Impulsive Noise. Preprint 33, DFG-SPP 1324, November
20009.

L. Kdmmerer and S. Kunis. On the Stability of the Hyperbolic Cross Discrete
Fourier Transform. Preprint 34, DFG-SPP 1324, December 2009.

P. Cerejeiras, M. Ferreira, U. Kahler, and G. Teschke. Inversion of the noisy Radon
transform on SO(3) by Gabor frames and sparse recovery principles. Preprint 35,
DFG-SPP 1324, January 2010.

T. Jahnke and T. Udrescu. Solving Chemical Master Equations by Adaptive
Wavelet Compression. Preprint 36, DFG-SPP 1324, January 2010.

P. Kittipoom, G. Kutyniok, and W.-Q Lim. Irregular Shearlet Frames: Geometry
and Approximation Properties. Preprint 37, DFG-SPP 1324, February 2010.

G. Kutyniok and W.-Q Lim. Compactly Supported Shearlets are Optimally Sparse.
Preprint 38, DFG-SPP 1324, February 2010.

M. Hansen and W. Sickel. Best m-Term Approximation and Tensor Products of
Sobolev and Besov Spaces — the Case of Non-compact Embeddings. Preprint 39,
DFG-SPP 1324, March 2010.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

B. Niu, F.J. Hickernell, T. Miiller-Gronbach, and K. Ritter. Deterministic Multi-
level Algorithms for Infinite-dimensional Integration on RY. Preprint 40, DFG-SPP
1324, March 2010.

P. Kittipoom, G. Kutyniok, and W.-Q Lim. Construction of Compactly Supported
Shearlet Frames. Preprint 41, DFG-SPP 1324, March 2010.

C. Bender and J. Steiner. Error Criteria for Numerical Solutions of
Backward SDEs. Preprint 42, DFG-SPP 1324, April 2010.

L. Grasedyck. Polynomial Approximation in Hierarchical Tucker Format by Vector-
Tensorization. Preprint 43, DFG-SPP 1324, April 2010.

M. Hansen und W. Sickel. Best m-Term Approximation and Sobolev-Besov Spaces
of Dominating Mixed Smoothness - the Case of Compact Embeddings. Preprint 44,
DFG-SPP 1324, April 2010.

P. Binev, W. Dahmen, and P. Lamby. Fast High-Dimensional Approximation with
Sparse Occupancy Trees. Preprint 45, DFG-SPP 1324, May 2010.

J. Ballani and L. Grasedyck. A Projection Method to Solve Linear Systems in
Tensor Format. Preprint 46, DFG-SPP 1324, May 2010.

P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk.
Convergence Rates for Greedy Algorithms in Reduced Basis Methods. Preprint 47,
DFG-SPP 1324, May 2010.

S. Kestler and K. Urban. Adaptive Wavelet Methods on Unbounded Domains.
Preprint 48, DFG-SPP 1324, June 2010.

H. Yserentant. The Mixed Regularity of Electronic Wave Functions Multiplied by
Explicit Correlation Factors. Preprint 49, DFG-SPP 1324, June 2010.

H. Yserentant. On the Complexity of the Electronic Schrodinger Equation.
Preprint 50, DFG-SPP 1324, June 2010.

M. Guillemard and A. Iske. Curvature Analysis of Frequency Modulated Manifolds
in Dimensionality Reduction. Preprint 51, DFG-SPP 1324, June 2010.

E. Herrholz and G. Teschke. Compressive Sensing Principles and Iterative Sparse
Recovery for Inverse and Ill-Posed Problems. Preprint 52, DFG-SPP 1324, July
2010.

L. Kammerer, S. Kunis, and D. Potts. Interpolation Lattices for Hyperbolic Cross
Trigonometric Polynomials. Preprint 53, DFG-SPP 1324, July 2010.



[54] G. Kutyniok and W.-Q Lim. Shearlets on Bounded Domains. Preprint 54, DFG-
SPP 1324, July 2010.

[55] A. Zeiser. Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order
with Applications to the Electronic Schrodinger Equation. Preprint 55, DFG-SPP
1324, July 2010.



