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1 Introduction

Approximating multi-variate functions defined on bounded domains inN dimensions
using classical discretization schemes is infeasible for higher dimensions: the number
of grid points grows exponentially in the number of dimensions, i.e.nN , wheren is the
number of grid points in one dimension. One possible way to overcome these difficul-
ties is to use sparse grids or hyperbolic cross spaces where the complexity reduces to
n(logn)N−1 or evenn. Such approximation spaces go back to [3, 40] and were studied
for example in [29, 14, 48, 41, 15, 30, 22, 23, 38, 25], see alsothe survey [7] and ref-
erences therein. Provided that the function possesses in a certain sense more regularity
the approximation rate is independent of or up to logarithmic factors independent of
the number of dimensions. In particular the functions have to be a member of so-called
spaces of dominating mixed smoothness which were first introduced by Nikol′skĭı and
studied by several authors, see the monographs [29, 2, 35] and references therein, as
well as the more recent work [43].

Approximating multi-variate functions defined on thewhole spacecomplicates the sit-
uation. In order to obtain an approximation in a finite numberof terms one needs
further information on the decay of the functions. One possible way to describe such
a behavior is to introduce weighted spaces. Combining both requirements leads to
weighted Sobolev spaces of mixed order.

In the present work we study the approximation of functions in such spaces by anisotropic
tensor products of wavelets. In particular we are interested in the approximation rate
which can be achieved. Similar results have been obtained in[24], where only the func-
tion itself is square integrable with respect to a polynomial weight function. Approx-
imation results in unweighted Besov-Sobolev-Triebel-Lizorkin spaces of dominating
mixed order defined on the whole space have been studied in [25].

In our approach we construct wavelet bases in higher dimensions by building an-
isotropic tensor-products of a biorthogonal and compactlysupported multi-resolution
analysis [28] in one or a few variables, see also [23] in the case of a bounded domain.
As wavelets one may take Daubechies wavelets [12], the biorthogonal wavelet bases of
B-splines [11], as well as orthogonal and piecewise polynomial multi-wavelets [17].

As a central result of this article we characterize weightedSobolev spaces of mixed
order in terms of wavelet coefficients. We restrict ourselves to weight functions which
do not vary too much on any cube of fixed size, including weightfunctions of exponen-
tial [36] and polynomial [24] type. In fact these functions are a subset ofAloc

1 -weights
[34]. As a main tool we use localized norms, see for example [42]. A similar result for
unweighted Sobolev spaces on a bounded domain has been obtained in [22, 23]. For
the more general class of Besov-Sobolev-Triebel-Lizorkinspaces a characterization in
terms of wavelets has been studied in the case of unweighted spaces with dominat-
ing mixed smoothness in [43] and for weighted spaces in [26],but only in the case of
isotropic regularity.

With the help of the equivalent discrete norm we are able to identify potentially im-
portant contributions in the wavelet decomposition and aretherefore able to construct
efficient approximations, see also [23, 25]. In order to obtain quantitative results on the
approximation rate we restrict ourselves to a class of weight functions of exponential
type. Finally we arrive at a sparse grid in both the spatial coordinate as well as the
level of the wavelet. Under certain regularity assumptionsone obtains approximation
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rates which are independent of the number of dimensions. However the constant in
the error estimate may depend exponentially on the number ofdimensions, which ren-
ders the method applicable only for a moderate number of dimensions. In these cases,
due to the stability and the compact support of the basis functions, these spaces are a
good choice as ansatz spaces for a Galerkin discretization of corresponding operator
equations.

Our motivation and main application is the electronic Schrödinger equation, see for
example [44] and references therein for an introduction to the subject. Interpreting the
regularity result in terms of exponentially weighted Sobolev spaces of mixed order, we
can show that the wave functions of bounded states can indeedbe approximated at a
rate which is independent of the number of electrons. However, again, the constants
show an exponential dependence on the number of electrons limiting the applicability
of this discretization to the case of small atoms or molecules.

We will proceed along the following line. In Section 2 we willdefine weighted Sobolev
spaces of mixed order and construct localized norms. In Section 3 the norm equiva-
lence between the weighted Sobolev spaces of mixed order anda weighted sum of
wavelet coefficients is derived. Based on this norm equivalence convergence rates in
the case of an exponential weight functions are derived in Section 4. In the last Section
5 the bounded states of the electronic Schrödinger equationare approximated on an
antisymmetrized sparse grid; finally numerical results forthe helium ground state are
presented.

2 Weighted Sobolev spaces of mixed order

In this section weighted Sobolev spaces of mixed order are defined. Classically weighted
Sobolev spaces occur for example in the analysis of ellipticpartial differential equa-
tions, see for example [27]. In our case, however, we concentrate on functions defined
on the whole space, where the weight quantifies the decay property of the function and
its derivatives. Such spaces are well known and can also be generalized to weighted
Besov- or Triebel-Lizorkin spaces [34]. However isotropicregularity, as treated in
the latter work, does not lead to efficient approximations ofmulti-variate functions.
For that reason we combine the idea of weighted spaces with spaces of dominating
mixed smoothness that occur naturally in the approximationof multi-variate functions
on sparse grids, see for example [29, 2, 35, 43] for the treatment of spaces of dominat-
ing mixed smoothness, as well as the survey [7] and references therein. Such spaces
were already considered in [24] for the approximation of bounded states of the elec-
tronic Schrödinger equation. In addition to the existence of mixed derivatives the func-
tion was supposed to be bounded with respect to anL2-space with polynomial weights.

In our case we define weighted Sobolev spaces of mixed order over a more general
class of weight functions, including weights of exponential type. More specifically we
consider a subset ofAloc

1 norms defined in [34]. Besides the function itself also its
derivatives up to the given order should also be bounded withrespect to the weighted
L2-norm. In our definition we are guided by the regularity results for the bounded
states of the electronic Schrödinger equation proved recently in [44], which can be
interpreted in terms of these spaces, see Section 5.

Following the definition we construct an equivalent norm on these spaces. Thereby we
use the so called localization principle, see for example [42]. As a consequence the
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weighted norm can be written equivalently as a weighted sum of unweighted norms on
overlapping cubes. Later in Section 3 this will be the key forthe characterization of
these spaces in terms of weighted wavelet coefficients.

2.1 Definition

In the following we define the weighted Sobolev space of mixedorder and specify
the class of weight functions we will investigate. Though wewill later only consider
functions defined on the whole space we allow for an arbitraryopen subsetΩ ⊂ R

dN .
This is because in Subsection 2.2 we will need the corresponding unweighted spaces
on cubes for the formulation of the equivalent localized norm. For the definition of
spaces of fractional order we use the real interpolation theory first given in [32]. In
Appendix A we assembled the main definition as well as references.

In view of the main application, the regularity of bounded states in the electronic
Schrödinger equation (Section 5), we partition the coordinate~x ∈ R

dN in d-tupels,
i.e.

~x = (x1, . . . ,xN ), xi ∈ R
d for i = 1, . . . , N.

In the case mentioned this reflects the fact thatxi is the position of thei-th electron
in a three dimensional space (d = 3). In our notationN -dimensional variables are
marked with an arrow whiled-dimensional variables are written in bold. Furthermore
we denote by| · |p theℓp norm, where1 ≤ p ≤ ∞.

Definition 1. Let d,N ≥ 1, m, k ∈ N, Ω ⊂ R
dN be an open subset andw a positive

weight function onΩ. Define the setAk,m ⊂ (Nd)N of multi-indices as

Ak,m =
{
~αmix + ~αiso

∣
∣ max

i=1,...,N
|αmix,i|1 ≤ k,

N∑

i=1

|αiso,i|1 ≤ m
}
. (1)

The weighted Sobolev space of mixed orderHk,m
mix (Ω, w) is given by the set of all

measurable functionsu such that〈u, u〉mix,w,k,m,Ω is finite where

〈u, v〉mix,w,k,m,Ω :=
∑

~α∈Ak,m

∫

Ω

∂~αu(~x)∂~αv(~x) w(~x) d~x.

Thereby〈·, ·〉mix,w,k,m,Ω defines an inner product onHk,m
mix (Ω, w), with associated

norm ‖ · ‖mix,w,k,m,Ω. For fractional order of smoothnesss ≥ 0 define the space
through interpolation theory

Hs,m
mix (Ω, w) =

[

H0,m
mix (Ω, w), H

k,m
mix (Ω, w)

]

θ,2
k = ⌈s⌉, θ = s/k.

In this definition, classical unweighted Sobolev spacesHs(Ω), Ω ⊂ R
d, are included

also for fractionals (takeN = 1 andm = 0). In addition one may interpolate once
more to obtain mixed spaces with fractional order of isotropic smoothness.

Classically one introduces unweighted Sobolev spaces of mixed order as the intersec-
tion of tensor product spaces [22, 23], i.e.

Hs,m
mix

(
(Rd)N

)
=

N⋂

i=1

Hm·~ei+s·~1((Rd)N
)
, H

~t
(
(Rd)N

)
=

N⊗

i=1

Hti(Rd) (2)
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where~ei is thei-th unit vector,~1 = (1, . . . , 1) ∈ R
N . and the tensor product of Hilbert

spaces is used [33]. In Appendix A, Corollary 19, it is shown that both definitions are
equivalent.

As already mentioned we will need the weighted spaces only inthe case of functions
defined on the whole spaceRdN . Furthermore we restrict ourselves to the following
class of weight functions.

Definition 2. Let d,N ≥ 1 andw be a positive weight function onRdN . Thenw is
calledlocally slowly varyingif there exists a constantCw such that for all~x, ~y ∈ R

dN

with |~x− ~y|∞ ≤ 1

w(~y) ≤ Cw w(~x). (3)

In particular the point evaluation ofw should be well defined.

For weight function of this type the maximum value inside a cube is bounded by a
multiple of the value at the center. Moreover a short calculation directly shows that this
is also true for the minimum; more precisely

C−1
w w(~x) ≤ w(~y) ≤ Cww(~x)

for all ~x, ~y ∈ R
dN such that|~x− ~y|∞ ≤ 1. Furthermore if one applies the inequality

recursively one can proof the existence of aγ dependent onCw such that

w(~x) . eγ|~x|∞

for all ~x ∈ R
dN . Therefore the slowly varying weight functions can only grow expo-

nentially. These kind of functions are a special case ofAloc
1 weights defined in [34].

2.2 Localized norm

In the following we will derive an equivalent norm on the weighted Sobolev spaces
of mixed order. This norm is a weighted sum of unweighted Sobolev norms of mixed
order on cubes, where the cubes cover the whole space. This kind of decomposition is
called the localization principle, see for example [42]. Inorder to prove the equivalence
we rely on the properties of the slowly varying weight function, see Definition 2.

First let us define the localized norm on the weighted Sobolevspaces of mixed order.

Definition 3. Let d,N ≥ 1, m ∈ N, s ≥ 0 be given and letw be a locally slowly
varying weight function onRdN . Define for~ℓ ∈ Z

dN the cubes

Q~ℓ =
{
~x ∈ R

dN
∣
∣ |~x−~ℓ|∞ < 1

}

centered at~ℓ and the norm

‖u‖2mix,w,s,m,loc =
∑

~ℓ∈ZdN

w~ℓ ‖u‖2mix,s,m,Q~ℓ
, w~ℓ = w(~ℓ)

for smooth enough functionsu : RdN → R.
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Now for integer order spaces it is easy to see that the so defined norm is equivalent to
the original one.

Lemma 4. Let d,N ≥ 1, m, k ∈ N andw be a locally slowly varying function on
R

dN . Then the norm equivalence

C−1
w ‖u‖2mix,w,k,m . ‖u‖2mix,w,k,m,loc . Cw ‖u‖2mix,w,k,m.

holds in the spaceHk,m
mix

(
(Rd)N , w

)
, whereCw is defined in Equation(3). The con-

stants are thereby independent ofCw andu.

Proof. In the first step we prove the left inequality. Since the cubes
{
Q~ℓ | ~ℓ ∈ Z

dN
}

cover the spaceRdN

‖u‖2mix,w,k,m ≤
∑

~ℓ∈ZdN

∑

~α∈Ak,m

∫

Q~ℓ

|D~αu(~x)|2w(~x) d~x.

Using the Hölder inequality and the properties of the weightfunction shows the left
inequality. In order to show the right inequality note that for all multi-indices~α ∈
Ak,m

∑

~ℓ∈ZdN

w~ℓ

∫

Q~ℓ

|D~αu(~x)|2 d~x =

∫

RdN

|D~αu(~x)|2
[ ∑

~ℓ:~x∈Q~ℓ

w~ℓ

]
d~x.

Each summand in the square bracket can be estimated byw~ℓ ≤ Cw w(~x), since~x and
~ℓ differ in the | · |∞-norm at most by one. Summing up the multi-indices proves the
assertion.

To show that also for fractionals both norms are equivalent one uses interpolation
theory, see Appendix A.

Theorem 5. Let d,N ≥ 1, m ∈ N, s ≥ 0 andw be a locally slowly varying weight
function onRdN . Then the norm equivalence

C−1
w ‖u‖2mix,w,s,m . ‖u‖2mix,w,s,m,loc . Cw ‖u‖2mix,w,s,m

holds for functionsu in Hs,m
mix

(
(Rd)N , w

)
, whereCw is defined in Equation(3). The

constants are thereby independent ofCw andu.

Proof. In the case ofs ∈ N Lemma 4 shows the assertion. Otherwise letk = ⌈s⌉,
i.e. the smallest integer bigger or equals, andθ = s/k. TheK-functionals

K2(t, u) = inf
v∈Hk,m

mix

(
(Rd)N ,w

) ‖u− v‖2mix,w,0,m + t2 ‖v‖2mix,w,k,m

K2(t, u,Q~ℓ) = inf
v∈Hk,m

mix
(Q~ℓ

)
‖u− v‖2mix,0,m,Q~ℓ

+ t2 ‖v‖2mix,k,m,Q~ℓ
.

are central in the proof. The firstK-functional is used for constructing the norms on
Hs,m

mix

(
(Rd)N , w

)
defined on the whole spaceRdN . The secondK-functional leads to

unweighted norms on the spacesHs,m
mix (Q~ℓ) defined on the cubesQ~ℓ, which will be

used for the localized norm.
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In the first part of the proof we show the right inequality. Forall t ≥ 0 let v∗(t) ∈
Hk,m

mix

(
(Rd)N , w

)
be a function such that

‖u− v∗(t)‖2mix,w,0,m + t2 ‖v∗(t)‖2mix,w,k,m ≤ 2K2(t, u). (4)

It follows that

‖u‖2mix,w,s,m,loc =
∑

~ℓ∈ZdN

w~ℓ

∫ ∞

0

t−1−2θK2(t, u,Q~ℓ) dt

≤
∑

~ℓ∈ZdN

w~ℓ

∫ ∞

0

t−1−2θ
[
‖u− v∗(t)‖2mix,0,m,Q~ℓ

+ t2 ‖v∗(t)‖2mix,k,m,Q~ℓ

]
dt.

Now due to the Theorem of Monotone Convergence

‖u‖2mix,w,s,m,loc ≤
∫ ∞

0

t−1−2θ
[
‖u− v∗(t)‖2mix,w,0,m,loc + t2 ‖v∗(t)‖2mix,w,k,m,loc

]
dt

. Cw

∫ ∞

0

t−1−2θ
[
‖u− v∗(t)‖2mix,w,0,m + t2 ‖v∗(t)‖2mix,w,k,m

]
dt,

where in the second step the norm equivalence of Lemma 4 was used. Using Equation
(4) shows the first assertion.

In the second part we show the left inequality. For that purpose letv∗~ℓ (t) ∈ Hk,m
mix (Q~ℓ)

be given for all~ℓ ∈ Z
dN and allt > 0 such that

‖u− v∗~ℓ (t)‖
2
mix,0,m,Q~ℓ

+ t2‖v∗~ℓ(t)‖
2
mix,k,m,Q~ℓ

≤ 2K2(t, u,Q~ℓ). (5)

Furthermore letϕ be an infinitely differentiable function such that

ϕ~ℓ := ϕ(· −~ℓ), supp(ϕ~ℓ) ⊂ Q~ℓ,
~ℓ ∈ Z

dN

forms a partition of unity. The function

v∗(t) :=
∑

~ℓ∈ZdN

ϕ~ℓv
∗
~ℓ
(t)

is an element ofHk,m
mix

(
(Rd)N , w

)
, which we will show in the following. Using the

properties of the partition of unity and the locally slowly varying weight function gives

‖v∗(t)‖2mix,w,k,m .
∑

~ℓ∈ZdN

‖ϕ~ℓv∗~ℓ (t)‖
2
mix,w,k,m .

∑

~ℓ∈ZdN

w~ℓ‖v∗~ℓ (t)‖
2
mix,k,m,Q~ℓ

. (6)

Here the boundedness ofϕ and its derivatives was used. Each summand can be esti-
mated by

t2 ‖v∗~ℓ (t)‖
2
mix,k,m,Q~ℓ

≤ 2K2(t, u,Q~ℓ) = 4θt2θ
∫ ∞

t

τ−1−2θK2(t, u,Q~ℓ) dτ

≤ 4θt2θ
∫ ∞

0

τ−1−2θK2(τ, u,Q~ℓ) dτ = 4θt2θ‖u‖2mix,s,m,Q~ℓ

due to the monotonicity of theK-functional. Inserting this inequality in Equation (6)
gives the estimate‖v∗(t)‖2mix,w,k,m . ‖u‖2mix,w,s,m,loc, where the constant depends
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on t. Using the estimate‖u‖2mix,w,s,m,loc . Cw‖u‖2mix,w,s,m of the first part of the

proof shows thatv∗(t) is an element ofHk,m
mix

(
(Rd)N , w

)
for all t > 0. Therefore one

can usev∗(t) to estimate theK-functional:

K2(t, u) ≤ ‖u− v∗(t)‖2mix,w,0,m + t2‖v∗(t)‖2mix,w,k,m

.
∑

~ℓ∈ZdN

[∥
∥ϕ~ℓ

(
u− v∗~ℓ (t)

)∥
∥
2

mix,w,0,m
+ t2‖ϕ~ℓv∗~ℓ (t)‖

2
mix,w,k,m

]

,

where we again used the properties of the partition of unity.Now sincesupp(ϕ~ℓ) ⊂
Q~ℓ,

K2(t, u) . Cw

∑

~ℓ∈ZdN

w~ℓ

[
‖u− v∗~ℓ (t))‖

2
mix,0,m,Q~ℓ

+ t2‖v∗~ℓ (t)‖
2
mix,k,m,Q~ℓ

]

. Cw

∑

~ℓ∈ZdN

w~ℓ K
2(t, u,Q~ℓ),

where in the last inequality Equation (5) was used. Hence

‖u‖2mix,w,s,m . Cw

∫ ∞

0

t−1−2θ
[ ∑

~ℓ∈ZdN

w~ℓ K
2(t, u,Q~ℓ)

]
dt.

Finally using the Theorem of Monotone Convergence gives theassertion.

3 Wavelet characterization of weighted Sobolev spaces
of mixed order

In this section we characterize weighted Sobolev spaces of mixed order by a weighted
sum of wavelet coefficients. These norm equivalences are later the key for constructing
efficient approximations, see Section 4. Due to their localization in space and fre-
quency wavelets are a suitable tool for the study of functionspaces, see for example
[9, 13] for an introduction to wavelets. Wavelets constitute a stable basis for a wide
variety of function spaces, comprising isotropic Sobolev and Besov spaces (see for
example [9]), weighted Besov- and Triebel-Lizorkin spaces[26], as well as Sobolev
[30, 22, 23] and Besov-Triebel-Lizorkin spaces [43] of mixed order. In this work we
study the case of Hilbert spaces with anisotropic smoothness as in [23] combined with
weighted norms [26]. However we restrict ourselves to the simpler case of Sobolev
spaces and weights given in Definition 2. It remains for future work to extend the ob-
tained results to Besov and Triebel-Lizorkin spaces of mixed order and more general
weights.

3.1 Wavelet bases

In this part we construct an anisotropic basis for thedN -dimensional spaces by ten-
sorizing compactly supported biorthogonal wavelets ind dimensions. Ford ≥ 1 as-
sume that two sets of functions inL2(Rd)

Ψ =
{
ψλ | λ ∈ ∇

}
, Ψ̃ =

{
ψ̃λ | λ ∈ ∇

}
.
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are given, where∇ is a suitable set of indices. The elementsψλ ∈ Ψ andψ̃λ ∈ Ψ̃ are
calledprimal anddual wavelets, respectively. The sets are assumed to be biorthogonal
in L2(Rd), i.e.

〈ψλ, ψ̃λ′〉L2(Rd) = δλ,λ′ λ, λ′ ∈ ∇.

We assume that the multi-indicesλ = (ε, j,k) ∈ ∇ consists of three parts:ε ∈
{0, 1, . . . , nε} specifies thetypeof function,j ∈ N the levelandk ∈ Z

d the transla-
tion. Each functionψλ is then given by

ψλ(x) = 2jd/2ψ(ε)(2jx− k), λ = (ε, j,k)

and analogously also for̃ψλ. In this way classical constructions like Daubechies
wavelets [12], biorthogonal wavelets [11], as well as multi-wavelets like [17] are in-
cluded.

Furthermore the wavelets are assumed to be uniformly compactly supported, i.e. there
exists a constantξ such that for allε ∈ {0, 1, . . . , nε}

suppψ(ε), supp ψ̃(ε) ⊂ Bξ(0), (7)

whereBr(x) denotes a ball centered inx with radiusr. Consequently the support of
the waveletψλ, λ = (ε, j,k), is contained in a ball centered atxλ = 2−jk with radius
2−jξ. The termxλ = 2−jk is called thecenterof the wavelet.

In addition we assume thatΨ is a stable basis for a whole range of Sobolev spaces.
More precisely we assume that there exits a constantτ > 0 such that for all0 ≤ s < τ
the norm equivalence

‖u‖2s ∼
∑

λ∈∇
22sj(λ) |uλ|2, uλ = 〈ψ̃λ, u〉L2(Rd) (8)

holds for allu ∈ Hs(Rd). Herej(λ) gives the levelj of a multi indexλ = (ε, j,k).

The existence of such bases is well known, see for example [9]. Especially the bases
mentioned above, i.e. Daubechies wavelets [12], biorthogonal wavelets [11] and the
orthogonal multi-wavelets based onB-splines [17], fulfill the prerequisites.

Now given such a set of biorthogonal bases ind variables we construct a biorthogonal
set of bases fordN variables. For that purpose define a multi-index~λ = (λ1, . . . , λN ) ∈
∇N and the corresponding functions

ψ~λ =

N⊗

i=1

ψλi
, ψ̃~λ =

N⊗

i=1

ψ̃λi

through the tensor product. Then the sets

Ψ =
{
ψ~λ | ~λ ∈ ∇N

}
, Ψ̃ =

{
ψ̃~λ | ~λ ∈ ∇N

}

are biorthogonal bases inL2
(
(Rd)N

)
as can be readily shown. Now the level of a

waveletψ~λ is given by a vector~j(~λ) =
(
j(λ1), . . . , j(λN )

)
. Furthermore define the

centerof the wavelet by~x~λ =
(
xλ1

, . . . ,xλN

)
.
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3.2 Norm equivalence

Having fixed the prerequisites for the wavelet basis indN variables we will show that
these bases are stable for a wide range of weighted Sobolev spaces of mixed order.
As a first step we will show that the wavelet coefficients characterize the unweighted
Sobolev spaces of mixed order. For that purpose we proceed along the lines of [23]
where the case of a bounded domain was studied. The key to the proof is the fact
that the unweighted Sobolev spaces of mixed order, Definition 1, can be written as
an intersection of tensor product spaces, see Corollary 19.With this result one can
proceed as in [23] which leads to the following result.

Theorem 6. Letm ∈ N ands ≥ 0 be given such thatm+ s < τ , whereτ is the upper
bound of the norm equivalence(8). For ease of notation define

κmix(~λ) = 2|
~j(~λ)|1 , κiso(~λ) = 2|

~j(~λ)|∞ , κs,m(~λ) = κsmix(
~λ) · κmiso(~λ)

and the discrete norm

|||u|||2mix,s,m =
∑

~λ∈∇N

κ2s,m(~λ) |u~λ|2, u~λ = 〈ψ̃~λ, u〉L2(RdN ).

Then the norm equivalence‖u‖mix,s,m ∼ |||u|||mix,s,m holds in the case of unweighted
Sobolev spaceHs,m

mix

(
(Rd)N

)
of mixed order.

Note that in general the constants in the norm equivalence‖ · ‖mix,s,m ∼ ||| · |||mix,s,m

depend exponentially on the number of dimensions. The factorsκmix/iso correspond to
the mixed/isotropic regularity, see also the index setAk,m in Equation (1). In a second
step we prove the case of weighted spaces by reducing it to thecase of unweighted
spaces. This is achieved by using the localized norm of Subsection 2.2 and the compact
support of both the primal and dual wavelet.

Theorem 7. Let d,N ≥ 1, m ∈ N and s ≥ 0 such thatm + s < τ , whereτ is
the upper bound of the norm equivalence(8). Furthermore letw be a locally slowly
varying weight function onRdN . Define the discrete norm

|||u|||2mix,w,s,m =
∑

~λ∈∇N

w(~x~λ)κ
2
s,m(~λ) |u~λ|2, u~λ = 〈ψ̃~λ, u〉L2(RdN ).

Then the norm equivalence inHs,m
mix

(
(Rd)N , w

)

C
−nξ
w ‖u‖2mix,w,s,m . |||u|||2mix,w,s,m . C

nξ
w ‖u‖2mix,w,s,m (9)

holds. Herenξ = ⌈ξ⌉+ 4, whereξ determines the size of the support of the wavelets,
see Equation(7).

Proof. In the first part of the proof we show the left inequality. For that purpose define

∇~ℓ =
{
~λ ∈ ∇N

∣
∣ supp(ψ~λ) ∩Q~ℓ 6= ∅

}
, ~ℓ ∈ Z

dN ,

i.e. the set of all indices, such that the support of the corresponding wavelet intersects
the cubeQ~ℓ. Then

‖u‖mix,s,m,Q~ℓ
=

∥
∥
∥

∑

~λ∈∇~ℓ

u~λψ~λ

∥
∥
∥
mix,s,m,Q~ℓ

≤
∥
∥
∥

∑

~λ∈∇~ℓ

u~λψ~λ

∥
∥
∥
mix,s,m

,

10



where in the last step we used the fact that also the mixed normof fractional order
grows if the domain is increased. Using the norm equivalencefrom Theorem 6 gives

‖u‖2mix,s,m,Q~ℓ
.

∑

~λ∈∇~ℓ

κ2s,m(~λ) |u~λ|2.

Summing up all translations~ℓ ∈ Z
dN with the appropriate weightsw~ℓ leads to

‖u‖2mix,w,s,m,loc .
∑

~λ∈∇N

[ ∑

~ℓ:~λ∈∇~ℓ

w~ℓ

]
κ2s,m(~λ) |u~λ|2.

A fixed wavelet index~λ ∈ ∇N is contained only in those index sets∇~ℓ, where|~x~λ −
~ℓ|∞ ≤ ξ + 1. Now due to the locally slowly varying weight function it follows that

‖u‖2mix,w,s,m,loc . C⌈ξ⌉+1
w

∑

~λ∈∇N

w(~x~λ) κ
2
s,m(~λ) |u~λ|2.

Using the norm equivalence of Theorem 5 and takingC
⌈ξ⌉+4
w instead ofC⌈ξ⌉+2

w for
reasons of symmetry (Cw ≥ 1) one obtains the left inequality.

In the second part we prove the right inequality. Central to the proof is the fact that
the projectors〈ψ̃~λ, u〉L2(RdN ) act only locally due to the compact support of the dual
wavelets. Define by

∇̃~ℓ =
{
~λ ∈ ∇N

∣
∣ ~x~λ ∈ Q~ℓ

}
, ~ℓ ∈ Z

dN

the set of all indices, such that the center~x~λ of the corresponding wavelet is contained
in the cubeQ~ℓ. Based on these sets define the union of all supports of the corresponding
dual wavelets, i.e.

Q̃~ℓ =
⋃{

supp ψ̃~λ

∣
∣ ~λ ∈ ∇̃~ℓ

}
.

Using the properties of the weight function gives

∑

~λ∈∇̃~ℓ

w(~x~λ) κ
2
s,m(~λ) |u~λ|2 . Cw

∑

~λ∈∇̃~ℓ

w~ℓ κ
2
s,m(~λ) |u~λ|2, (10)

where the coefficients are defined byu~λ = 〈ψ̃~λ, u〉L2(RdN ). Since the dual wavelets

ψ̃~λ have compact support, the coefficientsu~λ for ~λ ∈ ∇̃~ℓ only depend on the function
values ofu on Q̃~ℓ. Now construct an infinitely continuous differentiable functionϕ
such that

ϕ(~x) =

{

1 ~x ∈ Q̃~0

0 inf~y∈Q̃~0
|~x− ~y|∞ ≥ 1

and define the corresponding translationsϕ~ℓ = ϕ(· − ~ℓ) for ~ℓ ∈ Z
dN . Sinceϕ~ℓ is

equal to one oñQ~ℓ

u~λ = 〈ψ̃~λ, ϕ~ℓ u〉L2(RdN ), ~λ ∈ ∇̃~ℓ

11



for all ~ℓ ∈ Z
dN . Inserting this into Equation (10) gives

∑

~λ∈∇̃~ℓ

w(~x~λ) κ
2
s,m(~λ) |u~λ|2 ≤ Cw w~ℓ

∑

~λ∈∇N

κ2s,m(~λ) |〈ψ̃~λ, ϕ~ℓ u〉L2(RdN )|2,

where the sum has already been extended to all indices~λ ∈ ∇N . Now using the norm
equivalence for the unweighted case, see Theorem 6, it follows

∑

~λ∈∇̃~ℓ

w(~x~λ) κ
2
s,m(~λ) |u~λ|2 . Cw w~ℓ ‖ϕ~ℓ u‖2mix,s,m . Cw w~ℓ ‖u‖2mix,s,m,suppϕ~ℓ

,

where the Hölder inequality was used. Summing up all~ℓ ∈ Z
dN gives

∑

~λ∈∇N

w(~x~λ) κ
2
s,m(~λ)|u~λ|2 . Cw

∑

~ℓ∈ZdN

w~ℓ ‖u‖2mix,s,m,suppϕ~ℓ
.

Here we used the fact that each index~λ is contained in only finite many index sets∇̃~ℓ.
Now we coversuppϕ~ℓ with the cubesQ~ℓ and obtain

∑

~λ∈∇N

w(~x~λ) κ
2
s,m(~λ)|u~λ|2 . Cw

∑

~ℓ∈ZdN

[ ∑

~ℓ′: Q~ℓ
∩suppϕ~ℓ

′ 6=∅

w~ℓ′

]
‖u‖2mix,s,m,Q~ℓ

.

Due to definition ofϕ~ℓ, for fixed~ℓ all indices~ℓ′ contained in the sum fulfill|~ℓ− ~ℓ′|∞ ≤
ξ + 2. Hence

∑

~λ∈∇N

w(~x~λ) κ
2
s,m(~λ)|u~λ|2 . C⌈ξ⌉+3

w

∑

~ℓ∈ZdN

w~ℓ ‖u‖2mix,s,m,Q~ℓ
.

Using the norm equivalence of Theorem 5 finishes the proof.

Again, in general the constants in the norm equivalence depend exponentially on the
number of dimensions. This fact will limit the applicability of the discretization scheme
to a moderate number of dimensions.

4 Approximation results

In this section we construct approximation spaces for functions in weighted Sobolev
spaces of mixed order. In the most general setting let a pair of weighted Sobolev spaces
of mixed orderY ⊂ X be given, where

X = Hs′,m′

mix

(
(Rd)N , w′), Y = Hs,m

mix

(
(Rd)N , w)

for appropriate orders and weight functions. Given a functionu ∈ Y and a tolerance
ε > 0 we want to find an approximationuε given by a finite linear combination of
wavelets such that the error‖u − uε‖X measured with respect to the norm onX is
below ε. In particular we are interested in the rate of convergence with respect to

12



the terms needed in the linear combination of wavelets. Moreprecisely we want to
determine the asymptotic behavior of the quantities

En = inf
Vn⊂X

dimVn=n

sup
‖u‖Y =1

inf
un∈Vn

‖u− un‖X

describing the approximation error for the best linear space generated byn wavelets
for the unit ball inY . Similar results, also in the case of bestn-term approximations,
were obtained for example in [41, 15, 30, 22, 23, 25].

For the construction of corresponding approximation spaces we proceed as in [22, 23]
leading to optimized sparse grid spaces [6]. In particular we use the norm equivalence
derived in the last section to identify the important contributions.

Since the functions are defined on the whole spaceR
dN one has to assume certain

decay properties of the function in order to achieve finite dimensional approximation
spaces. In terms of weight functions,w has to increase in a certain sense more rapidly
thanw′. As a consequence we end up with sparse grid spaces where boththe level and
the center of the wavelets are restricted simultaneously. Similar approximation results
with respect to a redundant set of functions have been obtained in [24], where however
only the function itself and not its derivatives decayed in apolynomial sense; see the
end of this section for a discussion of this case.

In a first step we will construct approximation spaces for thegeneral problem. Af-
terwards we determine the rate of convergence only for a certain family of weight
functions. In view of our main example, the electronic Schrödinger equation (Section
5), we restrict ourselves to a family of weight functions of exponential type.

We begin with the definition of a general index set of wavelet coefficients for construct-
ing an approximation.

Definition 8. Let T < 1 and a functionρ : RdN → R be given. For allJ ≥ 0 define
the index set

ΛT
ρ (J) =

{
~λ ∈ ∇N

∣
∣ − ρ(~x~λ)− |~j(~λ)|1 + T |~j(~λ)|∞ ≥ −J + TJ

}
(11)

of wavelet coefficients. The corresponding spaces{ψ~λ |~λ ∈ ΛT
ρ (J)} are calledopti-

mized general sparse grid spaces.

One sees that simultaneous restrictions on both the level~j(~λ) and the position~x~λ of
the wavelet are imposed. Based on this index set we constructan approximation and
use the norm equivalence of the last section to estimate the accuracy.

Theorem 9. Let d,N ≥ 1, m,m′ ∈ N ands, s′ ≥ 0 such thats +m, s′ +m′ < τ ,
whereτ is the upper bound of the norm equivalence(8). Furthermore assume that
s − s′ > m′ −m. Letw′ andw be locally slowly varying weight functions. Given a
functionu ∈ Hs,m

mix

(
(Rd)N , w

)
define forJ ≥ 0 an approximation

uJ :=
∑

~λ∈ΛT
ρ (J)

u~λ ψ~λ, u~λ = 〈ψ̃~λ, u〉L2(RdN ),

where the parameters of the index setΛT
ρ (J), Equation(11), are given by

T =
m′ −m

s− s′
, ρ =

log2(w/w
′)

2 (s− s′)
.

13



Settingσ = (s− s′)− (m′ −m) the error can be bounded by

‖u− uJ‖mix,w′,s′,m′ . C
nξ/2
w′ C

nξ/2
w 2−σJ‖u‖mix,w,s,m

asymptotically forJ → ∞, where the constants are independent ofJ , w′ andw. Here
Cw andCw′ are the constants of the locally varying weight functionsw andw′, see
Definition 2, andnξ is defined in Theorem 7.

Proof. Using the norm equivalence from Equation (9) it follows fromthe definition of
uJ that

‖u− uJ‖2mix,w′,s′,m′ =
∥
∥

∑

~λ 6∈ΛT
ρ (J)

u~λψ~λ

∥
∥
2

mix,w′,s′,m′

. C
nξ

w′

∑

~λ6∈ΛT
ρ (J)

w′(~x~λ)κ
2
s′,m′(~λ)|u~λ|2.

Now the definition ofΛT
ρ (J) implies that

w(~x~λ)κ
2
s,m(~λ)

w′(~x~λ)κ
2
s′,m′(~λ)

≥ 22σJ , ~λ 6∈ ΛT
ρ (J).

Hence

‖u− uJ‖2mix,w′,s′,m′ . C
nξ

w′ 2
−2σJ

∑

~λ∈∇N

w(~x~λ) κ
2
s,m(~λ) |u~λ|2

Using the norm equivalence once more proves the assertion.

The theorem shows that arbitrary accuracy can be achieved provided thatJ is chosen
big enough. Note however that the index set is not universal:for a functionu ∈
Hs,m

mix

(
(Rd)N , w

)
the orders of differentiabilitys andm as well as the weight function

w enter into the definition of the index setΛT
ρ (J). In the determination of convergence

rates this fact is of no importance, whereas in applicationsone has to estimate the
corresponding parameters. However the function to be approximated is often given
implicitly as the solution of a corresponding equation. In this case one may use adaptive
methods to determine the index set for example by using adaptive wavelet methods
[10], even in high space dimensions [37]. In this way one benefits from a possibly
higher non-linear approximation rate.

Now in order to determine the approximation rate we have to relate the approximation
error to the cardinality of the index setΛT

ρ (J) as defined in the theorem. For that pur-
pose we have to specify the weight functionsw andw′. In view of our main example,
the electronic Schrödinger equation (Section 5), we restrict ourselves to a family of
weight functions of exponential type. However also for other weight functions, i.e. of
polynomial type, one can deduce approximation rates in a similar way.

Definition 10. Let d,N ≥ 1 andγ > 0. Define the weight function

wγ(~x) =
N∏

i=1

eγ|xi|2

onR
dN . Form ∈ N ands ≥ 0 the spaceHs,m

mix

(
(Rd)N , wγ

)
is calledexponentially

weighted Sobolev space of mixed order.
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It can be directly verified thatwγ is indeed a slowly varying weight function since

wγ(~y) ≤ Cγwγ(~x), Cγ = eγ
√
dN . (12)

for all ~x, ~y ∈ R
dN such that|~x − ~y|∞ ≤ 1. Note that the constantCγ depends

exponentially on the number of dimensions.

In the rest of the work we restrict ourselves to the case that both weight functionsw
andw′ are of this type. As only the quotient of both enters into the discussion we can
assume without loss of generality that the pair of subspacesis now given by

X = Hs′,m′

mix

(
(Rd)N ), Y = Hs,m

mix

(
(Rd)N , wγ).

for someγ > 0. Now for this choice the functionρ in the index setΛT
ρ (J) from

Theorem 9 is given by

ρ(~x) =
γ log2 e

2(s− s′)
ρ1(~x), ρ1(~x) :=

N∑

i=1

|xi|2. (13)

In Figure 1 forN = 2 andd = 1 the setsΛT
ρ1
(J) are sketched for the parameters

T = 0.5, 0,−1 andJ = 3, 6. There each dot corresponds to the center of a wavelet.
As J increases the region of discretization grows and as well as wavelets of finer levels
are included in the sparse grid spaces.

In order to derive approximation rates it remains to estimate the number of elements
in ΛT

ρ (J) with respect to the levelJ . We begin by proving a few preparatory results
about combinatorics.

Lemma 11. Let j ∈ N. Then

♯
{
~j ∈ N

N
∣
∣ |~j|1 = j

}
. (j + 1)N−1 (14)

where the constant is independent ofj. Furthermore for0 ≤ k ≤ j

♯
{
~j ∈ N

N
∣
∣ |~j|1 = j, |~j|∞ = k

}
. (j − k + 1)N−2 (15)

and fork ≥ 0

♯
{
~j ∈ N

N
∣
∣ |~j|1 = j, |~j|∞ ≤ j/N + k

}
. (k + 1)N−1, (16)

where the constants are independent ofj andk.

Proof. The first statement directly follows from the number of possibilities for dis-
tributingj balls intoN places, see also [7].

For the second estimate setting one entry of~j tok the rest of the entries sum up toj−k.
Using the last result it follows that there are at most. (j − k + 1)N−2 possibilities.

For the last assertion it suffices to takej as a multiple ofN . Fork = 0 all entries of~j
are equal toj/N . Now in order to fulfill |~j|∞ ≤ j/N + k one may increaseℓ entries,
1 ≤ ℓ ≤ N − 1, at most byk. The total sum of added values, at mostℓk, has to be
balanced by the remainingN − ℓ entries. Using combinatorics one may estimate the
number of elements in the set by

N−1∑

ℓ=1

(
N
ℓ

)

kℓ
(
kℓ+ (N − ℓ)− 1

(N − ℓ)− 1

)

.

N−1∑

ℓ=1

(
N
ℓ

)

kℓ (kℓ+ 1)N−ℓ−1 . (k + 1)N−1,

which finishes the proof.
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Figure 1: Sketch of the index setsΛT
ρ1
(J) for N = 2, d = 1 and the weightρ1, Equa-

tion (13), for different parametersT = 0.5, 0,−1 andJ = 3, 6. Each dot corresponds
to the center of support of a wavelet.

The constant in the last estimate, Equation (16), however depends exponentially on the
number of dimensionsN . For a discussion see the end of this section. In addition we
need the following result.

Lemma 12. Letn,m ∈ N, J ≥ 0 andα > 0. Then

⌊J⌋
∑

j=0

(j + 1)n (J − j + 1)m eαj . JneαJ (17)

for J → ∞, where the constant is independent ofJ .

Proof. For allm,n ∈ N

⌊J⌋
∑

j=0

jn (J − j)m eαj .

∫ J

0

xn (J − x)m eαx dx = 1F1(1 + n, 2 +m+ n, αJ),

where1F1 is the the Kummer confluent hypergeometric function. ForJ → ∞ the right
hand side converges tom! JneαJ [1, Equation 13.1.4]. Now expanding(j + 1) and
(J − j + 1) in Equation (17) into powers ofj and(J − j), respectively, the assertion
follows.

Finally we can estimate the cardinality of the index setΛT
ρ (J) defined in Theorem 9.
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Lemma 13. Let d,N ≥ 1, T < 1 andγ > 0. Then the number of elements in the
index setΛT

ρ (J) for ρ defined as in Equation(13) is given by

♯ΛT
ρ (J) . γ−dN







2dJ 0 < T < 1

JN−1 2dJ T = 0

2(1−T )/(1−T/N) dJ T < 0

asymptotically forJ → ∞, where the constant is independent ofJ andγ.

Proof. For a given~j ∈ N
N set j = |~j|1 andk = |~j|∞. A wavelet index~λ with

~j(~λ) = ~j is in the setΛT
ρ (J) if the center of support~x~λ satisfies

ρ1(~x~λ) ≤ RT
j,k(J), RT

j,k(J) :=
2(s− s′)

γ log2 e

[
(J − j)− T (J − k)

]
.

The cardinality of the index set
{
~λ ∈ ∇N

∣
∣~j(~λ) = ~j, ρ1(~x) ≤ RT

j,k(J))
}

can be bounded by

N∏

i=1

♯
{
λ ∈ ∇

∣
∣ j(λi) = ji, |xλi

|2 ≤ RT
j,k(J)

}
.

N∏

i=1

(
RT

j,k(J) + 1
)d

2dji .

Therefore the number of elements inΛT
ρ (J) can be estimated by

♯ΛT
ρ (J) .

∑

j,k

♯
{
~j | |~j|1 = j, |~j|∞ = k

} (
RT

j,k(J) + 1
)dN

2dj (18)

where the summation runs over appropriate indicesj andk. The caseN = 1 can be
readily shown using Lemma 12, hence from now on letN ≥ 2.

The caseT = 0: Using Equation (14) gives

♯Λ0
ρ(J) .

⌊J⌋
∑

j=0

(j + 1)N−1 γ−dN (J − j + 1)dN 2dj . γ−dN JN−12dJ ,

where in the second step Lemma 12 was applied.

The case0 < T < 1: Sinceρ ≥ 0 it follows from Equation (11) that the summation
indicesj, k in Equation (18) are restricted by

0 ≤ j ≤ J and max
(
J − J − j

T
, j/N

)
≤ k ≤ j.

Now in the lower bound ofk the first term in the maximum is active if

j ≥ 1− T

1− T/N
J = J̃ .

We split the summation in Equation (18) according to

⌈J̃⌉−1
∑

j=0

j
∑

k=⌈j/N⌉
+

⌊J⌋
∑

j=⌈J̃⌉

j
∑

k=⌈J−(J−j)/T⌉
.
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Based on Equation (15) and Lemma 12 we crudely estimate the first sum by

.

⌈J̃⌉−1
∑

j=0

j
∑

k=⌈j/N⌉
(j − k + 1)N−2 γ−dN (J − j + 1)dN2dj . γ−dN J (d+1)N2dJ̃

and finally by. γ−dN2dJ sinceJ > J̃ . Here we boundedRT
j,k(J) . γ−1 (J − j).

For the second sum

⌊J⌋
∑

j=⌈J̃⌉

j
∑

k=⌈J−(J−j)/T⌉
(j − k + 1)N−2 γ−dN (J − j + 1)dN2dj

we use a finer estimate for the sum overk:

j
∑

k=⌈J−(J−j)/T⌉
(j − k + 1)N−2 .

[

j −
(
J − J − j

T

)
+ 1

]N−1

. (J − j + 1)N−1.

Applying Lemma 12 proves the second case.

The caseT < 0: In this case the summation indices in Equation (18) are restricted by

0 ≤ j ≤ 1− T

1− T/N
J =: J̄ , j/N ≤ k ≤ min

(
j, J − J − j

T

)
.

In the upper bound ofk the second term in the minimum is active ifj ≥ J . Now the
summation over the indicesj andk in Equation (18) is split according to

⌈J⌉−1
∑

j=0

j
∑

k=⌈j/N⌉
+

⌊J̄⌋
∑

j=⌈J⌉

⌊J−(J−j)/T⌋
∑

k=⌈j/N⌉
.

Proceeding as in the case0 < T < 1 the first sum can be bounded by2dJ̄ sinceJ̄ > J .
In the second sum the indexk is restricted by

j

N
≤ k ≤ J − J − j

T
=

j

N
+ (J̄ − j)

( 1

N
− 1

T

)

.

Using Equation (16) the second sum can therefore be bounded by

.

⌊J̄⌋
∑

j=⌈J⌉

⌊J−(J−j)/T⌋
∑

k=⌈j/N⌉
(J̄ − j + 1)N−1 γ−dN

[
(J − j)− T (J − k) + 1

]dN
2dj.

The summation overk gives

⌊J−(J−j)/T⌋
∑

k=⌈j/N⌉

[
(J − j)− T (J − k) + 1

]dN
.

[
(J − j)− T (J − j/N) + 1

]dN+1

. (J̄ − j + 1)dN+1.

Applying Lemma 12 once more finishes the proof.

Combining the error estimate and the bound on the number of degrees of freedom we
finally can evaluate the approximation rate.
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Theorem 14. Letd,N ≥ 1, γ > 0,m,m′ ∈ N ands′, s ≥ 0 such thats′+m′, s+m <
τ , whereτ is the upper bound of the norm equivalence(8). Furthermore assume that
s − s′ > m′ − m. Given a functionu ∈ Hs,m

mix

(
(Rd)N , wγ

)
for eachε > 0 there

exists a finite linear combinationuε of functions{ψ~λ | ~λ ∈ ∇N} of the form given in
Theorem 9 such that

‖u− uε‖mix,s′,m′ ≤ ε ‖u‖mix,wγ ,s,m. (19)

Set

σ = (s− s′)− (m′ −m), β =
1− T

1− T/N
, T =

m′ −m

s− s′
.

Then asymptotically the number of summands inuε can be bounded by

♯uε . γ−dN







C
dnξ/(2σ)
γ ε−d/σ m′ > m

C
dnξ/(2σ)
γ | log ε|N−1 ε−d/σ m′ = m

C
βdnξ/(2σ)
γ ε−βd/σ m′ < m

for ε → 0, where the constants are independent ofε and γ. Herenξ is defined in
Theorem 7 andCγ in Equation(12).

Proof. Theorem 9 applied to the present situation gives an error bound

‖u− uJ‖mix,s′,m′ . C
nξ/2
γ 2−σJ‖u‖mix,wγ ,s,m.

Denote byc the constant in the inequality which is a multiple ofCnξ/2
γ . Now letuε =

uJ with J = (− log2 ε+ log2 c)/σ. Then Equation (19) is fulfilled and the number of
elements can then be estimated using Lemma 13 which shows theassertion.

Solving for the degrees of freedomn gives the estimate

‖u− un‖mix,s,m .







n−σ/d m′ > m

(logn)σ(N−1) · n−σ/d m′ = m

n−σ/(βd) m′ < m

(20)

whereun denotes an approximation withn terms. As a consequence the approxima-
tion rate for the casem′ > m is independent of the number of dimensionsN and
deteriorates only by a logarithmic factor for the casem′ = m. In the caseT → −∞,
i.e. no additional mixed smoothness, the approximation ratedN/(m−m′) of classical
approximation schemes is recovered.

Note however that the constants in Theorem 14 might depend exponentially on the
number of dimensions. This unfavorable scaling is rooted onthe one hand in the con-
stants in norm equivalence, Theorem 7, and on the other hand in the estimate of the
cardinality of the index. Moreover even the mixed norm mightgrow exponentially in
the number of dimensions, like in the case of normalized Gaussian functions. This lim-
its the applicability of the discretization scheme to a moderate number of dimensions.

Despite the unbounded domain the approximation rates equalthose for the bounded
domain obtained in [23]. In our case1/γ plays the role of a characteristic length scale
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in real space. In contrast to [23], however, we did not study negative differential orders
and only integer orders of isotropic smoothness. The latterrestriction can be removed
by using interpolation theory once more.

Similar approximation results for the unbounded domain have been obtained in [24].
There a function in a Sobolev space of mixed order was approximated, where only the
function itself decays in a polynomial sense. More precisely u satisfies

‖u‖2Hs,m
mix

((Rd)N ) + ‖u‖2L2((Rd)N ,w) <∞, w(~x) =

N∏

i=1

(1 + |xi|2)t (21)

for ordersm′+s′ < m+s ands−s′ > 0 and polynomial degreest ∈ N, t > 0. The ap-
proximation was constructed using a smooth dyadic partition of the Fourier space and
a subsequent multi-level approximation on each patch. As a consequence the approx-
imation results apply to all considered ordersm,m′, s, s′ and are not restricted by the
regularity of the multi-scale approximation at the price that the ansatz functions are not
compactly supported in real space. The obtained approximation rates deteriorate with
the polynomial degreet and converges to the rates of Theorem 14 up to logarithmic
factors for the caset→ ∞.

Using the techniques presented in this section analog results for wavelet discretization
can be obtained for functions satisfying (21). For that purpose in a first step Equation
(21) is expressed equivalently in terms of wavelet coefficients:

∑

~λ∈∇N

[
κ2s,m(~λ) + w(~x~λ)

]
|u~λ|2, u~λ = 〈ψ̃~λ, u〉L2(RdN ).

Based on the discrete weights, again, one may construct an efficient approximation by
choosing important contributions. If one uses the exponential weightwγ instead one
recovers up to logarithmic terms the result of Theorem 14.

Furthermore the approximation results of Theorem 14 may be improved with respect to
the restrictions on the orders, i.e. the requirementm′+s′,m+s < τ can be weakened.
For deriving approximation results it suffices to use a Jackson type estimate. Since in
the wavelet setting the number of vanishing moments may be higher than the regularity
of the wavelets, the approximation results may be valid for abigger range of orders
[16].

5 Application to the electronic Schrödinger equation

In this section we apply our result to the electronic Schrödinger equation and present
a numerical example. We want to approximate bounded states of atoms or molecules
and rely thereby on the regularity results obtained in [44].We refer to this work for an
introduction to this subject and pointers to literature.

For the quantum mechanical description of a molecule or atomone has to discretize
the so called wave function, which is a function inH1(R3N ) if the system is composed
of N electrons. Recently Yserentant [44] showed, that the wave function has mixed
regularity. Using Theorem 6.9 and Theorem 6.12 of [44] basically one can show via
interpolation theory that the wave function is an element ofH

1/2,1
mix

(
(R3)N , wγ

)
, pro-

vided thatγ is chosen appropriately.
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The quality of the approximation is measured with respect tothe energy norm inH1.
Therefore one can apply the approximation results for the caseT = 0 of the previous
section to derive the approximation rate. Denote byu the wave function and byun the
approximation withn terms according to Theorem 14. It follows that

‖u− un‖1 . (logn)(N−1)/2 n−1/6,

that is up to logarithmic terms the approximation rate equals1/6.

However this result can still be improved by using symmetry properties of the wave
functionu. The Pauli principle requires that the function is antisymmetric with respect
to interchange of certain variables. More specifically

u(P~x) = sign(P )u(~x), (22)

whereP is any permutation in the symmetric groupSN satisfying

P (~σ) = ~σ, ~σ = (+1/2, . . . ,+1/2
︸ ︷︷ ︸

N+ times

,−1/2, . . . ,−1/2
︸ ︷︷ ︸

N−N+ times

). (23)

for a fixed spin configuration~σ. One can directly verify that the operator

(A~σu)(~x) =
1

N+! (N −N+)!

∑

P :P~σ=~σ

sign(P )u(P~x),

is anH1-orthogonal projector on the space of all functions with thecorresponding
symmetry. Therefore it follows directly that for an approximationuε ∈ H1(R3N )

‖u− uε‖21 = ‖u− A~σuε‖21 + ‖(Id− A~σ)uε‖21. (24)

As a consequence the best approximation of an antisymmetricfunction is itself again
antisymmetric.

Now instead of approximatingu on sparse grids introduced in the last section, we take
the antisymmetrized sparse grid spaces

G~σ(J) = span
{
A~σψ~λ | ~λ ∈ Λ0

ρ(J)
}
,

whereρ is given in Equation (13) andΛ0
ρ in Equation (11). Since different~λ and~λ′ may

span the same subspace, i.e.A~σψ~λ = ±A~σψ~λ′
, or may even vanish, i.e.A~σψ~λ = 0,

the given set of indices is redundant. Therefore one needs fewer indices to span the
antisymmetrized sparse grid. In the following we estimate the number of degrees of
freedom.

Lemma 15. Let N ≥ 1, γ > 0 and ~σ be a spin configuration, see Equation(23).
Define the set of all indicesΛ~σ(J) as the set of all indices~λ ∈ Λ0

ρ(J) such that the
levels in each spin group, i.e.

(
j(λi)

)

i=1,...,N+
and

(
j(λi)

)

i=N++1,...,N

are monotonically decreasing. ThenG~σ(J) = span
{
A~σψ~λ | ~λ ∈ Λ~σ(J)

}
and the

degrees of freedom can be estimated by

♯Λ~σ(J) . γ−3N · e4
√
2J 23J

asymptotically inJ . Here the constant is independent ofγ andJ .
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Proof. Due to the properties of the operatorA~σ it is clear that we can restrict ourselves
to indices where the levels in each spin group decrease. For estimating the number of
elements inΛ~σ(J) one basically proceeds as in the proof of Lemma 13 in the caseT =
0. Instead of estimating♯{~j ∈ N

N | |~j|1 = j} in Equation (18) we only consider those
indices~j which are in addition monotonically decreasing in each group 1, . . . , N+ and
N++1, . . . , N . This can be done by using the partition number. Forℓ ∈ N this number
p(ℓ) is defined as the number of monotonically decreasing sequencesℓ1 ≥ ℓ2 ≥ . . . of
non-negative integers such that the sumℓ1 + ℓ2 + . . . equalsℓ. One may estimate this
number by

p(ℓ) .
e2

√
2ℓ

ℓ

where the constant is independent ofℓ, see for example [44]. Now since|~j|1 = j the
indices in both groups too sum up to at mostj. Therefore the number of sequences can
be estimated by

(
e2

√
2j
)2

= e4
√
2j . Summing up like in the proof of Lemma 13 shows

the assertion.

Given the estimate on the accuracy and the number of elementsneeded we can easily
estimate the convergence rate.

Theorem 16. Let s, γ > 0 andu ∈ Hs,1
mix

(
(R3)N , wγ

)
which is antisymmetric in the

sense of Equation(22) for a fixed spin configuration~σ. In addition let1 + s < τ
whereτ is the upper bound of the norm equivalence(8). Then for everyε > 0 the
antisymmetrized approximatioñuε = A~σuε from Theorem 9 (setm′ = 1, s′ = 0)
satisfies‖u − ũε‖1 ≤ ε ‖u‖mix,wγ ,s,1. Asymptotically the number of summands inũε
can be bounded by

♯ũε . C
3nξ/(2s)
γ · γ−3N · e4

√
2| log2 ε| · ε−3/s

for ε→ 0, where the constant is independent ofε andγ.

Proof. The approximatioñuε approximatesu at least as well asuε, see Equation (24).
Therefore the estimate of accuracy from Theorem 9 carries over to the antisymmetric
case. The number of elements can then be calculated using Lemma 15.

Now since the bounded statesu of an atom or molecule are inH1/2,1
mix

(
(R3)N , wγ

)
the

wave functionu can be approximated with a rate

‖u− un‖1 . e2
√

2/3 log2 n · n−1/6,

whereun is a linear combination ofn terms. In the case of the transcorrelated equation
one can show that the solutionu is an element ofH1,1

mix

(
(R3)N , wγ

)
[45]. Proceeding

as above one can show that

‖u− un‖1 . e4/3
√

2/3 log2 n · n−1/3

for an approximationun consisting ofn terms. For a discussion of a wavelet discretiza-
tion of this equation see also [4].

If one compares this result to the one without antisymmetry (for T = 0) one sees that
the exponentN of the logarithmic term has vanished. Therefore the rate is indeed
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Figure 2: Error of the eigenvalue approximation in atomic units of the lowest eigen-
value of helium with respect to the degrees of freedom, wherethe reference value is
taken from [39]. The approximation is calculated by a Galerkin discretization using
adaptively refined anisotropic sparse grids based on linearprewavelets [8]. The chemi-
cal accuracy is given by1kcal/mol. The extrapolated value is calculated using the last
three steps.

independent of the number of electronsN . However, the constant behind. might
depend exponentially onN limiting the applicability of the discretization scheme to
small atoms or molecules.

In the following we present numerical results of the computation of the ground state
of helium. For the solution of the six-dimensional Schrödinger equation we used a
sparse grid based on linear prewavelets [8] in a Galerkin discretization, where we set
d = 1 andN = 6. This was done to speed up the application of a vector to the
discretization matrix, see also [47]. One can show that up tologarithmic factors the
same approximation rates can be reached. In addition the regularity assumptions can be
weakened such that the upper boundτ of the norm equivalence (8) fulfills1+ s/3 < τ
at the cost of additional logarithmic terms [46].

In Figure 2 the error of the approximation of the lowest eigenvalue with respect to the
degrees of freedom is shown. The reference value is obtainedfrom [39]. The asymp-
totic convergence behaviour starts around105 and is determined numerically to be
approximately0.465. Since the Hamilton operator is self-adjoint the convergence rate
of the eigenvalue is doubled compared to the convergence of the function with respect
to the energy norm, i.e.H1. This value is above the expected rate of convergence of
1/3 which follows from the fact that the wave function is inH1/2,1

mix . Indeed the rate is

closer to1/2 which would correspond to a regularity of the wave function of H3/4,1
mix .

Despite the nice convergence rate the error does not reach the chemical accuracy of
1 kcal/mol (approximately1.6mHartree in atomic units) needed in quantum chemistry.
Using around25 million degrees of freedom results in an error of around7.7mHartree.
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Chemical accuracy is expected to be reached as late as using one billion degrees of free-
dom. One may, however, use the convergence behaviour to extrapolate the eigenvalue
to obtain an approximation with an error of1.7mHartree just above the chemical accu-
racy. This computation improves the result calculated by the sparse grid combination
technique [20], where an error of approximately19mHartree in the lowest eigenvalue
of helium was obtained using about25 million degrees of freedom in a corresponding
sparse grid.

These results show that even in the most simple case of a helium atom classical sparse
grid constructions reach the desired accuracy only with great effort. Moreover it is
expected that the larger the number of electrons the later the asymptotic regime sets in.

A possible way out may be to use sparse grid techniques in combination with well
established discretization schemes in quantum chemistry.A good starting point is the
Hartree-Fock wave function which is the best rank one approximation of the eigenfunc-
tion corresponding to the lowest eigenvalue. In the so called Jastrow ansatz the wave
function is approximated by a product of the Hartree-Fock solution and a function to
be determined. Using anisotropic wavelets with around300 basis function chemical
accuracy can be reached [18, 19]. A draw back of this approachis that the Hartree-
Fock solution fixes the zeros of the approximate wave function. This will likely pre-
vent convergence to the exact wave function. To overcome this effect one may use the
Hartree-Fock wave function as an enrichment to sparse grid spaces [24, 21]. In this way
the efficiency of the Hartree-Fock solution is combined withguaranteed convergence
rates of the sparse grid setting. With this approach small atoms and molecules may be
computed with sufficient accuracy; in the case of helium chemical accuracy is reached
using less than two thousand basis functions. However the discretization scheme is like
all linear methods not size consistent and thus prevents this method from being applied
to larger systems.
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A Appendix Interpolation theory

In this appendix we biefly fix the notation needed for applyingreal interpolation theory
as introduced by Peetre [32, 31]. For an overview see also forexample [5]. Moreover
we prove that the definition of the unweighted Sobolev spacesof fractional mixed
order, Definition 1, coincides with the usual definition via intersection of tensor product
spaces, see Equation (2) and for example [23].

We begin with the definition of interpolation spaces and restrict ourselves to the case
of Hilbert spaces(X, ‖ · ‖X) and(Y, ‖ · ‖Y ) whereY ⊂ X is continuously embedded
in X :

‖f‖X ≤ c ‖f‖Y for all f ∈ Y.

Here the constantc does not depend onf . With the help of the interpolation theory we
can construct a family of Hilbert spaces[X,Y ]θ,2 where0 < θ < 1 that lie betweenY
andX , i.e. Y ⊂ [X,Y ]θ,2 ⊂ X . In the following we state this more precisely.
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Theorem 17. Let the Hilbert spacesX and Y be given as above. Define theK-
functionalas

K2 : X × R
+ → R, (f, t) 7→ K2(f, t) = inf

g∈Y

[
‖f − g‖2X + t2 ‖g‖2Y

]
.

Based on this functional define for0 < θ < 1 the norm

‖f‖2[X,Y ]θ,2
=

∫ ∞

0

t−2θ−1K2(f, t) dt.

and the correspondinginterpolation space[X,Y ]θ,2 as

[X,Y ]θ,2 =
{
f ∈ X | ‖f‖[X,Y ]θ,2 <∞

}
.

Then[X,Y ]θ,2 is a Hilbert space.

Note that we have restricted ourselves to the case of nested Hilbert spaces and the
interpolation withq = 2. An important example is given by the fact that the fractional
order Sobolev spaces can be characterized as interpolationspaces:

[
L2(Rd), Hm(Rd)

]

θ,2
= Hθm(Rd)

for m ∈ N and0 < θ < 1. Proofs for these facts can be found in [5] for example.

In Definition 1 we introduced the fractional order weighted Sobolev spaces of mixed
order via interpolation theory. In the following we show that in the unweighted case
these spaces coincide with the classical definition of Sobolev spaces of mixed order
through the intersection of tensor product spaces.

In a first step we derive an equivalent norm in terms of the Fourier transform of the
function.

Theorem 18. Letd,N ≥ 1,m ∈ N ands ≥ 0. Then the norm equivalence

‖u‖2mix,s,m ∼
∫

RdN

(
1 + |~ω|22

)m ·
N∏

i=1

(
1 + |ωi|22

)s · |û(~ω)|2 d~ω,

holds in the spaceHs,m
mix

(
(Rd)N

)
. Hereû denotes the Fourier transform ofu.

Proof. First we prove the norm equivalence for the spaces of integerorderHk,m
mix

(
(Rd)N

)
,

wherek ∈ N. It follows from Definition 1 and the properties of the Fourier transform
that

‖u‖2mix,k,m =

∫

RdN

[ ∑

~α∈Ak,m

~ω2~α
]

|û(~ω)|2 d~ω.

Now due to the structure ofAk,m

∑

~α∈Ak,m

~ω2~α =
[ ∑

∑
i |αi|1≤m

~ω2~α
]

·
[ ∑

|α1|1≤k

ω1
2α1

]

· . . . ·
[ ∑

|αN |1≤k

ωN
2αN

]

.

The first factor is equivalent to
(
1 + |~ω|22

)m
while the others are equivalent to(1 +

|ωi|22)k, respectively. This finishes the proof in the case of integerorder.
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Now we turn to the caseHs,m
mix

(
(Rd)N

)
wheres 6∈ N. According to Definition 1 the

norm of these spaces is given by

‖u‖2mix,s,m =

∫ ∞

0

t−1−2θ inf
v∈Hk,m

mix

[
‖u− v‖2mix,0,m + t2‖v‖2mix,k,m

]
dt,

wherek = ⌈s⌉ andθ = s/k. Using the result in the case of integer order from above

inf
v∈Hk,m

mix

∫

RdN

(
1 + |~ω|22

)m
[

|û(~ω)− v̂(~ω)|2 + t2
N∏

i=1

(
1 + |ωi|22

)k |v̂(~ω)|2
]

d~ω.

is equivalent to the infimum in the integrand. Now evaluatingthe infimum pointwise
one gets

v̂(~ω) =
1

1 + t2
∏N

i=1

(
1 + |ωi|22

)k
û(~ω).

One can show that for allt > 0 the functionv is indeed an element ofHk,m
mix

(
(Rd)N

)
.

Finally with the help of this function one may calculate the interpolation norm explic-
itly leading to the desired assertion.

With the help of this theorem one may now show that the unweighted Sobolev spaces
of mixed order are intersections of certain tensor product spaces, see also [23] in the
case of bounded domains. For the definition of tensor products of Hilbert spaces see
for example [33, Section II.4] or [38, Thm. 2.1] for the more general case.

Corollary 19. Letd,N ≥ 1,m ∈ N ands ≥ 0. Then

Hs,m
mix

(
(Rd)N

)
=

N⋂

i=1

Hm·~ei+s·~1((Rd)N
)
, H

~t
(
(Rd)N

)
=

N⊗

i=1

Hti(Rd),

where~ei is thei-th unit vector and~1 = (1, . . . , 1) ∈ R
N .

Proof. First the norm onH~t may be expressed equivalently as

‖u‖2
H~t

(
(Rd)N

) ∼
∫

RdN

N∏

i=1

(
1 + |ωi|22

)ti |û(~ω)|22 d~ω,

see [38, Def. A.2, A.5]. Denote by‖ · ‖⋂H~t the norm on the intersection of the space

H~t
(
(Rd)N

)
as defined above. Then

‖u‖2⋂
H~t ∼

∫

RdN

[ N∑

j=1

N∏

i=1

(
1 + |ωi|22

)s+δij ·m
]

· |û(~ω)|22 d~ω.

Now the first factor in the integrand may be written as

[ N∑

j=1

(
1 + |ωj |22

)m
]

·
N∏

i=1

(
1 + |ωi|22

)s
.

Since the term in the square bracket is equivalent to
(
1 + |~ω|22

)m
the assertion directly

follows from Theorem 18.
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