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Abstract

This1 is an expository paper on approximating functions from general Hilbert or

Banach spaces in the worst case, average case and randomized settings with error

measured in the Lp sense. We define the power function as the ratio between the

best rate of convergence of algorithms that use function values over the best rate of

convergence of algorithms that use arbitrary linear functionals for a worst possible

Hilbert or Banach space for which the problem of approximating functions is well

defined. Obviously, the power function takes values at most one. If these values are
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one or close to one than the power of function values is the same or almost the same

as the power of arbitrary linear functionals. We summarize and supply a few new

estimates on the power function. We also indicate eight open problems related to the

power function since this function has not yet been studied for many cases. We believe

that the open problems will be of interest to a general audience of mathematicians.

1 Introduction

This is an expository paper on the problem of approximating functions from general Hilbert
or Banach spaces, which has been thoroughly studied in many books and papers. This
problem has many variants depending on how we measure the error of such approximations
(algorithms). A popular choice is to take the norm of an Lp space and all values of p ∈ [1,∞]
have been considered. Furthermore, the error of algorithms can be defined in the worst case,
average case or randomized setting. For the worst and average case settings, we consider
deterministic algorithms. The worst case error is defined as the maximal error over the unit
ball of a given space whereas the average case error is defined as the average error over the
whole space with respect to a given measure. The usual choice is a zero mean Gaussian
measure. For the randomized setting we consider randomized algorithms and the error is
defined as the maximal expected error over the unit ball of a given space. Here, the expected
error is given with respect to a probability distribution of randomized elements.

We approximate functions f by algorithms that use information about f given by finitely
many linear functionals of f . Information is called linear if we can choose arbitrary linear
functionals, and it is called standard if only function values may be used. Clearly, linear
information is at least as powerful as standard information. For many applications, only
standard information is available. But even in this case, it is a good idea to study linear
information and learn how difficult is the function approximation problem. For example, if
we can prove that even for linear information the problem is too difficult then, obviously, the
same also holds for standard information. On the other hand, all positive results for linear
information do not have to hold for standard information.

The main question addressed in this expository paper is to study the power of standard
information or equivalently the power of function values. We want to know how much we
lose if function values are used instead of linear information. Or more optimistically, we
ask when the power of standard information is the same or nearly the same as the power of
linear information. Such questions have been addressed in a number of papers and we will
refer to them in the course of this paper. It has been usually done for specific spaces and
only a few papers addressed these questions for some classes of spaces.

Our approach is a little more general and we want to verify the power of function val-
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ues/standard information for all Hilbert or Banach spaces for which the problem of function
approximation is well defined. More precisely, we define the power function2

ℓ sett−x : (0,∞) × [1,∞] → [0, 1].

Here sett ∈ {wor, ran, avg} denotes the setting we use for the error definition. Hence, wor
stands for the worst case setting, ran for the randomized setting, and avg for the average
case setting. The second superscript x ∈ {H,B} tells us if we consider only Hilbert spaces
(x = H) or if we allow all Banach spaces (x = B).

We now explain the meaning of the value

ℓ sett−x(r, p).

The first argument r means that the nth minimal error behaves like n−r if we use linear
information. Since r > 0, we consider Hilbert or Banach spaces which admit convergence,
and furthermore they admit a polynomial rate of convergence of the minimal errors. The
second argument p denotes the use of the norm of Lp. The value ℓ sett−x(r, p) is defined as
r−1 times the best rate of convergence we obtain using function vales for a worst possible
choice of a Hilbert or Banach space. That is why ℓ sett−x(r, p) ≤ 1, and the larger ℓ sett−x(r, p)
the better. Hence, if we have

ℓ sett−x(r, p) = 1

then the power of standard information is the same as the power of linear information. On
the other hand, if we have

ℓ sett−x(r, p) = 0

then the power of standard information is zero as compared to the power of linear informa-
tion. Finally, if we have

ℓ sett−x(r, p) ∈ (0, 1)

then we know qualitatively how much we may lose by using function values.
The concept of the power function seems to be new. For many values of p, especially

when p 6= 2, this function has not yet been studied. This is especially the case for the
randomized and average case settings. That is why we indicate eight open problems related
to the power function with the hope that many mathematicians will be interested in solving
them and advancing our knowledge about the power of function values.

In this paper we tried to summarize and supply a few new estimates on the power function.
We now briefly indicate a few results presented in the paper.

2We needed to find a good one-letter name for the power function. Since in English and in Polish this

would indicate the letter “p” which is already used as the parameter of the Lp space, we turn to German

and use the word “Leistung”. That is why the letter ℓ denotes the power function.
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In the worst case setting for the Hilbert case and p = 2, we conclude from [6, 8] that

ℓwor−H(r, 2) = 0 for all r ∈ (0, 1
2
],

ℓwor−H(r, 2) ∈
[

2r

2r + 1
, 1

]
for all r ∈ (1

2
,∞).

Hence, the power of function values is zero for r ≤ 1/2, and almost the same as the
power of linear information for large r. One of the main open problem is to verify whether
ℓwor−H(r, 2) = 1 for all r > 1/2.

Staying with the worst case and Hilbert spaces but with p 6= 2, we conclude from [18]
that

ℓwor−H(r, p) = 0 for all r ∈
(
0, min(1

p
, 1

2
)
]
.

For r > min(1/p, 1/2), we do not know anything about the values of ℓwor−H(r, p) except the
case p = ∞ for which we know from [12] that

ℓwor−H/B(r,∞) ≥ 1 − 1

r
.

Again for large r, the power of standard information is almost the same as the power of
linear information.

For the worst case and the Banach case we have

ℓwor−B(r, p) = 0 for all r ∈ (0, 1] and p ∈ [1, 2],

ℓwor−B(r, p) = 0 for all r ∈ (0, 1
2

+ 1
p
] and p ∈ (2,∞),

ℓwor−B(r, p) ≤ 1 − 1

r

(
1 − 1

p

)
for all r > 1 and p ∈ [1, 2],

ℓwor−B(r, p) ≤ 1 − 1

2r
for all r > 1 and p ∈ [2,∞),

1 − 1

r
≤ ℓwor−B(r,∞) ≤ 1 − 1

2r
for all r > 1.

Even though we do not know much about the power function in this case, we can conclude
that the Hilbert and Banach cases are different since

ℓwor−B(r, 2) < ℓwor−H(r, 2) for all r ∈ (1
2
,∞).

Surprisingly enough, for the randomized setting with the Hilbert case and for the average
case setting with the Hilbert or Banach case we have complete knowledge about the power
function for p = 2 due to [28] and [5]. More precisely, we know that

ℓ ran−H(r, 2) = ℓ avg−H/B(r, 2) = 1 for all r > 0.

More estimates of the power function can be found in the successive sections.
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2 The worst case setting

Let F be a Hilbert or Banach space of functions, defined on a set Ω, such that the linear
functionals f 7→ f(x) are continuous for all x ∈ Ω. We assume that F ⊂ Lp and that the
embedding I : F → Lp is continuous3 , where I(f) = f . We write H instead of F if F is a
Hilbert space.

Let (cn) be a sequence of nonnegative numbers. Assume first that (cn) converges to zero.
We define its (polynomial) rate of convergence r(cn) by

r(cn) = sup{ β ≥ 0 | lim
n→∞

cnn
β = 0}.

If (cn) is not convergent to zero we set r(cn) = 0. Then r(cn) is well defined for all nonnegative
sequences (cn). For example, the rate of convergence of n−α is max(0, α).

We approximate functions from F using finitely many arbitrary linear functionals L ∈ F ∗

or function values f(x) for some x ∈ Ω. We define the error of such approximations by taking
the worst case setting with respect to the Lp norm. The norm of Lp is denoted by ‖ · ‖p.

We define two classes Λall and Λstd of information evaluations. We have Λstd ⊆ Λall = F ∗

and Λstd consists of linear functionals of the form Lx(f) = f(x) for all f ∈ F , where x ∈ Ω.
We approximate functions from F by algorithms An : F → Lp given by

An(f) = φn(L1(f), L2(f), . . . , Ln(f)),

where n is a nonnegative integer, φn : R
n → Lp is an arbitrary mapping, and Lj ∈ Λ, where

Λ ∈ {Λall, Λstd}. The choice of Lj can be adaptive, that is, it may depend on the already
computed values L1(f), L2(f), . . . , Lj−1(f). For n = 0, the mapping An is a constant element
of the space Lp. More details can be found in e.g., [14, 21].

Hence, we consider algorithms that use n linear functionals either from the class Λstd or
from the class Λall. We define the minimal errors as follows.

Definition 1. For n = 0 and n ∈ N := {1, 2, . . . }, let

eall−wor
n (F,Lp) = inf

An with Lj∈Λall

sup
‖f‖F≤1

∥∥f − An(f)
∥∥

p

and
estd−wor

n (F,Lp) = inf
An with Lj∈Λstd

sup
‖f‖F≤1

∥∥f − An(f)
∥∥

p
.

3We do not specify Ω or the underlying measure of Lp since they can be arbitrary.
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For n = 0, it is easy to see that the best algorithm is A0 = 0 and we obtain

eall−wor
0 (F,Lp) = estd−wor

0 (F,Lp) = sup
‖f‖F≤1

‖f‖p = sup
‖f‖F≤1

‖I(f)‖p = ‖I‖.

This is the initial error that can be achieved without computing any linear functional on the
functions f . Clearly,

eall−wor
n (F,Lp) ≤ estd−wor

n (F,Lp) for all n ∈ N.

The sequences
(
eall−wor

n (F,Lp)
)

and
(
estd−wor

n (F,Lp)
)

are both non-increasing but not neces-
sarily convergent to zero.

We want to compare the rates of convergence

rall−wor(F,Lp) = r
(
eall−wor

n (F,Lp)
)

and rstd−wor(F,Lp) = r
(
estd−wor

n (F,Lp)
)
.

In particular, we would like to know if it is possible that the sequence
(
eall−wor

n (F,Lp)
)

converges much faster than the sequence
(
estd−wor

n (F,Lp)
)
. In many cases it is much easier

to analyze the sequence (eall−wor
n (F,Lp))n∈N. Then it is natural to ask what can be said about

the sequence (estd−wor
n (F,Lp))n∈N.

The main question addressed in this paper is to find or estimate the power function
defined as ℓwor−x : (0,∞) × [1,∞] → [0, 1] by

ℓwor−x(r, p) := inf
F : rall−wor(F,Lp)=r

rstd−wor(F,Lp)

r
,

where x ∈ {H,B} and indicates that the infimum is taken over all Hilbert spaces (x = H) or
over all Banach spaces (x = B) continuously embedded in Lp for which function values are
continuous linear functionals and the rate of convergence is r when we use arbitrary linear
functionals.

It is easy to show, and it will be shown later, that the set of spaces F for which
rall−wor(F,Lp) = r is not empty and therefore ℓwor−x is well defined. Obviously, ℓwor−x(r, p) ∈
[0, 1], as already claimed. The power function ℓwor−x measures the ratio between the best
rates of convergence between approximations based on function values and on arbitrary linear
functionals for a worst possible Hilbert or Banach space.

Suppose now that we take the minimal n = nwor−all/std(ε, F, Lp) for which the minimal
worst case error is ε or ε ‖I‖. Assume for simplicity that

eall−wor
n (F,Lp) = n−r and estd−wor

n (F,Lp) = n−α
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for some positive α = rstd−wor(F,Lp) ≤ r. Then

nwor−all(ε, F, Lp) =
⌈
ε−1/r

⌉
and nwor−std(ε, F, Lp) =

⌈
ε−1/α

⌉
.

Clearly,

lim
ε→0

ln nwor−all(ε, F, Lp)

ln nwor−std(ε, F, Lp)
=

α

r
≥ ℓwor−x(r, p).

Hence, if ℓwor−x(r, p) = 1 then function values are as powerful as arbitrary linear func-
tionals. On the other hand, the smaller ℓwor−x(r, p) the less powerful are function values as
compared to arbitrary linear functionals. If ℓwor−x(r, p) = 0 then the polynomial behavior of
n all(ε, F, Lp) in ε−1 can be drastically changed for n std(ε, F, Lp).

Remark 1. It is well known that in some cases we can restrict ourselves only to linear
algorithms. This holds when p = ∞ or when F is a Hilbert space. Then the corresponding
infima for the minimal worst case errors are attained by

An(f) =
n∑

j=1

Lj(f)hj

for some Lj ∈ Λ ∈ {Λstd, Λall} and hj ∈ Lp. Much more about the existence of linear optimal
error algorithms can be found in e.g., [14].

2.1 Double Hilbert Case

In this subsection we consider the approximation problem defined over a Hilbert space with
the error measured also in the Hilbert space L2. That is why the name of this subsection is
the double Hilbert case. Approximation in the L2 norm for Hilbert spaces has been studied
in many papers. For our problem the most relevant papers are [6], [8] and [27].

Assume that H is a Hilbert space of functions defined on a set Ω. Since we assume that
function values are continuous this means that H is a reproducing kernel Hilbert space, H =
H(K), where K is defined on Ω × Ω. Let p = 2 and L2 = L2(Ω, µ) be the space of µ-square
integrable functions with a measure µ on Ω. Since the embedding I : H(K) → L2(Ω, µ) is
continuous we have ∫

Ω

|f(t)|2 dµ(t) < ∞ for all f ∈ H(K).

In particular, we can take f = K(·, t) for arbitrary t ∈ Ω, since such a function f belongs
to H(K). Therefore W = I∗I : H(K) → H(K), where I∗ is defined by 〈g, I(f)〉L2(Ω,µ) =
〈I∗(g), f〉H(K) for all f ∈ H(K) and g ∈ L2(Ω, µ), is given by

W (f) (x) =

∫

Ω

K(x, t) f(t) dµ(t) for all f ∈ H(K).
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Clearly, the operator W is self-adjoint and semi positive definite. It is well known that
limn ewor−all

n (H,L2) = 0 iff W is compact. Unfortunately, in general, W does not have to
be compact and therefore ewor−all

n (H,L2) does not have to go to zero. In fact, the sequence
ewor−all

n (H,L2) can be an arbitrary non-increasing sequence as the following example shows.

Example 1 (Arbitrary Sequence ewor−all
n (H,L2)).

Let (αn)n∈N be an arbitrary non-increasing sequence of nonnegative numbers. Define k∗

as the number of positive αn. If all αn are positive we formally set k∗ = ∞. If k∗ is finite let
Nk∗ = {1, 2, . . . , k∗}, otherwise let Nk∗ = N.

For k ∈ Nk∗ , take arbitrary disjoint nonempty intervals Ik such that
⋃

k∈Nk∗
Ik = [0, 1],

and define the functions ek : [0, 1] → R by

ek =

√
αk√
|Ik|

1Ik
,

where |Ik| denotes the Lebesgue measure of Ik. That is, ek(x) =
√

αk/|Ik| for x ∈ Ik and
ek(x) = 0 for x /∈ Ik.

Define the Hilbert space H = span{ek | k ∈ Nk∗} equipped with the inner product such
that 〈ek, ej〉H = δk,j for all k, j ∈ Nk∗ . This means that H is the space of piecewise constant
functions f : [0, 1] → R such that

f =
k∗∑

k=1

akek with ak = 〈f, ek〉H and ‖f‖h =

( k∗∑

k=1

a2
k

)1/2

< ∞.

The Hilbert space H has the reproducing kernel

K(x, y) =
k∗∑

k=1

ek(x)ek(y) for all x, y ∈ [0, 1].

Indeed, first of all note that K is well defined since for all x and y the last series has at most
one nonzero term. Then 〈K(·, yi), K(·, yj)〉H = K(yi, yj), and

0 ≤
∥∥∥∥

m∑

j=1

ajK(·, yj)

∥∥∥∥
2

H

=
n∑

i,j=1

aiajK(yi, yj).

This shows that the matrix (K(yi, yj))i,j=1,2,...,m is symmetric and semi positive definite for
all m and yj. Clearly,

〈f,K(·, y)〉H =
k∗∑

k=1

akek(y) = f(y),
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and this completes the proof that K is the reproducing kernel of H.
Let L2 = L2([0, 1]) be the usual space of square Lebesgue integrable functions. Note that

‖ek‖2 =
αk√
|Ik|

(∫

Ik

dt

)1/2

= αk.

Therefore for any f ∈ H we have

‖I(f)‖2 = ‖f‖2 =

(
k∗∑

k=1

a2
kα

2
k

)1/2

≤ α1‖f‖H .

The last bound is sharp, and therefore ‖I‖ = α1 showing that H is continuously embedded
in L2. The operator W takes now the form

W (f) =
k∗∑

k=1

〈f, ek〉2 ek.

Note that W (ek) = ‖ek‖2
2 ek = α2

k ek. This means that (α2
k, ek) are the eigenpairs of W and

W (f) =
k∗∑

k=1

α2
k 〈f, ek〉H ek.

It is well known that

ewor−all
n (H,L2) = αn+1 for all k = 0, 1, . . . .

This proves that the behavior of ewor−all
n (H,L2) can be arbitrary and, in general, we do not

have convergence of ewor−all
n (H,L2) to zero. Clearly, W is compact iff limn αn = 0.

On the other hand, this example also shows that for a given β ≥ 0 we can define a
sequence αk such that rall−wor(H,L2) = β. Indeed, it is enough to take αk = k−β.

We discuss the power function ℓwor−H. We now assume that rall−wor(H,L2) = r > 0, i.e.,
in particular we assume that the operator W is compact. Then W has eigenpairs (λj, ηj),

W (ηj) = λjηj for all j = 1, 2, . . . ,

with 〈ηj, ηk〉H = δj,k. Without loss of generality we can order the eigenvalues λj such that
λ1 ≥ λ2 ≥ · · · . For all f ∈ H we have

〈f, ηk〉2 = 〈I(f), I(ηk)〉2 = 〈f,W (ηk)〉H = λk 〈f, ηk〉H .
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In particular, letting f = ηj, we conclude that the functions ηj are also orthogonal in the
space L2.

It is well known that

ewor−all
n (H,L2) =

√
λn+1 for all n ∈ N.

If (ewor−all
n (H,L2)) is convergent to zero then the same also holds for function values, i.e.,

(ewor−std
n (H,L2)) is also convergent. Indeed, we can reason as in Section 10.4 of [14] that all

linear functionals can be approximated with an arbitrarily small error when we use function
values, and then it is enough to remember that the error

√
λn+1 is achieved by a linear

algorithm that uses n linear functionals 〈f, ηj〉H(K).
We have

trace(W ) :=
∞∑

j=1

λj =

∫

Ω

K(x, x) dµ(x) =
∞∑

n=0

[
ewor−all

n (H,L2)
]2

and this is finite if rall−wor(H,L2) > 1
2
. If rall−wor(H,L2) = 1

2
then

∑∞
n=0

[
ewor−all

n (H,L2)
]2

may be finite or infinite, and if rall−wor(H,L2) < 1
2

then
∑∞

n=0

[
ewor−all

n (H,L2)
]2

is infinite.
We can now apply the result from [27] which states that

∫
Ω

K(x, x) dµ(t) < ∞ implies

rstd−wor(H,L2) ≥ rall−wor(H,L2) − 1
2
.

The result from [8] states that rall−wor(H,L2) = r > 1
2

implies

rstd−wor(H,L2) ≥ r − r

2r + 1
=

2r2

2r + 1
.

The case
∑∞

n=0

[
ewor−all

n (H,L2)
]2

= ∞ was studied in [6]. It was shown that for any r ∈ [0, 1
2
]

there is a Hilbert space H such that

rall−wor(H,L2) = r and rstd−wor(H,L2) = 0.

These results give us the following bounds on the power function ℓwor−H(·, 2).

Theorem 1 ([6, 8]).

ℓwor−H(r, 2) = 0 for all r ∈ (0, 1
2
],

ℓwor−H(r, 2) ∈
[

2r

2r + 1
, 1

]
for all r ∈ (1

2
,∞).
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Although, we do not know the power function ℓwor−H(·, 2) exactly, we know that there is
a jump at 1

2
since ℓwor−H(r, 2) ≥ 1/2 for all r > 1/2. Note also that for large r, the values

of ℓwor−H(r, 2) are close to 1. This means that the power of function values for r ∈ (0, 1
2
) is

zero, and is almost optimal for large r.
The problem of finding the exact values of ℓwor−H(r, 2) for r > 1

2
is one of the main open

problems in the worst case setting. We know that many people, including two of us, spent a
lot of time trying to solve this problem but so far in vain. That is why we propose an open
problem with the hope that it will be soon solved by the reader.

Open Problem 1. Suppose that r > 1
2
. Is it true that

ℓwor−H(r, 2) = 1 ?

If not, what are the values of ℓwor−H(r, 2)?

The rate of convergence neglects to distinguish sequences that differ by a power of loga-
rithms of n. Indeed, for cn = n−r and bn = n−r[ln (n+1)]β for a positive r and an arbitrary β
we have r(cn) = r(bn) = r independently of β. Obviously, for some standard spaces we would
like to know not only the rate but also a power of logarithms. We discuss this point in the
next example, where we use the notation cn ≍ bn iff there exist positive numbers a1 and a2

such that a1 ≤ cn/bn ≤ a2 for sufficiently large n.

Example 2 (Sobolev spaces, p = 2).
a) For the standard Sobolev spaces W s

2 ([0, 1]d) with an arbitrary s > 0, which measures
the total smoothness of functions, it is well known that

eall−wor
n (W s

2 ([0, 1]d), L2) ≍ n−s/d.

Of course, in general, function values are not well defined in W s
2 ([0, 1]d). We must assume

the embedding condition 2s > d and then function values are well defined and they are
continuous linear functionals. Furthermore, it is known that

eall−wor
n (W s

2 ([0, 1]d), L2) ≍ estd−wor
n (W s

2 ([0, 1]d), L2) ≍ n−s/d,

see, e.g., [14] for a survey of such results.
b) For the Sobolev spaces W r,mix

2 ([0, 1]d) with r > 0, which measures the smoothness of
functions with respect to each variable, it is known that

eall−wor
n (W r,mix

2 ([0, 1]d), L2) ≍ n−r(log n)(d−1)r,

see, e.g., [1, 11, 17, 19, 21, 26], where this result can be found in various generality.
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For function values, we must assume that r > 1/2, and then the best upper bound is

estd−wor
n (W r,mix

2 ([0, 1]d), L2) = O
(
n−r(log n)(d−1)(r+1/2)

)
,

see [17, 19, 22].
It is not known whether this extra power (d− 1)/2 for logarithms is needed. It would be

very interesting to verify whether

eall−wor
n (W r,mix

2 ([0, 1]d), L2) ≍ estd−wor
n (W r,mix

2 ([0, 1]d), L2)

holds also for this example.

The examples in [6] use very irregular sequences (eall−wor
n (H,L2)) and hence do not exclude

a positive answer of the question in the next open problem.

Open Problem 2. Assume that eall−wor
n (H,L2) ≍ n−r [ln(n + 1)]β with arbitrary r > 0 and

β ∈ R. Is it true that this implies

estd−wor
n (H,L2) ≍ eall−wor

n (H,L2)?

2.2 Single Hilbert Case

In this short subsection we mostly consider the approximation problem defined over a Hilbert
space with the error measured in the non-Hilbert space Lp for p 6= 2. That is why the name
of this subsection is the single Hilbert case.

We report a recent result of Tandetzky [18] who considers the approximation problem for
arbitrary p ∈ [1,∞). He proved that for any r ∈ (0, min(1

p
, 1

2
)] there exists a Hilbert space

H continuously embedded in Lp = Lp([0, 1]) such that

rall−wor(H,Lp) = r and rstd−wor(H,Lp) = 0.

This result obviously implies that the power function is zero over (0, min(1
p
, 1

2
)]. It seems to

us that no example is known in the literature for a Hilbert space for which eall−wor
n (H,Lp)

tends to zero faster than the sequence estd−wor(H,Lp) with the additional assumption that
rall−wor(H,Lp) > min(1

p
, 1

2
). This implies that we do not know the behavior of the power

function over (min(1
p
, 1

2
),∞). We summarize our partial knowledge of the power function in

the following theorem.

Theorem 2 ([18]). Let p 6= 2.

ℓwor−H(r, p) = 0 for all r ∈ (0, min(1
p
, 1

2
)],

ℓwor−H(r, p) ∈ [0, 1] for all r ∈ (min(1
p
, 1

2
),∞).
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Only for the case p = ∞ we know a little more about the behavior of the power function.
In this case the rates are related as explained in the following theorem.

Theorem 3 ([12]). Let F be a Hilbert or a Banach space. Then

estd−wor
n (F,L∞) ≤ (1 + n) eall−wor

n (F,L∞) for all n ∈ N. (1)

This inequality follows from Proposition 1.2.5, page 16, in [12], where it is stated for the
Kolmogorov widths and also applies to the linear or Gelfand widths.

The inequality (1) cannot be improved even if we assume that F is a Hilbert space. This
follows from the following example.

Example 3. Take F = H = R
n+1. That is f ∈ H is now defined on {1, 2, . . . , n + 1} and

can be identified with f = [f1, f2, . . . , fn+1] with fi = f(i). The space H is equipped with
the inner product

〈f, g〉H =

[
n+1∑

i=1

fi

][
n+1∑

i=1

gi

]
+ ε

n+1∑

i=1

figi for all f, g ∈ H.

The unit ball of H is now

B =
{
f ∈ R

n+1 |
[∑n+1

i=1 fi

]2
+ ε

∑n+1
i=1 f 2

i ≤ 1
}
.

Then for ε → 0, we obtain
estd−wor

n (F,L∞) ≥ 1.

Indeed, knowing f(xi) for i = 1, 2, . . . , n, with xi ∈ {1, 2, . . . , n + 1}, we take f such that
f(xi) = 0. Then at least one component of f from the unit ball is free and can be taken
as ±1/

√
1 + ε. This proves that the worst case error of any algorithm is at least 1/

√
1 + ε

which in the limit as ε goes to zero is 1.
Consider the information

N(f) = [f1 − f2, f2 − f3, . . . , fn − fn+1] for all f ∈ H.

It is known that the minimal error of all algorithms that use N is the supremum of ‖f‖H

for f ∈ B and N(f) = 0. Observe that N(f) = 0 implies that f = [c, c, . . . , c]. Next, f ∈ B
implies that

c2 ≤ 1 + ε/(n + 1)

(n + 1)2
.

Hence, again for ε → 0, we obtain eall−wor
n (F,L∞) ≤ 1/(n + 1).

13



We now conclude a partial behavior of the power function ℓwor−H(·,∞) from Theorem 3.
Let rall−wor(F,L∞) = r > 1. Then the inequality (1) implies that

rstd−wor(F,L∞) ≥ r − 1.

Thus, Theorem 3 implies the following behavior of the power function for p = ∞.

Theorem 4.

ℓwor−H/B(r,∞) ∈ [0, 1] for all r ∈ (0, 1],

ℓwor−H/B(r,∞) ∈
[
r − 1

r
, 1

]
for all r > 1.

Hence, for both p = 2 and p = ∞, we see that for large r, the power function is almost
one.

We want to guess the behavior of the power function for r > min(1
p
, 1

2
). It can be helpful

to see the actual rates of convergence for some standard spaces. In particular, for p = ∞,
the rates are known for Sobolev spaces.

Example 4 (Sobolev spaces, p = ∞).
a) For the Sobolev spaces W s

2 ([0, 1]d) and an arbitrary s for which 2s > d, it is well known
that

eall−wor
n (W s

2 ([0, 1]d), L∞) ≍ estd−wor
n (W s

2 ([0, 1]d), L∞) ≍ n−s/d+1/2,

see, e.g., [14].
b) For the Sobolev spaces W s,mix

2 ([0, 1]d) with s > 1/2, it is known that

eall−wor
n (W s,mix

2 ([0, 1]d), L∞) ≍ estd−wor
n (W s,mix

2 ([0, 1]d), L∞) ≍ n−s+1/2(log n)(d−1)s,

see [20].

Hence, at least for the standard Sobolev spaces the rates are the same even up to logarith-
mic factors. This again suggests that the power function can be just one over (min(1

p
, 1

2
),∞).

This leads us to the next open problem.

Open Problem 3. Verify whether it is true that for all p ∈ [1,∞] we have

ℓwor−H(r, p) =

{
0 for all r ∈

(
0, min(1

p
, 1

2
)
]
,

1 for all r ∈
(
min(1

p
, 1

2
),∞

)
.
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We end this section with a remark on the rates of convergence for different p.

Remark 2. It is interesting to compare the sequences

eall−wor
n (H,Lp) and/or estd−wor

n (H,Lp)

for the same H but different p. The following example shows that, in general, there exists
no relation between these sequences. Some relations do exist as shown in [7] but under some
additional assumptions about H. The following example shows that some assumptions on
H are indeed needed, otherwise the worst can happen.

Take L2 = L2([0, 1]), L∞ = L∞([0, 1]) and assume that [0, 1] is the disjoint union of
intervals Ik with positive length λk, so that

∑∞
k=1 λk = 1. Assume also that

λ1 ≥ λ2 ≥ . . .

and put ek = 1Ik
. We define a Hilbert space H by its unit ball

B =

{ ∞∑

k=1

αkek

∣∣∣∣
∞∑

k=1

α2
k

γ2
k

≤ 1

}
,

where
γ1 ≥ γ2 ≥ · · · > 0 with lim

k→∞
γk = 0.

Hence for f =
∑∞

k=1 αkek ∈ H we obtain

‖f‖2
H =

∞∑

k=1

α2
k

γ2
k

and ‖f‖2
2 =

∞∑

k=1

α2
k λk, ‖f‖∞ = sup

k
|αk|.

From this it is easy to conclude that the optimal approximation for L2 as well as for L∞ is
given by

f =
∞∑

k=1

αkek 7→
n∑

k=1

αkek.

Note that
αk = 〈f, ek〉H = f(xk) λk,

where xk ∈ Ik. This means that the optimal error algorithm for function values and linear
functionals is the same, and therefore

eall−wor(H,Lp) = estd−wor(H,Lp) for p ∈ {2,∞}.
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However,

eall−wor
n (H,L∞) = γn+1 and eall−wor

n (H,L2) = γn+1

√
λn+1.

Since {γn} and {λn} are not related, it is easy to get an example with

rall−wor(H,L∞) = 0 but rall−wor(H,L2) = ∞.

Hence, in general, the worst difference between the minimal rates for L2 and L∞ approxi-
mation can happen.

2.3 Banach Case

In this subsection we study the approximation problem defined over a Banach space that is
continuously embedded in Lp. As always we assume that function evaluations are continuous
functionals. We establish some bounds on the power functions by recalling known results
for Sobolev spaces.

Example 5 (Sobolev spaces, 1 ≤ p < ∞).
For the Sobolev space W s

p ([0, 1]d) for an arbitrary s > 0, it is known that

eall−wor
n (W s

p ([0, 1]d), Lp) ≍ n−s/d.

Function values are well defined in W s
p ([0, 1]d) only if the embedding condition s/d > 1/p or

s = d and p = 1 holds. However, we may use the approach suggested in [2] that allows us
to consider the case without this embedding condition. Namely, we limit ourselves only to
continuous functions by taking

F = W s
p ([0, 1]d) ∩ C([0, 1]d)

with norm
‖f‖F = ‖f‖W s

p ([0,1]d) + ‖f‖C([0,1]d).

Here, C([0, 1]d) is the space of continuous functions equipped with the max norm. Then
F is a Banach space for which function values are well defined and correspond to linear
continuous functionals. Then for s/d ≤ 1/p and s/d < 1 in the case p = 1, respectively, it
was shown in [2] that

estd−wor
n (F,Lp) ≍ 1.
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The last example implies that

ℓwor−B(r, p) = 0 for all r ∈ (0, 1/p] and 1 < p < ∞,

ℓwor−B(r, 1) = 0 for all r ∈ (0, 1).

We now show that ℓwor−B(r, p) = 0 over larger domains of r for a given p by recalling
other results for Sobolev spaces.

Example 6 (Sobolev space W s
1 ([0, 1]d), 1 ≤ p < ∞).

Consider the approximation problem for the Sobolev space W s
1 ([0, 1]d) with error mea-

sured in Lp = Lp([0, 1]d). This problem is well defined and convergent for the class Λall if we
assume that s/d > 1 − 1/p.

For p ∈ [1, 2] we have
eall−wor

n (W s
1 ([0, 1]d), Lp) ≍ n−s/d,

whereas for p ∈ [2,∞) we have

eall−wor
n (W s

1 ([0, 1]d), Lp) ≍ n−s/d+1/2−1/p,

see e.g., [24]. The last relation also holds for p = ∞ as will be needed later.
The same results are also valid for the space F = W s

1 ([0, 1]d) ∩ C([0, 1]d) with the norm

‖f‖F = ‖f‖W s
1 ([0,1]d) + ‖f‖C([0,1]d).

For the space F we can consider function values for all s/d > 1 − 1/p. For s/d ≤ 1 we have

estd−wor
n (F,Lp) ≍ 1.

Let p ∈ [1, 2]. The last example implies that

ℓwor−B(r, p) = 0 for all r ∈
(

1 − 1

p
, 1

]
.

For p = 1, the last interval is (0, 1]. For p ∈ (1, 2] we showed before that ℓwor−B(r, p) = 0 for
all r ∈ (0, 1/p]. Since (0, 1/p] ∪ (1 − 1/p, 1] = (0, 1] we obtain

ℓwor−B(r, p) = 0 for all r ∈ (0, 1] and p ∈ [1, 2].

Let p ∈ [2,∞). The last example implies that

ℓwor−B(r, p) = 0 for all r ∈
(

1

2
,

1

2
+

1

p

]
.
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To show that ℓwor−B(r, p) = 0 also for p ∈ [2,∞) and r ∈ (0, 1
2
] we increase the space

F = W s
1 ([0, 1]) ∩ C([0, 1]) with the norm

‖f‖F = ‖f‖W s
1 ([0,1]) + ‖f‖C([0,1])

from above (for d = 1) even more by adding functions from a Hölder class Cα, where
0 < α ≤ 1/2. Hence we take the space

F̃ = F + Cα

with the norm

‖f‖ eF := inf{‖g‖F + ‖h‖Cα | f = g + h, g ∈ F, h ∈ Cα}.

Since the unit ball of F̃ is larger than that of F we still have estd−wor
n (F̃ , Lp) ≍ 1 for s ≤ 1. It

is well known that eall−wor
n (Cα([0, 1]), Lp) ≍ n−α and the same holds for F̃ if α ≤ s−1/2+1/p.

Hence for p ∈ [2,∞) we obtain

ℓwor−B(r, p) = 0 for all r ∈
(

0,
1

2
+

1

p

]
.

We learnt some properties of the power function by using known results for Sobolev
spaces in the case s/d ≤ 1/p1 so that function values did not supply even convergence. Since
we needed to assume that s/d > 1/p1 − 1/p, the case p = ∞ could not be covered.

We now recall some results for Sobolev spaces when the embedding condition is satisfied
and when there is a difference in the convergence rates between function values and arbitrary
linear functionals.

Example 7 (Sobolev space W s
1 ([0, 1]d), 1 ≤ p ≤ ∞).

Consider the approximation problem for the Sobolev space W s
1 ([0, 1]d) with error mea-

sured in Lp. We now assume that s/d ≥ 1. Then function values are well defined and are
continuous linear functionals. Furthermore,

estd−wor
n (W s

1 ([0, 1]d), Lp) ≍ n−s/d+1−1/p,

see, e.g., the survey of such results in Section 4.2.4 of [14] or [23, 24].

The last two examples imply the following estimates of the power function. For all r > 1
and p ∈ [1, 2] we have

ℓwor−B(r, p) ≤ 1 − 1

r

(
1 − 1

p

)
,
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and for all r > 1 and p ∈ [2,∞] we have

ℓwor−B(r, p) ≤ 1 − 1

2r
.

We summarize the properties of the power function established in this section in the
following theorem. The only case where we have a positive lower bound is the case p = ∞,
see Theorem 4.

Theorem 5.

ℓwor−B(r, p) = 0 for all r ∈ (0, 1] and p ∈ [1, 2],

ℓwor−B(r, p) = 0 for all r ∈ (0, 1
2

+ 1
p
] and p ∈ (2,∞),

ℓwor−B(r, p) ≤ 1 − 1

r

(
1 − 1

p

)
for all r > 1 and p ∈ [1, 2],

ℓwor−B(r, p) ≤ 1 − 1

2r
for all r > 1 and p ∈ [2,∞),

1 − 1

r
≤ ℓwor−B(r,∞) ≤ 1 − 1

2r
for all r > 1.

It is interesting to notice that although we do not know the exact values of the power
functions in the Hilbert and Banach cases, we can check that they are different at least for
p = 2. Indeed, from Theorems 1 and 5 we have

ℓwor−B(r, 2) = ℓwor−H(r, 2) for all r ∈ (0, 1
2
],

ℓwor−B(r, 2) = 0 < 1
2
≤ ℓwor−H(r, 2) for all r ∈ (1

2
, 1],

ℓwor−B(r, 2) ≤ 1 − 1

2r
<

2r

2r + 1
≤ ℓwor−H(r, 2) for all r ∈ (1,∞).

This shows that at least for p = 2 the power of function values for the Hilbert case is larger
than for the Banach case for all r > 1

2
.

Obviously, it would be desirable to find the exact values of the power function ℓwor−B(r, p)
for all r ∈ (0,∞) and p ∈ [1,∞]. However, it could be a very difficult problem. Hence, as
maybe a less difficult problem, we would like to check the following property of the power
function.

Open Problem 4. For p ∈ [1,∞], find the supremum a∗(p) of a for which

ℓwor−B(r, p) = 0 for all r ∈ (0, a].

We only know that a∗(p) ≥ 1 for all p ∈ [1,∞).
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We already indicated that the power functions for the Hilbert and Banach cases are
different for p = 2. It would be of interest to check if this holds for all p.

Open Problem 5. Find all p ∈ [1,∞] for which

ℓwor−B(·, p) 6= ℓwor−H(·, p).

Similar as in Example 3 we present an example of a Banach space F where the ratio

estd−wor
n (F,Lp)

eall−wor
n (F,Lp)

is large for p > 1 and a fixed n.

Example 8. Take F = ℓn+1
1 , i.e., F = R

n+1 with the ℓ1 norm. Then we obtain

estd−wor
n (F,Lp) = (n + 1)1−1/peall−wor

n (F,Lp), (2)

since estd−wor
n (F,Lp) = 1 and eall−wor

n (F,Lp) = (n + 1)1/p−1. The upper bound in the last
statement follows again with the information N(x) = (x2 − x1, x3 − x2, . . . , xn+1 − xn) while
the lower bound follows from the fact that the unit ball of ℓn+1

1 contains a ℓn+1
p ball of radius

(n + 1)1/p−1.
Again this ratio (n + 1)1−1/p as in (2) can be obtained with a Hilbert space and actually

we can take the same spaces as in Example 3, i.e., we define in H = R
n+1 the scalar product

〈f, g〉H =

[
n+1∑

i=1

fi

][
n+1∑

i=1

gi

]
+ ε

n+1∑

i=1

figi for all f, g ∈ H,

and consider the limit where ε > 0 tends to zero.

We end this section with another open problem.

Open Problem 6. Find the supremum of estd−wor
n (F,Lp)/e

all−wor
n (F,Lp) over all Banach

and/or Hilbert spaces. So far we know that

sup
F

estd−wor
n (F,Lp)

eall−wor
n (F,Lp)

≥ (n + 1)1−1/p, (3)

and equality holds if p = ∞.
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3 The randomized setting

We approximate the embedding operator I : F → Lp in the randomized setting. We now
briefly define this setting. The reader may find more on this subject, e.g., in [14, 15, 21].

We approximate I by algorithms An that use n values of linear functionals on the average
and each linear functional is chosen randomly with respect to a probability distribution.

More precisely, the algorithm An is of the following form

An(f, ω) = φn,ω

(
L1,ω1(f), L2,ω2(f), . . . , Ln(ω),ωn(ω)

(f)
)

. (4)

Here ω = [ω1, ω2, . . . ], and the linear functionals Lj,ωj
are random functionals distributed

according to a probability distribution on elements ωj which may depend on j as well as
on the values already computed, i.e., on Li,ωi

(f) for i = 1, 2, . . . , j − 1. The mapping
φn,ω : R

n(ω) → Lp is a random mapping, and

Eω n(ω) ≤ n.

We also allow adaptive choices of the functionals Lj,ωj
. That is, Lj,ωj

may depend on the
already selected functionals and the values L1,ω1(f), L2,ω2(f), . . . , Lj−1,ωj−1

(f).
Without loss of generality, we assume that An(f, ·) is measurable, and define the ran-

domized error of An as

eran(An) = sup
‖f‖F≤1

(
Eω‖I(f) − An(f, ω)‖2

p

)1/2
.

Again we compare such algorithms with algorithms that are based on function values,
i.e., each Lj,ωj

is now of the form Lj,ωj
(f) = f(tj,ωj

) and

An(f, ω) = φn,ω

(
f(t1,ω1), f(t2,ω2), . . . , f(tn(ω),ωn(ω)

)
)

. (5)

Hence, we consider algorithms that use n linear functionals either from the class Λstd or
the class Λall. We define the minimal errors as follows.

Definition 2. For n ∈ N0, let

eall−ran
n (F,Lp) = inf

{
eran(An) | Lj ∈ Λall and An as in (4)

}
,

and
estd−ran

n (F,Lp) = inf
{
eran(An) | Lj ∈ Λstd and An as in (5)

}
.
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For n = 0, it is easy to see that the best algorithm is A0 = 0 and obtain

eall−ran
0 (F,Lp) = estd−ran

0 (F,Lp) = sup
‖f‖F≤1

‖f‖p = sup
‖f‖F≤1

‖I(f)‖p = ‖I‖.

This is the initial error that can be achieved without computing any linear functional on the
functions f . Clearly,

eall−ran
n (F,Lp) ≤ estd−ran

n (F,Lp) for all n ∈ N.

The sequences
(
eall−ran

n (F,Lp)
)

and
(
estd−ran

n (F,Lp)
)

are both non-increasing but not neces-
sarily convergent to zero.

As in the worst case setting, we want to compare the rates of convergence

rall−ran(F,Lp) = r
(
eall−ran

n (F,Lp)
)

and rstd−ran(F,Lp) = r
(
estd−ran

n (F,Lp)
)
.

In particular, we would like to know if it is possible that the sequence
(
rall−ran(F,Lp)

)

converges much faster than the sequence
(
rstd−ran(F,Lp)

)
. The main question addressed in

this section is to find or estimate the power function defined as ℓ ran−x : (0,∞)×[1,∞] → [0, 1]
by

ℓ ran−x(r, p) := inf
F : rall−ran(F,Lp)=r

rstd−ran(F,Lp)

r
,

where x ∈ {H,B} and indicates that the infimum is taken over all Hilbert spaces (x = H)
or over all Banach spaces (x = B) continuously embedded in Lp and the rate of convergence
is r when we use arbitrary linear functionals. In the randomized setting we do not need to
assume that function values are continuous linear functionals.

3.1 Double Hilbert Case

In this subsection we consider the approximation problem defined over a Hilbert space with
the error measured also in the Hilbert space L2. It may be surprising but the results in the
double Hilbert case are complete due to [28], and there is no need to discuss different cases
depending on the values of r.

Theorem 6 ([28]). Let I : H → L2(Ω) be a continuous embedding from a Hilbert space H
into L2(Ω). Then

rall−ran(H,L2) = rstd−ran(H,L2).

Therefore
ℓ ran−H(r, 2) = 1 for all r > 0.
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We add that it was known before, see [13, 25], that also

rall−ran(H,L2) = rall−wor(H,L2).

This means that the power of function values in the randomized setting is the same as the
power of arbitrary linear functionals in the worst case setting, which in turn is the same as
in the randomized setting.

3.2 Other Cases

For p > 2, we know examples from the literature where the rate rall−ran(H,Lp) is larger than
the rate rstd−ran(H,Lp). Namely take I : W r

2 ([0, 1]) → Lp([0, 1]). Then with Λall one can
achieve the order n−r (with additional log terms in the case p = ∞, but the order is still r),
see [10]. For Λstd the optimal order is n−r+1/2−1/p, see [2]. The authors of [2, 10] studied the
case of integer r, but the results can be extended via interpolation to all r > 1. Therefore
we obtain

ℓ ran−H(r, p) ≤ r − 1/2 + 1/p

r
if r ≥ 1 and p > 2.

We summarize these estimates of the power function in the following theorem.

Theorem 7. Let p > 2. Then

ℓ ran−H(r, p) ≤ 1 − 1/2 − 1/p

r
for all r ≥ 1.

Sobolev embeddings in the randomized setting were studied by several authors, including
[2, 3, 4, 10, 12, 21, 25]. For our purpose, the most important papers are [2, 10] and the
paper [3] for the interpolation argument.

For the embedding I : W r
2 ([0, 1]) → L∞([0, 1]) the rate is improved by 1/2 if we switch

from the class Λstd to the class Λall. This gap of 1/2 is the largest possible under some
additional conditions, see [7, 9]. Let us add in passing that the same gap of 1/2 appears for
Λall between the worst case and the randomized setting.

The Hilbert case for p ∈ [1, 2) as well as the Banach case for all p ∈ [1,∞] have not yet
been studied. We pose this as an open problem.

Open Problem 7. Study the power function in the randomized setting for the Hilbert case
with p ∈ [1, 2) and for the Banach case for all p ∈ [1,∞]. In particular, determine the
supremum a∗(p) of a for which

ℓ ran−H/B(r, p) = 0 for all r ∈ (0, a].
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4 The average case setting with a Gaussian measure

In the average case setting we assume that I : F → Lp(Ω) is continuously embedded and
function evaluations are continuous functionals on F . As far as we know, only the case p = 2
was studied and we report the known results from [5] for this case.

We assume that F is a separable Hilbert/Banach space equipped with a zero mean
Gaussian measure µ. As in the worst case setting, we consider deterministic algorithms, and
due to general results, see [21], it is enough to compare linear algorithms

An(f) =
n∑

k=1

Lk(f)gk and An(f) =
n∑

k=1

f(xk)gk,

where gk ∈ L2(Ω). The average case error of an algorithm is defined by

eavg(A) =

(∫

F

‖f − A(f)‖2
p dµ(f)

)1/p

.

As in the other settings, we define the minimal nth average case errors eall−avg
n (F,Lp),

estd−avg
n (F,Lp) and the power function ℓ avg−H/B. That is, for

rall/std−avg(F,Lp) = r(eall/std−avg
n (F,Lp))

we have

ℓ avg−x(r, p) := inf
F : rall−avg(F,Lp)=r

rstd−avg(F,Lp)

r
.

As always, x ∈ {H,B} and we take the infimum over separable Hilbert (x = H) or Banach
(x = B) spaces equipped with zero mean Gaussian measures that are continuously embedded
in Lp and for which function values are continuous linear functionals as well as the rate of
convergence is r when arbitrary linear functionals are used.

As already mentioned, results are known only for p = 2. Then the cases of the Hilbert
and Banach spaces are the same due to the presence of Gaussian measures. This follows
from the fact that even if F is a separable Banach space then the minimal errors for the
class Λall depend on the Gaussian measure ν = µ I−1 given by

ν(A) = µ ({f ∈ F | I(f) ∈ A}}

for a Borel set A of L2. The measure ν is also a zero mean Gaussian measure whose covariance
operator Cν : L2 → L2 is given by

〈Cνf1, f2〉L2
=

∫

L2

〈f, f1〉L2
〈f, f2〉L2

dν(f) for all f1, f2 ∈ L2.
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The operator Cν is self adjoint, semi positive definite, compact and has a finite trace. That
is, its ordered eigenvalues λj have a finite sum. It is known that

eall−avg
n (F,L2) =

( ∞∑

j=n+1

λj

)1/2

.

Similarly as in the randomized setting for the double Hilbert space, the results on the power
function are complete and there is no need to discuss different cases of r.

Theorem 8 ([5]). Let I : F → L2(Ω) be a continuous embedding from a separable Banach
space F equipped with a zero mean Gaussian measure µ into the L2(Ω). Then

rall−avg(F,L2) = rstd−avg(F,L2).

Therefore
ℓ avg−H/B(r, 2) = 1 for all r > 0.

Of course it would be interesting to study the power function for other values of p. This
is posed as our last open problem.

Open Problem 8. Study the power function in the average case setting for p 6= 2. In
particular, verify whether a similar result as Theorem 8 holds.
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variate problems in the average case setting, in: Monte Carlo and Quasi-Monte Carlo

Methods 2006, A. Keller, S. Heinrich, H. Niederreiter (eds.), 461–494, Springer, Berlin,
2008.

[6] A. Hinrichs, E. Novak and J. Vyb́ıral, Linear information versus function evaluations
for L2-approximation, J. Approx. Th. 153, 97–107, 2008.

[7] F. Y. Kuo, G. W. Wasilkowski and H. Woźniakowski, Multivariate L∞ approximation
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