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Abstract

This paper analyzes several regularization formulations arising in the continuum model /complete
electrode model for the electrical impedance tomography inverse problem of determining the conduc-
tivity parameter from boundary measurements. The formulations incorporate a priori information
of smoothness/sparsity on the inhomogeneity through Tikhonov regularization. The continuity and
differentiability of the forward operator with respect to the conductivity parameter in Lp-norms is
proved. These analytical results enable analyzing several popular formulations for both linearized
and nonlinear models, and some important properties, e.g., existence, stability, consistency and con-
vergence rates, are established. This provides some theoretical justifications of their practical usage.
Key words: electrical impedance tomography, Tikhonov regularization, convergence rate

1 Introduction

Electrical impedance tomography (EIT) is a diffusive imaging modality, and it has attracted considerable
interest in noninvasive imaging and nondestructive testing. For instance, the reconstructions can be used
for diagnostic purposes in medical applications, e.g., monitoring of lung function, detection of cancer
in the skin and breast and location of epileptic foci [4]. A similar inverse problem arises in geophysics,
where one uses electrodes on the surface of the earth or in bore holes to locate resistivity anomalies, e.g.,
minerals or contaminated sites, and it is known as geophysical resistivity tomography. Other applications
include monitoring oil/gas mixture in oil pipelines and flow measurement in pneumatic conveying [51].

A typical experimental setup is as follows. One first applies an electrical current through the electrodes
attached to the surface of the object, and then measures the resulting electrical potential on the boundary.
In practice, the procedure is repeated several times with different input currents, which yields a partial
information about the Neumann-to-Dirichlet map. EIT aims at determining a spatially-varying unknown
physical electrical conductivity of the object by using these noisy measurements.

This inverse problem was first formulated by Calderón [9], who also gave a first uniqueness result for
the linearized problem. The mathematical theory of unique solvability of the inverse problem with the
complete Neumann-to-Dirichlet map has received considerable attention, and many profound theoretical
results have been obtained. For a comprehensive overview of uniqueness results, we refer to the survey
[54] and also [29]. The stability issues of the inverse problem have also been extensively investigated [1].

As typical of many inverse problems, EIT suffers from strong nonlinearity and severe ill-posedness.
However, its broad prospective applications have aroused much interest in designing numerical techniques
for its efficient solution. A large number of numerical methods have been proposed in the literature [56,
57, 11, 49, 2, 42, 48, 40, 13, 38]. Some of them are of variational type, i.e., based on minimizing a certain
functional, typically the squared L2 norm of the difference between the simulated boundary electrical
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potential due to an assumed conductivity and the measured potential. One standard approach of this type
is described in [11], which applies one step of a Newton method with a constant conductivity as the initial
guess, see also [38]. Due to the ill-posedness of the inverse problem, some sort of regularization is beneficial
to combat the numerical instability inherent to the inverse problem. In [42], the standard Tikhonov
regularization for EIT in unbounded domains was studied, and the consistency, stability and convergence
rates were established. In [48], the Mumford-Shah model was suggested in the hope of simultaneously
segmenting the conductivity image and enhancing the resolution. In [31], a level set approach was
developed for estimating the interface, and in [13], it was used for total variation (TV ) regularized L2 data
fitting to reconstruct a piecewise constant conductivity. Powerful analytical machineries, e.g., spectral
analysis, can also lead to interesting reconstruction algorithms, e.g., factorization method [25, 37] and
d-bar method [30]. These studies focus on deterministic inversion techniques. Alternatively, statistical
inversion method [34] sheds interesting insights into reconstruction procedures, and has also gained some
interest.

Amongst existing approaches using Tikhonov regularization, a penalty on the sought-for conductivity
distribution is often incorporated. However, their mathematical properties and convergence behaviors
of related algorithms have not received due attention despite their wide-spread practical adoption, and
these procedures are largely applied in an ad hoc manner. As to relevant theoretical works, we are
aware of [16, 48, 42, 47]. In [16], a regularization approach based on wavelet was analyzed, especially the
convergence of an iterative algorithm was established. However, the analysis allows only continuously
differentiable conductivities. In [42], the consistency, stability and convergence rates were discussed
under a high Sobolev regularity on the conductivity, which can possibly make its numerical realization
inconvenient. In the interesting and important works [48, 47], the existence and stability were established
for Mumford-Shah and TV penalties, respectively, and also consistency [47]. Therefore, the issue of
convergence rate remains largely unexplored, and the popular H1-smoothness penalty has not been
addressed.

Also there is still an interest in developing new reconstruction procedures that yield images of better
resolution, especially by means of developing an increased focus on identifying useful information and on
fully exploiting a priori knowledge. For conductivity fields that consist of an unknown but essentially
uninteresting background plus a number of interesting features that have relatively “simple” mathe-
matical descriptions, the ideas related to sparsity seem to offer a promising way forward that could, in
principle, be adapted to develop a number of reconstruction techniques. Typically, the idea is incorpo-
rated by including a sparsity-promoting `1-penalty in the Tikhonov functional [14]. Recently, numerical
experiments [32] have demonstrated its great potentials in that it is capable of reconstructing noncon-
vex/multiple inclusions with their magnitudes reasonably retrieved, and we refer to [22] for evaluation
on real experimental data.

In this paper, we attempt to provide partial theoretical justifications of these formulations, i.e.,
smoothness/sparsity penalty for linearized and nonlinear models, especially convergence rates, along the
line of [48, 47]. We first develop necessary analytical machineries, including continuity and Fréchet dif-
ferentiability of the forward operator in Lp-norms. This is achieved with the help of Meyers’ celebrated
gradient estimate [43, 24, 21]. Then we capitalize on recent theoretical developments for nonsmooth
regularization [8, 46, 50, 27, 5, 41, 23, 45, 7] to derive well-posedness and convergence rate results.

Finally, when completing the manuscript, we got to know the interesting work [18], which analyzes
the standard Tikhonov regularization for diffuse optical tomography. Although the underlying ideas of
[18] and the present work are similar, there are some significant differences in the forward model as well
as the formulations: The optical tomography forward model in [18] has a Robin boundary condition and
their focus is on the standard H1-penalty, while the EIT model has a Neumann-type boundary condition
and we are interested in smoothness/sparsity penalty.

The rest of the paper is organized as follows. We develop necessary analytical results, including
continuity and differentiability of the forward operator with respect to Lp norms, for the continuum
model in Section 2, which improve known results in the L∞ norm, and enable us to apply regularization
theory in a Hilbert space. In Section 3 the extension to the practically popular complete electrode model
[52, 10, 6, 36] is discussed. Then in Section 4, we describe regularization formulations with `r penalties,

2



and study their properties, e.g., existence, stability, consistency and convergence rate, under various
conditions. The conventional smoothness penalty is covered as a special case. We conclude in Section 5
with a brief discussion on related issues.

2 Continuum model

This section studies the basic mathematical model, the continuum model, of the EIT problem. The
main part is devoted to proving analytic properties of the parameter-to-state map and to establishing
differentiability of the forward operator with respect to Lp norms.

2.1 Notation and definitions

Let Ω be an open bounded domain in Rd(d = 2, 3) with a Lipschitz boundary Γ. Throughout this paper,
we shall make use of the space H̃1(Ω), which is a subspace of the Sobolev space H1(Ω) with vanishing

mean on the boundary Γ, i.e., H̃1(Ω) =
{
v ∈ H1(Ω) :

∫
Γ
vds = 0

}
. The spaces H̃

1
2 (Γ) and H̃−

1
2 (Γ) are

defined similarly. These spaces are equipped with the usual norms.
In the absence of interior current source and in the electrostatic state, Maxwell’s system describing

electromagnetic fields inside the object reduces to the following elliptic equation

−∇ · (σ∇u) = 0 in Ω (1)

with a Neumann boundary condition σ ∂u∂n = j ∈ H̃− 1
2 (Γ) on the boundary Γ. We normalize the solution

by enforcing
∫

Γ
uds = 0 to ensure a unique solution u ∈ H̃1(Ω), and denote by F (σ) the forward operator.

In an EIT experiment, one measures a noisy version φδ ∈ L2(Γ) of the potential φ† = F (σ†)j (σ†

refers to the exact conductivity), with its accuracy measured by the noise level δ = ‖φ† − φδ‖L2(Γ). For

a given pair (j, φδ), the variational approaches seek an approximation to σ† by minimizing a certain
discrepancy functional together with an appropriate penalty over the following admissible set

A = {σ ∈ L∞(Ω) : λ ≤ σ ≤ λ−1 a.e. and supp(σ − σ†) ⊂ Ω′},

for some fixed λ ∈ (0, 1), where Ω′ is an open subset with a smooth boundary compactly contained in Ω.
We shall endow the set A with an Lp(Ω) norm (1 ≤ p ≤ ∞).

Remark 2.1. The admissible set A is closed and convex, but it has no interior points, i.e., for any
σ ∈ A, the ball Bε = {σ̃ : ‖σ̃ − σ‖Lp(Ω) ≤ ε} is not completely contained in A for any ε > 0. Therefore,
all the results presented below should be understood with respect to the relative topology.

In what follows C denotes some generic constant, which may differ at different occurrences. We first
state a well-known regularity estimate.

Lemma 2.1. For any σ ∈ A, the forward solution F (σ)j satisfies

‖F (σ)j‖H1(Ω) ≤ C‖j‖H− 1
2 (Γ)

.

Proof. The estimate follows directly from Lax-Milgram theorem.

Lemma 2.1 implies that the forward operator F (σ) is uniformly bounded for a fixed j. We also recall
the following norm equivalence result.

Lemma 2.2. On the space H̃1(Ω), the standard H1(Ω) norm is equivalent to the H1(Ω) semi-norm, i.e.,
there exist two constants c0 and c1 such that for any v ∈ H̃1(Ω)

c0‖v‖H1(Ω) ≤ ‖∇v‖L2(Ω) ≤ c1‖v‖H1(Ω).

For simplicity, we describe only results for one fixed input current j, and suppress the dependence
of the solution u = F (σ)j on j hereon. The extension to multiple data set, i.e., {(ji, φi)}Ni=1, or the
Neumann-to-Dirichlet map is straightforward. We remind that, in the latter case, the norm in the
discrepancy should be understood as the operator norm, see e.g., [48, 47].
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2.2 Continuity and differentiability

The differentiability of the forward operator F (σ) with respect to the L∞-norm is well-known. For
instance, it was already noted in the pioneering work [9] that the forward map is analytic in σ with
respect to the L∞-norm. In [15], the Frechét differentiability was proved, and a general framework was
provided in [39]. However, these results are concerned with L∞ differentiability, which is insufficient for
analyzing some Tikhonov functionals, including conventional H1-smoothness/sparsity penalty.

We will derive a differentiability result in Lp norms, which is crucial for analyzing the formulations in
Section 4. We shall prove continuity and Fréchet differentiability by applying Meyers’ celebrated gradient
estimates [43]. The proof techniques in this part are inspired by and closely follow [48], see also [15]. We
start by stating Meyers’ gradient estimate [43] as formulated in [48].

Theorem 2.1. Let Ω be a bounded Lipschitz domain in Rd(d ≥ 2). Assume that σ ∈ L∞(Ω) satisfies
λ < σ < λ−1 for some fixed λ ∈ (0, 1). For f ∈ (Lq(Ω))d and h ∈ Lq(Ω), let u ∈ H1(Ω) be a weak
solution of

−∇ · (σ∇u) = −∇ · f + h in Ω.

Then, there exists a constant Q ∈ (2,∞) depending on λ and d only, Q → 2 as λ → 0 and Q → ∞ as
λ→ 1, such that for any 2 < q < Q we obtain u ∈W 1,q

loc (Ω) and for any Ω1 ⊂⊂ Ω

‖u‖W 1,q(Ω1) ≤ C(‖u‖H1(Ω) + ‖f‖Lq(Ω) + ‖h‖Lq(Ω)),

where the constant C depends on λ, d, q, Ω1 and Ω.

In this theorem the boundary condition for the differential equation can be general. Its effect enters
the W 1,q-estimate through the term ‖u‖H1(Ω). Otherwise, no further regularity has been assumed on the
conductivity σ. In general, a precise estimate of the constant Q(λ, d) is missing, although in the two-
dimensional case, a sharp estimate of Q(λ, d) was derived in [3]. We shall denote by Q(λ) the number
defined in Theorem 2.1 by suppressing its dependence on d.

Assisted with Theorem 2.1 and by repeatedly applying Hölder’s inequality, we show the continuity of

the operator F (σ) with respect to the Lp norm for any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞].

Lemma 2.3. For the operator F (σ) and σ, σ + ϑ ∈ A, we have the following continuity estimate.

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] and σ, σ + ϑ ∈ A we have

‖F (σ + ϑ)− F (σ)‖H1(Ω) ≤ C‖ϑ‖Lp(Ω′);

(b) For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists q ∈ (2, Q(λ)) such that

‖F (σ + ϑ)− F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖Lp(Ω′);

(c) For p ≥ 1 and any q ∈ (2, Q(λ)) we have the following estimates

lim
‖ϑ‖Lp(Ω′)→0

‖F (σ + ϑ)− F (σ)‖W 1,q(Ω′) = 0.

Proof. For σ, σ + ϑ ∈ A, the weak formulations of F (σ) and F (σ + ϑ) gives∫
Ω

σ∇F (σ) · ∇vdx =

∫
Ω

(σ + ϑ)∇F (σ + ϑ) · ∇vdx, ∀v ∈ H̃1(Ω),

i.e., ∫
Ω

σ∇(F (σ)− F (σ + ϑ)) · ∇vdx =

∫
Ω

ϑ∇F (σ + δσ) · ∇vdx, ∀v ∈ H̃1(Ω).
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Taking v = F (σ)− F (σ + ϑ) ∈ H̃1(Ω) in the equation and noting the support of ϑ in Ω′ gives∫
Ω

σ|∇(F (σ)− F (σ + ϑ))|2dx =

∫
Ω

ϑ∇F (σ + ϑ) · ∇(F (σ)− F (σ + ϑ))dx

=

∫
Ω′
ϑ∇F (σ + ϑ) · ∇(F (σ)− F (σ + ϑ))dx

≤‖ϑ‖Lp(Ω′)‖∇F (σ + ϑ)‖Lq(Ω′)‖∇(F (σ)− F (σ + ϑ))‖L2(Ω),

where 1
p + 1

q = 1
2 . The assumption p ∈ ( 2Q(λ)

Q(λ)−2 ,∞] implies q < Q(λ). By Theorem 2.1, there exists a

constant C such that

‖∇F (σ + ϑ)‖Lq(Ω′) ≤ C‖F (σ + ϑ)‖H1(Ω) ≤ C‖j‖H− 1
2 (Γ)

.

This together with Lemma 2.2 shows

‖F (σ)− F (σ + ϑ)‖H1(Ω) ≤ C‖ϑ‖Lp(Ω′).

This shows the first part of the lemma.

To prove the second part, we fix q ∈ (2, Q(λ)) and choose p = 2q
q−2 , i.e., 1

p+ 1
q = 1

2 and p ∈ ( 4Q(λ)
Q(λ)−2 ,∞].

We apply Meyers’ theorem and obtain

‖F (σ)− F (σ + ϑ)‖W 1,q(Ω′) ≤ C
(
‖F (σ)− F (σ + ϑ)‖H1(Ω) + ‖ϑ∇F (σ + ϑ)‖Lq(Ω)

)
. (2)

The first term in the bracket has been estimated in part (a), and thus we only need to bound the term

‖ϑ∇F (σ + ϑ)‖Lq(Ω). Take any small ε such that q′ = q + ε ∈ (q,Q(λ)) and qq′

q′−q ≥ p. By appealing to
Hölder’s inequality, we deduce∫

Ω

|ϑ∇F (σ + ϑ)|qdx =

∫
Ω′
|ϑ|q|∇F (σ + ϑ)|qdx

≤
(∫

Ω′
|ϑ|

qq′
q′−q dx

)1− q
q′
(∫

Ω′
|∇F (σ + ϑ)|q

′
dx

) q
q′

≤ C‖j‖q
H−

1
2 (Ω)

(∫
Ω′
|ϑ|

qq′
q′−q dx

)1− q
q′

,

(3)

where we have applied Meyers’ theorem to the term ‖∇F (σ + ϑ)‖Lq′ (Ω
′). The choice qq′

q′−q ≥ p implies∫
Ω′
|ϑ|

qq′
q′−q dx =

∫
Ω′
|ϑ|p · |ϑ|

qq′
q′−q

−p
dx ≤ |λ|p−

qq′
q′−q

∫
Ω′
|ϑ|pdx, (4)

Collecting the exponents in inequalities (2)-(4) yields

‖F (σ + ϑ)− F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖
q′−q
q′q p

Lp(Ω′).

The choice of p ∈ ( 4Q(λ)
Q(λ)−2 ,∞] indicates that q ∈ (2, 4Q(λ)

2+Q(λ) ) ⊂ (2, Q(λ)), and thus q < q′ = 2q
4−q < Q(λ).

With this choice of q′, we have q′−q
q′q p = 1, i.e.,

‖F (σ + ϑ)− F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖Lp(Ω′),

which shows the second assertion.
Now we turn to the third assertion. By the proof of the second assertion, for any q ∈ (2, Q(λ)) and

q′ ∈ (q,Q(λ)) we have
‖ϑ∇F (σ + ϑ)‖Lq(Ω′) ≤ C‖j‖H− 1

2 (Γ)
‖ϑ‖L qq′

q′−q

(Ω′).
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If the exponent p̃ = qq′

q′−q ≤ p, then by Hölder’s inequality, we have

‖ϑ‖Lp̃(Ω′) ≤ |Ω′|
p−p̃
pp̃ ‖ϑ‖Lp(Ω′).

As to the other case, by the L∞(Ω) boundedness of the admissible set A we deduce for p̃ ≥ p ≥ 1

‖ϑ‖p̃Lp̃(Ω′) ≤ C‖ϑ‖
p
Lp(Ω′).

In either case, we have that the term goes to zero as ‖ϑ‖Lp(Ω′) → 0. Hence, we obtain

lim
‖ϑ‖Lp(Ω′)→0

‖F (σ + ϑ)− F (σ)‖W 1,q(Ω′) = 0

for arbitrary p ≥ 1.

Remark 2.2. For the case of p ∈ ( 2Q(λ)
Q(λ)−2 ,

4Q(λ)
Q(λ)−2 ) and 1

q = 1
2 −

1
p , we have by choosing q′ = Q(λ)− ε

‖F (σ + ϑ)− F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖rLp(Ω′) with r =
2(Q(λ)− ε− q)

(Q(λ)− ε)(q − 2)
.

It is easy to see that r < 2Q(λ)−q
Q(λ)(q−2) ≤ 1.

Let us now proceed to the differentiability of the forward operator. We fix σ ∈ A, and let ϑ be a
perturbation to σ belonging to L∞(Ω′) and extended by zero outside Ω′. Let w ∈ H̃1(Ω) be the weak
solution to ∫

Ω

σ∇w · ∇vdx = −
∫

Ω

ϑ∇F (σ) · ∇vdx ∀v ∈ H̃1(Ω).

The above equation is the linearized problem of the Neumann forward problem at σ. We shall call
F ′(σ) : Lp(Ω

′)→ H̃1(Ω) the map from ϑ to w.

Lemma 2.4. For any σ ∈ A, the linear mapping F ′(σ) defined above has the following continuity
properties

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) : Lp(Ω

′)→ H̃1(Ω) is bounded;

(b) For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists a q ∈ (2, Q(λ)) such that F ′(σ) : Lp(Ω

′) → W 1,q(Ω′) is

bounded;

(c) For p ≥ 1 and any q ∈ (2, Q(λ))

lim
‖ϑ‖Lp(Ω′)→0

‖F ′(σ)ϑ‖W 1,q(Ω′) = 0.

Proof. For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], we can choose q by 1

q+ 1
p = 1

2 , i.e., q ∈ (2, Q(λ)). By the weak formulation

of F ′(σ)ϑ and the generalized Hölder inequality, we have∫
Ω

σ|∇F ′(σ)ϑ|2dx = −
∫

Ω

ϑ∇F (σ) · ∇F ′(σ)ϑdx

= −
∫

Ω′
ϑ∇F (σ) · ∇F ′(σ)θdx

≤ ‖ϑ‖Lp(Ω′)‖∇F (σ)‖Lq(Ω′)‖∇F ′(σ)ϑ‖L2(Ω)

≤ C‖ϑ‖Lp(Ω′)‖F (σ)‖H1(Ω)‖∇F ′(σ)ϑ‖L2(Ω).
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This together with Lemma 2.2 implies that the operator F ′(σ) : Lp(Ω
′) → H̃1(Ω) is bounded, thereby

showing the first assertion. To prove the second and third assertions, we appeal to Meyers’ theorem to
derive

‖F ′(σ)ϑ‖W 1,q(Ω′) ≤ C
(
‖F ′(σ)ϑ‖H1(Ω) + ‖ϑ∇F (σ)‖Lq(Ω)

)
.

Therefore, we need to bound the term ‖ϑ∇F (σ)‖Lq(Ω), which can be estimated as in Lemma 2.3. This
shows assertions (b) and (c).

The next result shows differentiability of the operator F .

Theorem 2.2. Let p ∈ ( 2Q(λ)
Q(λ)−2 ,∞]. Then the forward operator F is differentiable in the sense that for

any σ, σ + ϑ ∈ A there holds

‖F (σ + ϑ)− F (σ)− F ′(σ)ϑ‖H1(Ω)

‖ϑ‖Lp(Ω′)
→ 0 as ϑ→ 0 in Lp(Ω

′).

Proof. Since ϑ vanishes on the boundary, the function w = F (σ + ϑ)− F (σ)− F ′(σ)ϑ ∈ H̃1(Ω) satisfies∫
Ω

(σ + ϑ)∇w · ∇vdx = −
∫

Ω

ϑ∇F ′(σ)ϑ · ∇vdx ∀ v ∈ H̃1(Ω).

Taking v = w in the weak formulation gives∫
Ω

(σ + ϑ)|∇w|2dx = −
∫

Ω

ϑ∇F ′(σ)ϑ · ∇wdx = −
∫

Ω′
ϑ∇F ′(σ)ϑ · ∇wdx

≤ ‖ϑ‖Lp(Ω′)‖∇F ′(σ)ϑ‖Lq(Ω′)‖∇w‖L2(Ω′).

We observe that p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] implies 2 ≤ q < Q(λ). By applying Lemma 2.4(c) to the term

‖∇F ′(σ)ϑ‖Lq(Ω′), we arrive at the desired assertion.

The Lipschitz continuity of the operator F ′(σ) is essential, e.g., in studying convergence rates of
regularization methods [19] and in analyzing iterative algorithms, and it will be used in Section 4.

Theorem 2.3. For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) is Lipschitz continuous with respect to

Lp(Ω
′) in the sense that for any σ, σ + ϑ ∈ A

‖F ′(σ + ϑ)− F ′(σ)‖L(Lp(Ω′),H̃1(Ω)) ≤ C‖ϑ‖Lp(Ω′).

Proof. For any ς ∈ Lp(Ω′), by the weak formulations for F ′(σ)ς and F ′(σ + ϑ)ς, i.e.,∫
Ω

σ∇F ′(σ)ς · ∇vdx = −
∫

Ω

ς∇F (σ) · ∇vdx ∀v ∈ H̃1(Ω),∫
Ω

(σ + ϑ)∇F ′(σ + ϑ)ς · ∇vdx = −
∫

Ω

ς∇F (σ + ϑ) · ∇vdx ∀v ∈ H̃1(Ω),

we derive that w = F ′(σ + ϑ)ς − F ′(σ)ς ∈ H̃1(Ω) satisfies∫
Ω

σ∇w · ∇vdx = −
∫

Ω

ς∇(F (σ + ϑ)− F (σ)) · ∇vdx−
∫

Ω

ϑ∇F ′(σ + ϑ)ς · ∇vdx ∀v ∈ H̃1(Ω).

Letting v = w and applying the generalized Hölder’s inequality with q satisfying 1
p + 1

q = 1
2 and q ∈

(2, Q(λ)) to the two terms on the right hand side of the above identity, we get

−
∫

Ω

ς∇(F (σ + ϑ)− F (σ)) · ∇wdx ≤ ‖ς‖Lp(Ω′)‖∇(F (σ + ϑ)− F (σ))‖Lq(Ω′)‖∇w‖L2(Ω′)

≤ C‖ς‖Lp(Ω′)‖ϑ‖Lp(Ω′)‖∇w‖L2(Ω′),
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and

−
∫

Ω

ϑ∇F ′(σ + ϑ)ς · ∇wdx ≤ ‖ϑ‖Lp(Ω′)‖∇F ′(σ + ϑ)ς‖Lq(Ω′)‖∇w‖L2(Ω′)

≤ C‖ς‖Lp(Ω)‖ϑ‖Lp(Ω′)‖∇w‖L2(Ω′),

in view of Lemmas 2.3(b) and 2.4(b). Combining these two estimates gives

‖∇w‖L2(Ω) ≤ C‖ς‖Lp(Ω′)‖ϑ‖Lp(Ω′),

which shows the desired assertion.

Remark 2.3. For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], by Theorem 2.3 and trace theorem [20], we have the following

estimate for the linear approximation of the operator F (σ)

‖F (σ + ϑ)− F (σ)− F ′(σ)ϑ‖L2(Γ) ≤ L
2 ‖ϑ‖

2
Lp(Ω′),

where L is the Lipschitz constant of the operator F ′(σ), which depends on the constant from Meyers’
estimate and the Sobolev embedding constant.

The adjoint of the operator F ′(σ) is very useful in analyzing the convergence rate as well as in
deriving the gradient of the discrepancy functional. We have the following representation, where p∗ is
the conjugate exponent of p ≥ 1, i.e., 1

p + 1
p∗ = 1.

Theorem 2.4. The adjoint of the operator F ′(σ) : Lp(Ω
′)→ L2(Γ) is given by

(F ′(σ))∗ : L2(Γ)→ Lp∗(Ω
′),

f 7→ −∇ũ · ∇F (σ),

where ũ ∈ H̃1(Ω) solves the adjoint problem∫
Ω

σ∇ũ · ∇vdx =

∫
Γ

fvds ∀v ∈ H̃1(Ω).

Proof. For any ϑ ∈ Lp(Ω′), letting v = ũ and v = F ′(σ)ϑ in the weak formulations for F ′(σ)ϑ and ũ
respectively gives ∫

Ω′
−ϑ∇F (σ) · ∇ũdx =

∫
Γ

F ′(σ)ϑfds,

which shows the desired assertion.

In summary, we have the following useful corollary.

Corollary 2.1. If d = 2, or if d = 3 and additionally λ is sufficiently close to one, then the operator F (σ)
is differentiable, and the operator F ′(σ) is Lipschitz continuous with respect to the topology of H1(Ω′).

Proof. By the Sobolev embedding theorem [20], we have

H1(Ω′) ↪→ Ls(Ω
′) for any

{
s <∞, d = 2,
s ≤ 6, d = 3.

Therefore the result holds naturally for d = 2. In case of d = 3, we need some Q(λ) > 2 such that
4Q(λ)
Q(λ)−2 < 6, i.e. Q(λ) > 6, according to Lemma 2.3 and Theorem 2.3. By Meyers’ theorem, we have

Q(λ)→∞ as λ→ 1 and Q(λ) depends continuously on λ [43]. Therefore for λ sufficiently close to 1, we
have Q(λ) > 6 as desired.

Remark 2.4. Note that the classical L∞ estimates do not imply Corollary 2.1 since H1(Ω′) does not
embed continuously into L∞(Ω′) for d = 2, 3, and thus the Lp estimates derived here are advantageous
for justifying regularization in the Hilbert space H1(Ω′).

8



The continuity and differentiability results can be used to study various discrepancy functionals. The
following result shows the continuity of the standard least-squares discrepancy J(σ) = 1

2‖F (σ)−φδ‖2L2(Γ).

Proposition 2.1. The functional J is Hölder continuous with respect to Lp(Ω
′) for any 1 ≤ p ≤ ∞.

Proof. First we fixed p ∈ ( 2Q(λ)
Q(λ)−2 ,∞]. For any σ, σ + ϑ ∈ A, by Cauchy-Schwarz inequality, we observe

|J(σ + ϑ)− J(σ)| ≤ 1
2‖F (σ)− F (σ + ϑ)‖L2(Γ)‖F (σ) + F (σ + ϑ)− 2φδ‖L2(Γ).

The choice p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] implies the existence of a q ∈ (2, Q(λ)) such that 1

p + 1
q = 1

2 . By trace theorem

[20], Lemma 2.3 and the generalized Hölder inequality, we can estimate the term ‖F (σ+ϑ)−F (σ)‖L2(Γ)

as
‖F (σ)− F (σ + ϑ)‖L2(Γ) ≤ C‖F (σ + ϑ)− F (σ)‖H1(Ω) ≤ C‖ϑ‖Lp(Ω′).

The term ‖F (σ)+F (σ+ϑ)−2φδ‖L2(Γ) is uniformly bounded by Lemma 2.1 and trace theorem. Therefore,

J is Lipschitz continuous with respect to Lp(Ω
′) for any p ∈ ( 2Q(λ)

Q(λ)−2 ,∞]. The Hölder continuity with

respect to Lp(Ω
′) for any 1 ≤ p ≤ ∞ follows from the L∞(Ω) boundedness of the set A.

Remark 2.5. All the results presented in this section are for the admissible set A, which allows only
variation of the conductivity in the interior part Ω′ of the domain Ω. This restriction can be removed
by imposing higher regularity on the flux j, i.e., j ∈ Ls(Γ) ∩ H̃− 1

2 (Γ) for sufficiently large s, and on the
boundary Γ, see Theorem 3.1 in the next section. All the results remain valid with this modification.

3 Complete electrode model

This section discusses relevant analytical results for the complete electrode model (CEM), presently
the most accurate model. This model can achieve an accuracy comparable with experimental precision
[12, 52, 10], and thus it is standard model for medical applications.

In contrast to the continuum model discussed earlier, the CEM utilizes nonstandard boundary con-
ditions to capture important features of EIT experiments, e.g., discrete nature of electrodes, contact
impedance effect and shunting effect. Let Ω ⊂ Rd(d = 2, 3) be an open domain with a smooth boundary,
and {el}Ll=1 ⊂ Γ be L electrodes, each with a positive surface measure. We assume that each electrode
is connected and they are disjointed from each other, i.e., ēi ∩ ēj = ∅ for i 6= j. Let RL� := {I ∈ RL :∑L
l=1 Il = 0}, and H = H1(Ω) ⊕ RL� with its norm defined by ‖(v, V )‖2H = ‖v‖2H1(Ω) + ‖V ‖2RL , which

is equivalent to the norm defined by ‖(v, V )‖2∗ = ‖∇v‖2L2(Ω) +
∑L
l=1 ‖v − Vl‖2L2(Γ) [52]. Then the model

reads as follows: Given a current I ∈ RL� and positive contact impedances {zl}Ll=1, find (u, U) ∈ H such
that 

−∇ · (σ∇u) = 0 in Ω,

u+ zlσ
∂u
∂n = Ul on el, l = 1, 2, . . . , L,∫

el
σ ∂u∂nds = Il for l = 1, 2, . . . , L,

σ ∂u∂n = 0 on Γ\ ∪Ll=1 eL.

(5)

Then the inverse problem consists of estimating the conductivity σ from the measured vector U ∈ RL� .
We first discuss the forward problem (5). The weak formulation is given by [52]: find (u, U) ∈ H such

that ∫
Ω

σ∇u · ∇vdx+

L∑
l=1

z−1
l

∫
el

(u− Ul)(v − Vl)ds =

L∑
l=1

IlVl ∀(v, V ) ∈ H. (6)

Lax-Milgram theorem yields the existence and uniqueness of a solution (u, U) [52]. We denote the solution
operator by F (σ), i.e., (u, U) = (F1(σ)I, F2(σ)I) = F (σ)I ∈ H. Again, we suppress the dependence on
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the input current I. The admissible set A for the conductivity σ is given by A = {σ ∈ L∞(Ω) : λ ≤ σ ≤
λ−1 a.e. Ω} for some fixed constant λ ∈ (0, 1).

We first recall the following elliptic regularity estimate [21, Thm 2] [24], which is analogue of Theorem
2.1 for Neumann problems. It enables exploiting the higher regularity of the Neumann boundary condition
in system (5) and thus establishing better regularity for the model.

Theorem 3.1. For any σ ∈ A, there exists a constant Q, which depends on d and λ only and tends
to ∞ and 2 as λ → 1 and λ → 0, respectively, such that for any q ∈ (2, Q), any s ∈ [q − q

d ,∞] and

j ∈ Ls(Γ) ∩ H̃− 1
2 (Γ), f ∈ (Lq(Ω))d, the solution u to the Neumann problem

−∇ · (σ∇u) = ∇ · f in Ω and σ
∂u

∂n
= j on Γ

satisfies the estimate
‖u‖W 1,q(Ω) ≤ C

(
‖j‖Ls(Γ) + ‖f‖Lq(Ω)

)
,

where C is a constant depending on d, λ, Ω and q only.

A first estimate is the uniform boundedness of the operator F (σ).

Lemma 3.1. The operator F (σ) : A → H is uniformly bounded.

Proof. Setting (v, V ) = (u, U) ∈ H in the weak formulation (6) gives

λ‖∇u‖2L2(Ω) + c0

L∑
l=1

‖u− Ul‖2L2(el)
≤
∫

Ω

σ|∇u|2dx+

L∑
l=1

z−1
l

∫
el

(u− Ul)2ds

=

L∑
l=1

IlUl ≤ ‖I‖RL‖(u, U)‖H ,

where c0 = min{z−1
l , l = 1, . . . , L}. This shows the uniform boundedness of the operator F (σ).

The following theorem provides the key regularity result.

Theorem 3.2. For any σ ∈ A, there exists a constant Q > 2, depending on d and λ only and tending
to ∞ and 2 as λ → 1 and λ → 0, respectively, such that the solution (u, U) ∈ H to (5) satisfies for any
q ∈ (2, Q(λ))

‖u‖W 1,q(Ω) ≤ C‖I‖RL ,

where C is a constant depending on d, λ, Ω and q only.

Proof. By Lemma 3.1, there exists a solution (u, U) ∈ H such that

‖(u, U)‖H ≤ C‖I‖RL .

Next we rewrite equation (5) as {
−∇ · (σ∇u) = 0 in Ω,
σ ∂u∂n = g, on Γ,

where g =
∑L
l=1

1
zl

(Ul − u)χel ∈ H̃−
1
2 (Γ). Note that u ∈ H1(Ω) and Ul is a constant. By the Sobolev

embedding theorem [20], we have g ∈ Ls(Γ), ∀s < ∞ if d = 2 and g ∈ L4(Γ) if d = 3. In the case of
d = 2, by Theorem 3.1, we have for any q < Q(λ)

‖∇u‖Lq(Ω) ≤ C‖g‖Ls(Γ) ≤ C‖I‖RL ,

by Lemma 3.1. In the case of d = 3, similarly by Theorem 3.1, we have for any q < min(Q(λ), 6) again
‖∇u‖Lq(Ω) ≤ C‖I‖RL holds. The proof of the theorem is concluded if Q(λ) < 6, otherwise we can repeat
the procedure with the estimate ‖∇u‖Lq(Ω) ≤ C‖I‖RL for q < 6 and Sobolev embedding theorem [20]
that W 1,r(Ω) with r > 3 embeds continuously into L∞(Γ), and the theorem follows.
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With Theorem 3.2 at hand, we can state analogous continuity and differentiability results for the
CEM forward operator F (σ). Their proofs are identical with those in Section 2, and thus omitted. A
first result is the following continuity result.

Lemma 3.2. For the operator F (σ) and σ, σ + ϑ ∈ A, we have the following continuity estimate.

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] and σ, σ + ϑ ∈ A we have

‖F (σ + ϑ)− F (σ)‖H ≤ C‖ϑ‖Lp(Ω);

(b) For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists a q ∈ (2, Q(λ)) such that

‖F1(σ + ϑ)− F1(σ)‖W 1,q(Ω) ≤ C‖ϑ‖Lp(Ω);

(c) For p ≥ 1 and any q ∈ (2, Q(λ)) we have the following estimates

lim
‖ϑ‖Lp(Ω)→0

‖F1(σ + ϑ)− F1(σ)‖W 1,q(Ω) = 0.

Let us now proceed to differentiability. As before, we fix σ ∈ A, and let ϑ be a perturbation to σ
belonging to L∞(Ω). Let (w,W ) ∈ H be the weak solution to∫

Ω

σ∇w · ∇vdx+

L∑
l=1

z−1
l

∫
el

(w −Wl)(v − Vl)ds = −
∫

Ω

ϑ∇F1(σ) · ∇vdx ∀(v, V ) ∈ H.

The above equation is the linearized problem of the CEM forward problem at σ. We shall call F ′(σ) :
Lp(Ω)→ H the map from ϑ to (w,W ). Then we have the following.

Lemma 3.3. For any σ ∈ A, the linear map F ′(σ) defined above has the following continuity properties.

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) : Lp(Ω)→ H is bounded;

(b) For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists q ∈ (2, Q(λ)) such that F ′1(σ) : Lp(Ω)→W 1,q(Ω) is bounded;

(c) For p ≥ 1 and any q ∈ (2, Q(λ))

lim
‖ϑ‖Lp(Ω)→0

‖F ′1(σ)ϑ‖W 1,q(Ω) = 0.

Now we can state differentiability of the operator F (σ), and Lipschitz continuity of the operator F ′(σ).

Theorem 3.3. For any σ, σ + ϑ ∈ A, there hold

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], the operator F (σ) is differentiable in the sense

‖F (σ + ϑ)− F (σ)− F ′(σ)ϑ‖H
‖ϑ‖Lp(Ω)

→ 0 as ϑ→ 0 in Lp(Ω);

(b) For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) is Lipschitz continuous in the sense

‖F ′(σ + ϑ)− F ′(σ)‖L(Lp(Ω),H) ≤ C‖ϑ‖Lp(Ω).

As to the adjoint of the operator F ′(σ) : Lp(Ω)→ RL� , we have the following representation.
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Theorem 3.4. The adjoint of the operator F ′(σ) : Lp(Ω)→ RL� is given by

(F ′(σ))∗ : RL� → Lp∗(Ω),

Ĩ 7→ −∇ũ · ∇F1(σ),

where (ũ, Ũ) ∈ H solves the adjoint problem∫
Ω

σ∇ũ · ∇vdx+

L∑
l=1

z−1
l

∫
el

(ũ− Ũl)(v − Vl)ds =

L∑
l=1

ĨlVl ∀(v, V ) ∈ H.

In summary, we have the following corollary for the CEM forward operator F (σ).

Corollary 3.1. If d = 2, or if d = 3 and additionally λ is sufficiently close to one, then the operator F (σ)
is differentiable, and the operator F ′(σ) is Lipschitz continuous with respect to the topology of H1(Ω).

4 Applications to smoothness/sparsity regularization

Now we apply the analytical results of the previous sections to investigate several Tikhonov functionals
for the EIT inverse problem. We focus on the continuum model. The complete electrode model can be
treated analogously. The penalties of interest include smoothness and sparsity penalties. The former has
been very popular, while the latter has demonstrated its potential only recently [32, 22].

The purpose of using a priori information such as smoothness or sparsity is to counter insufficient
amount of information contained in the data as well as ill-posed nature of the problem. We are interested
in reconstructing conductivities σ that away from a known background σ0 are smooth or sparse. Let ϑ =
σ − σ0 be the inclusions/inhomogeneities. Here the background σ0 can be arbitrary, e.g., discontinuous.
The setting we are going to use for ϑ is a Hilbert space H1

0 (Ω′), i.e., ϑ ∈ H1
0 (Ω′), and we assume that the

space H1
0 (Ω′) is equipped with an orthonormal basis {ψk}. Then on the sequence {〈ϑ, ψk〉} of expansion

coefficients, we endow `r norms, i.e.,

‖ϑ‖r`r =

∞∑
k=1

|〈ϑ, ψk〉|r.

We consider the following penalty term Rr(ϑ)

Rr(ϑ) = 1
r‖ϑ‖

r
`r 1 ≤ r ≤ 2.

First, we observe that the penalty Rr(ϑ) is convex and weakly lower semi-continuous [7]. Second, the
choice r = 2 reproduces the classical smoothness penalty, i.e., R2(ϑ) = 1

2‖ϑ‖
2
H1(Ω′) in view of the norm

equivalence, which is one of most widely used penalties since the inaugural work [53], see [55, 51] for
applications in EIT. Third, the choice r ∈ [1, 2) is motivated by sparsity constraint [14]. Here ϑ is
assumed to have a sparse representation in the basis {ψk}, i.e., only finitely many coefficients {〈ϑ, ψk〉}
are nonzero. It is widely accepted that sparsity may be promoted via an Rr(r ∈ [1, 2)), prominently
R1, penalty on expansion coefficients. Therefore, by considering an Rr(r ∈ [1, 2]) penalty, we treat
smoothness/sparsity penalty in a unified way.

We study the linearized and fully nonlinear models separately, by capitalizing on recent progress on
nonsmooth regularization [8, 46, 50, 27, 5, 41, 23, 45, 7]. Throughout this section, we assume Corollary
2.1 holds.

4.1 Linearized model

Although the EIT inverse problem is inherently nonlinear, a linearized model has been popular [56, 57,
11, 49, 40, 26]. This is partly attributed to the fact that there are diverse sources, possibly significant, of
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model uncertainties, in, e.g., geometry and boundary conditions. However, the analysis of such lineariza-
tion procedure lags far behind, and many basic questions about the validity of the procedure remains
unaddressed. Recently [26] shows that such a procedure preserves the outer support of the inclusions.

The linearized model consists of approximately solving the following operator equation

F ′(σ0)ϑ+ F (σ0)− φδ = 0. (7)

A first remark concerning the linearized problem (7) is as follows.

Remark 4.1. By Lemma 2.4 and Corollary 2.1, the linear operator F ′(σ) : H1
0 (Ω′)→ H̃1(Ω) is bounded,

and by trace theorem [20], i.e., H̃1(Ω) embeds compactly into L2(Γ), the mapping F ′(σ) : H1
0 (Ω′)→ L2(Γ)

is thus bounded and compact. Consequently, the linearized equation (7) is ill-posed. The analysis developed
here does not cover the TV penalty, e.g. [17], due to the fact the space of bounded variation BV (Ω′) only
embeds into L d

d−1
(Ω′) [20], while the boundedness of F ′(σ) : L d

d−1
(Ω′) → L2(Γ) (d = 2, 3) is yet to be

established.

Remark 4.2. The space `r(r ∈ [1, 2)) is a subspace of `2, and thus the Rr-penalty enforces a stronger
penalization than H1(Ω′)-penalty.

According to the above remarks the linear operator equation (7) is ill-posed in the sense of Hadamard.
For its stable numerical solution, typically Tikhonov regularization is applied

ΨL(ϑ) = 1
2‖F

′(σ0)ϑ− φ̃δ‖2L2(Γ) + αRr(ϑ),

where φ̃δ = φδ − F (σ0) denotes the linearized noisy data, and α is a scalar compromising the two terms.
A first question regarding any mathematical formulation is its well-posedness. By the results in

Section 2 and Remark 4.1, we have the following existence and stability results. It addresses a linear
inverse problem, hence it follows directly from general results in [14].

Theorem 4.1. There exists at least one minimizer ϑδα to the functional ΨL. Let {φ̃n} ⊂ L2(Γ) be a
sequence of noisy data converging to φ̃δ, and ϑn be a minimizer to ΨL with φ̃n in place of φ̃δ. Then the
sequence {ϑn} has a subsequence converging in H1(Ω′) to a minimizer of ΨL.

To state a consistency result, we first recall the concept of an Rr-minimizing solution ϑ†, i.e.,

ϑ† = arg min
ϑ∈S

Rr(ϑ),

where the set S = {ϑ ∈ H1
0 (Ω′) : ‖F ′(σ0)ϑ− φ̃†‖L2(Γ) = 0}.

The formulation ΨL employs a linearized model, which represents the full nonlinear model only ap-
proximately. Hence, it is not obvious that an exact solution for noiseless data exists, i.e., the data
φ̃† = φ† − F (σ0) may lie beyond the range of F ′(σ0), which would result in an empty set S. In this case
S would need to be defined as the set of parameters ϑ attaining a minimum of the residual. In order to
avoid this complication we a priori assume the existence of a solution of the linearized problem. We note
that ϑ† is generally different from the true inhomogeneity σ† − σ0.

Now we can state the following consistency result [14].

Theorem 4.2. Assume that there exists an Rr-minimizing solution. If the parameter α = α(δ) satisfies

limδ→0 α(δ) = 0 and limδ→0
δ2

α(δ) = 0, then the sequence of minimizers {ϑδα} has a convergent subsequence

in H1(Ω′) to an Rr-minimizing solution ϑ† as δ → 0. Further, if ϑ† is unique, then the whole sequence
converges.

In order to obtain quantitative estimates for the minimizer ϑδα, a source condition on the solution ϑ†,
is required, and we refer to [28] for an up-to-date account of such conditions. To this end, we need the
adjoint of the operator F ′(σ) with respect to the H1

0 (Ω′) inner product.
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Theorem 4.3. The adjoint of the operator F ′(σ) : H1
0 (Ω′)→ L2(Γ) is given by

(F ′(σ))∗ : L2(Γ)→ H1
0 (Ω′),

f 7→ ũ,

where ũ ∈ H1
0 (Ω′) solves −∇2ũ+ ũ = −∇F (σ) · ∇w in Ω′, and w ∈ H̃1(Ω) is the solution to the adjoint

problem ∫
Ω

σ∇w · ∇vdx =

∫
Γ

fvds ∀v ∈ H̃1(Ω).

Proof. For any ϑ ∈ H1
0 (Ω′), we have by Theorem 2.4

〈f, F ′(σ)ϑ〉L2(Γ) = 〈ϑ,−∇F (σ) · ∇w〉L2(Ω′)

= 〈iϑ,−∇F (σ) · ∇w〉L2(Ω′)

= 〈ϑ, i∗(−∇F (σ) · ∇w)〉H1(Ω′),

where i is the embedding operator from H1
0 (Ω′) into L2(Ω′). The assertion follows directly from the

expression for the adjoint i∗ of the embedding operator, c.f., [44, Cor. 2.3].

We shall measure the error in Bregman distance [8]. We denote by ∂Rr(ϑ) the subdifferential of the
convex functional Rr at ϑ, i.e., ∂Rr(ϑ) = {ξ ∈ H1

0 (Ω′) : Rr(ϑ
′)−Rr(ϑ) ≥ 〈ξ, ϑ′ − ϑ〉 ∀ϑ′ ∈ H1

0 (Ω′)}, and
define the Bregman distance dξ(ϑ, ϑ

†) between ϑ and ϑ† relative to any ξ ∈ ∂Rr(ϑ†) by

dξ(ϑ, ϑ
†) = Rr(ϑ)−Rr(ϑ†)− 〈ξ, ϑ− ϑ†〉.

Now we can state a first estimate for the linearized model, which follows directly from the general
theory [8].

Theorem 4.4. Let ϑ† be an Rr-minimizing solution, and assume that it satisfies the following source
condition: there exists a w ∈ L2(Γ) such that (F ′(σ0))∗w = ξ ∈ ∂Rr(ϑ†). Then for a parameter choice
rule α ∼ δ, there hold

dξ(ϑ
δ
α, ϑ

†) ≤ Cδ and ‖F ′(σ0)ϑδα − φ̃δ‖L2(Γ) ≤ Cδ.

In case of R2, Theorem 4.4 gives an estimate in H1(Ω′) for the conventional smoothness penalty. We
remark that Theorem 4.4 actually gives an estimate in the H1(Ω′)-norm for any r ∈ (1, 2]. To see this,
we recall the following inequality for Bregman distance dξ(ϑ, ϑ

†) [5, Lem. 2.7] [23, Lem. 10].

Lemma 4.1. Let r ∈ (1, 2]. There exists a constant cr > 0 depending only on r such that

dξ(ϑ
′, ϑ) := Rr(ϑ

′)−Rr(ϑ)− 〈ξ, ϑ′ − ϑ〉 ≥
cr‖ϑ′ − ϑ‖2H1(Ω′)

3 + 2Rr(ϑ) +Rr(ϑ′)

for all ϑ′, ϑ ∈ dom(Rr) for which ∂Rr(ϑ) 6= ∅.

Hence the estimate in Theorem 4.4 implies a convergence rate of O(δ
1
2 ) in the H1(Ω′)-norm. However,

the interesting case R1 is not covered. This can be remedied by imposing extra conditions [41, 23].

Lemma 4.2. Let r ∈ [1, 2) and the solution ϑ† have a finite support K with respect to {ψk}. Let ϑ†

satisfy the following source condition: there exists a w ∈ L2(Γ) such that (F ′(σ0))∗w = ξ ∈ ∂Rr(ϑ†), and
F ′(σ0) be injective on {ψk, k ∈ K}. Then for any ξ ∈ ∂Rr(ϑ†)

‖ϑ− ϑ†‖rH1(Ω′) ≤ C1‖F ′(σ0)(ϑ− ϑ†)‖rL2(Γ) + C2dξ(ϑ, ϑ
†).

Proof. The proof can be found in [23, Thms. 14 and 15] for the cases r > 1 and r = 1, respectively.

14



Now we can show an enhanced convergence rate of order O(δ
1
r ).

Theorem 4.5. Let r ∈ [1, 2) and assume that the conditions in Theorem 4.4 hold. Further, let ϑ† have
a finite support K with respect to {ψk}, and the operator F ′(σ0) be injective on {ψk, k ∈ K}. Then for a
choice rule α ∼ δ there holds

‖ϑδα − ϑ†‖H1(Ω′) ≤ Cδ
1
r .

Proof. By Lemma 4.2, we have

‖ϑδα − ϑ†‖rH1(Ω′) ≤ C1‖F ′(σ0)(ϑδα − ϑ†)‖rL2(Γ) + C2dξ(ϑ
δ
α, ϑ

†)

≤ C1

(
‖F ′(σ0)ϑδα − φ̃δ‖L2(Γ) + ‖F ′(σ0)ϑ† − φ̃δ‖L2(Γ)

)r
+ C2dξ(ϑ

δ
α, ϑ

†)

Now the second assertion follows from the choice α ∼ δ and Theorem 4.4.

Remark 4.3. The injectivity of the operator F ′(σ0) on the finite-dimensional subspace {ψk, k ∈ K}
is crucial for deriving the enhanced convergence rate. This property was shown for piecewise poly-
nomial/analytic conductivity distributions in case of full measurements, i.e., the operator F (σ) is the
Neumann-to-Dirichlet map [39, 26]. Therefore, the estimate in Theorem 4.5 holds with the further re-
striction on the basis {ψk} of being piecewise analytic.

Remark 4.4. One can show that under certain conditions, with α chosen by the discrepancy principle,
i.e., α satisfies ‖F ′(σ0)ϑδα − φ̃δ‖ = cδ (c ≥ 1), the solution ϑδα also converges, and analogous estimates
as in Theorems 4.4 and 4.5 hold, see, e.g., [33]. The discrepancy principle is useful if an estimate of the
noise level δ is known.

4.2 Nonlinear model

Now we turn to the full nonlinear model. Some theoretical studies concerning the nonlinear EIT model
have been carried out in [48] for a Mumford-Shah penalty and in [47] for a total variation penalty. Here
we consider the Rr-penalty term, which covers both conventional H1- and sparsity penalty, i.e.,

Ψ(ϑ) = 1
2‖F (σ)− φδ‖2L2(Γ) + αRr(ϑ), (8)

and we shall again denote the minimizer by ϑδα. Such penalties have been treated under suitable assump-
tions for general non-linear operators, e.g., in [27]. We refer to these results whenever appropriate.

We begin with the following existence and stability result, which is a consequence of the analytical
results in Section 2.

Theorem 4.6. There exists at least one minimizer ϑδα to the functional Ψ(σ) on the admissible set A.
Let {φn} ⊂ L2(Γ) be a sequence of noisy data converging to φδ, and ϑn be a minimizer to Ψ with φn

in place of φδ. Then the sequence {ϑn} has a subsequence converging in H1(Ω′) to a minimizer of Ψ.

Moreover, if the parameter α = α(δ) satisfies limδ→0 α(δ) = 0 and limδ→0
δ2

α(δ) = 0, then the sequence

of minimizers {ϑδα} has a subsequence converging in H1(Ω′) to an Rr-minimizing solution ϑ† as δ → 0.
Furthermore, if ϑ† is unique, then the whole sequence converges.

Proof. We only sketch the existence proof. The nonnegativity of Ψ implies the existence of a minimizing
sequence {ϑn} ⊂ A, for which {Rr(ϑn)} is uniformly bounded. From the inequality ‖ϑn‖`2 ≤ ‖ϑn‖`r ≤ C
for r ≤ 2, we deduce uniform boundedness of {ϑn} in H1(Ω′). Therefore, there exists a subsequence of
{ϑn}, also denoted by {ϑn}, and some ϑ∗ ∈ H1

0 (Ω), such that ϑn → ϑ∗ weakly in H1(Ω′). By Kondrashov
embedding theorem [20], it converges strongly in Lp(Ω

′) for any p < 6 in case of d = 2, 3. Proposition 2.1
implies limn→∞ J(σn) = J(σ∗), from which and weak lower semicontinuity of Rr(ϑ) follows the desired
assertion. The rest follows from the general theory of sparsity constrained nonlinear inverse problems,
see e.g., [27].

15



Next we state a first estimate for the minimizer ϑδα. The proof is quite standard, see e.g., [19, 27],
but we include its proof for completeness.

Theorem 4.7 (1 < r ≤ 2). Let r ∈ (1, 2], and the solution ϑ† satisfy the source condition: there exists a
w ∈ L2(Γ) such that the (F ′(σ†))∗w = ξ ∈ ∂Rr(ϑ†) with ‖w‖L2(Γ) sufficiently small. Then for a choice
rule α ∼ δ, there holds

dξ(ϑ
δ
α, ϑ

†) ≤ Cδ and ‖F (σδα)− φδ‖L2(Γ) ≤ Cδ.

Proof. The minimizing property of ϑδα implies

1
2‖F (σδα)− φδ‖2L2(Γ) + αRr(ϑ

δ
α) ≤ 1

2‖F (σ†)− φδ‖2L2(Γ) + αRr(ϑ
†).

This yields Rr(ϑ
δ
α) ≤ C + Rr(ϑ

†) for a choice rule α ∼ δ. Appealing to the source condition and the
Cauchy-Schwarz inequality, we arrive at

1
2‖F (σδα)− φδ‖2L2(Γ) + αdξ(ϑ

δ
α, ϑ

†) ≤ 1
2‖F (σ†)− φδ‖2L2(Γ) − α〈ξ, ϑ

δ
α − ϑ†〉

≤ 1
2‖F (σ†)− φδ‖2L2(Γ) + α‖w‖L2(Γ)‖F (σδα)− F (σ†)‖L2(Γ)

+ α‖w‖L2(Γ)‖θ(ϑδα, ϑ†)‖L2(Γ),

(9)

where the linearization error θ(ϑδα, ϑ
†) is defined as

θ(ϑδα, ϑ
†) = F (σδα)− F (σ†)− F ′(σ†)(ϑδα − ϑ†). (10)

By the Lipschitz continuity of F ′(σ) in Corollary 2.1, we have

‖θ(ϑδα, ϑ†)‖L2(Γ) ≤ L
2 ‖ϑ

δ
α − ϑ†‖2H1(Ω′). (11)

With the help of triangle inequality and Young’s inequality, we deduce

α‖w‖L2(Γ)‖F (σδα)− F (σ†)‖L2(Γ) ≤ α‖w‖L2(Γ)‖F (σ†)− φδ‖L2(Γ) + 1
2α

2‖w‖2L2(Γ) + 1
2‖F (σδα)− φδ‖2L2(Γ).

In view of the preceding three inequalities, we arrive at

α
[
dξ(ϑ

δ
α, ϑ

†)− L
2 ‖w‖L2(Γ)‖ϑδα − ϑ†‖2H1(Ω′)

]
≤ 1

2

(
‖F (σ†)− φδ‖L2(Γ) + α‖w‖L2(Γ)

)2
.

The first assertion follows from this inequality, Lemma 4.1 and the choice of α. Next we estimate the
term ‖F (σδα)− φδ‖L2(Γ). From inequality (9), we have

1
2‖F (σδα)− φδ‖2L2(Γ) + αdξ(ϑ

δ
α, ϑ

†) ≤ 1
2‖F (σ†)− φδ‖2L2(Γ) − α〈w,F (σδα)− F (σ†)〉+ α〈w, θ(ϑδα, ϑ†)〉,

which upon completing the squares gives

1
2‖F (σδα)− φδ + αw‖2L2(Γ) + αdξ(ϑ

δ
α, ϑ

†) ≤ 1
2‖F (σ†)− φδ + αw‖2L2(Γ) + α‖w‖L2(Γ)‖θ(ϑδα, ϑ†)‖L2(Γ).

The desired assertion on ‖F (σ)− φδ‖L2(Γ) follows from this and the choice α ∼ δ.

Remark 4.5. An inspection of the proof indicates that restriction on the size of ‖w‖L2(Γ) depends on

three quantities: the Lipschitz constant of F ′(σ), the exponent r and Rr(ϑ
†). In case of r = 2, the

Bregman distance dξ(ϑ
δ
α, ϑ

†) reduces to 1
2‖ϑ

δ
α−ϑ†‖2H1(Ω′), and thus the condition can be explicitly written

as L‖w‖L2(Γ) < 1.

By Lemma 4.1, Theorem 4.7 gives a convergence rate O(δ
1
2 ) in H1(Ω′). Additional conditions on ϑ†

can enhance the convergence rate from O(δ
1
2 ) to O(δ

1
r ).
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Theorem 4.8 (1 < r < 2). Let the conditions in Theorem 4.7 hold, ϑ† have a finite support K with
respect to {ψk}, and the operator F ′(σ†) be injective on {ψk, k ∈ K}. Then for a choice rule α ∼ δ there
holds

‖ϑδα − ϑ†‖H1(Ω′) ≤ Cδ
1
r .

Proof. By Lemma 4.2, we have

‖ϑδα − ϑ†‖rH1(Ω′) ≤ C1‖F ′(σ†)(ϑδα − ϑ†)‖rL2(Γ) + C2dξ(ϑ
δ
α, ϑ

†).

We estimate the term ‖F ′(σ†)(ϑδα − ϑ†)‖L2(Γ) by noting (10) as follows

‖F ′(σ†)(ϑδα − ϑ†)‖L2(Γ) ≤ ‖F (σδα)− F (σ†)‖L2(Γ) + ‖F (σδα)− F (σ†)− F ′(σ†)(ϑδα − ϑ†)‖L2(Γ)

≤ ‖F (σδα)− φδ‖L2(Γ) + ‖F (σ†)− φδ‖L2(Γ) + L
2 ‖ϑ

δ
α − ϑ†‖2H1(Ω′).

The term ‖ϑδα − ϑ†‖H1(Ω′) can be bounded as follows

‖ϑδα − ϑ†‖2H1(Ω′) ≤ Cdξ(ϑ
δ
α, ϑ) ≤ Cδ,

by Lemma 4.1 and Theorem 4.7. The conclusion follows from these estimates.

Theorem 4.8 does not cover the case R1. Nonetheless, an analogous estimate remains valid.

Theorem 4.9 (r = 1). Let the solution ϑ† be unique, satisfy the source condition: there exists a w ∈
L2(Γ) such that (F ′(σ†))∗w ∈ ∂R1(ϑ†) and have a finite support K with respect to {ψk}, and the operator
F ′(σ†) be injective on {ψk, k ∈ K}. Then for small δ and a choice rule α ∼ δ, there holds

‖ϑδα − ϑ†‖H1(Ω′) ≤ Cδ
1
2 .

Proof. The minimizing property of ϑδα implies

1
2‖F (σδα)− φδ‖2L2(Γ) + αR1(ϑδα) ≤ 1

2‖F (σ†)− φδ‖2L2(Γ) + αR1(ϑ†),

which together with the choice α ∼ δ yields

‖F (σδα)− φδ‖L2(Γ) ≤ C3δ
1
2 . (12)

Appealing to the source condition ξ = (F ′(σ†))∗w ∈ ∂R1(ϑ†) and the definition of linearization error
θ(ϑδα, ϑ

†), i.e., (10), we deduce

1
2‖F (σδα)− φδ‖2L2(Γ) + αdξ(ϑ

δ
α, ϑ

†) ≤ 1
2‖F (σ†)− φδ‖2L2(Γ) − α〈w,F

′(σ†)(ϑδα − ϑ†)〉

= 1
2‖F (σ†)− φδ‖2L2(Γ) − α〈w,F (σδα)− F (σ†)〉+ α〈w, θ(ϑδα, ϑ†)〉.

(13)
In particular, this together with the choice α ∼ δ implies

dξ(ϑ
δ
α, ϑ

†) ≤ C4δ − 〈w,F (σδα)− F (σ†)〉+ 〈w, θ(ϑδα, ϑ†)〉.

Next by Lemma 4.2, we have

‖ϑδα − ϑ†‖H1(Ω′) ≤ C1‖F ′(σ†)(ϑδα − ϑ†)‖L2(Γ) + C2dξ(ϑ
δ
α, ϑ

†)

≤ C1

(
‖F (σδα)− F (σ†)‖L2(Γ) + ‖θ(ϑδα, ϑ†)‖L2(Γ)

)
+ C2dξ(ϑ

δ
α, ϑ

†).

These two inequalities together with (11), Cauchy-Schwarz inequality and estimate (12) yield

‖ϑδα − ϑ†‖H1(Ω′) ≤C2C4δ + (C1 + C2‖w‖L2(Γ))‖F (σδα)− F (σ†)‖L2(Γ)

+ (C1 + C2‖w‖L2(Γ))‖θ(ϑδα, ϑ†)‖L2(Γ)

≤C2C4δ + (C1 + C2‖w‖L2(Γ))(δ + C3δ
1
2 ) + (C1 + C2‖w‖L2(Γ))

L
2 ‖ϑ

δ
α − ϑ†‖2L2(Γ).
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Upon letting C5 = (C1 + C2‖w‖L2(Γ))
L
2 and C6 = (C1 + C2‖w‖L2(Γ))(δ

1
2 + C3) + C2C4δ

1
2 , this gives

C5t
2 − t+ C6δ

1
2 ≥ 0 for t = ‖ϑδα − ϑ†‖H1(Ω′). For sufficiently small δ, we have 1− 4C5C6δ

1
2 > 0. Hence,

the above quadratic polynomial in t has two distinct positive roots, and the inequality amounts to

t ≥ 1 +
√

1− 4C5C6δ
1
2

2C5
or t ≤ 1−

√
1− 4C5C6δ

1
2

2C5
.

By virtue of the consistency result in Theorem 4.6, the latter case holds, i.e.,

‖ϑδα − ϑ†‖H1(Ω′) ≤
1−

√
1− 4C5C6δ

1
2

2C5
≤ 2C6δ

1
2 ,

where we have utilized the elementary inequality
√

1− s ≥ 1−s, ∀s ∈ [0, 1]. This concludes the proof.

Remark 4.6. The estimate (12) yields an upper bound for the discrepancy term, which can be improved
by a bootstrap argument as follows: The estimate in Theorem 4.9 and applying the Cauchy-Schwarz
inequality to (13) leads to

1
2‖F (σδα)− φδ‖2L2(Γ) ≤ 1

2δ
2 + α‖w‖L2(Γ)(δ + C3δ

1/2) + α‖w‖L2(Γ)
L
2 δ

and hence ‖F (σδα)− φδ‖L2(Γ) ≤ Cδ
3
4 .

This improved estimate for the discrepancy term can also be used to obtain an improved estimate
for ‖ϑδα − ϑ†‖H1(Ω′). By repeating the arguments in the proof above we get an estimate of order ‖ϑδα −
ϑ†‖H1(Ω′) = O(δ

3
4 ). This bootstrap procedure can be repeated to derive convergence rate of order O(δs)

for any s < 1.

5 Concluding remarks

In this paper we have presented an analysis of two electrical impedance tomography models, i.e., con-
tinuum model and complete electrode model, and the continuity and differentiability of the forward
operator with respect to Lp norms are shown. The analytical results are applied to several regularization
formulations with smoothness/ sparsity penalty for the linearized and nonlinear models, in particular
the conventional H1 penalty and the recent sparsity penalty. The existence of a minimizer, stability,
consistency and convergence rate for these formulations are discussed.

There are several avenues for further research. Firstly, we have restricted our attention to Tikhonov
regularization with an `r-penalty. Alternative approaches, e.g., iterative regularization methods such as
Landweber and Gauss-Newton methods in Banach spaces [50, 5, 35], might also be justified using the
presented analytical results. Secondly, the operator F ′(σ) deserves further attention, e.g. the solvability
of the linearized equation. Finally, refined regularity for the forward model is of immense interest. The
derivations herein utilize Meyers estimate, which relies only on the L∞(Ω) bound of the parameter σ, and
the extra regularity on the conductivity σ, e.g., BV or H1, might enable deriving more refined estimates.
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[67] E. Novak and H. Woźniakowski. On the Power of Function Values for the Ap-
proximation Problem in Various Settings. Preprint 67, DFG-SPP 1324, November
2010.
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