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Abstract

In this paper we first give a review of the least-squares Monte
Carlo approach for approximating the solution of backward stochas-
tic differential equations (BSDEs) first suggested by Gobet, Lemor,
and Warin (Bernoulli, 12, 2006, 889-916). We then propose the use of
basis functions, which form a system of martingales, and explain how
the least-squares Monte Carlo scheme can be simplified by exploiting
the martingale property of the basis functions. We partially compare
the convergence behavior of the original scheme and the scheme based
on martingale basis functions, and provide several numerical examples
related to option pricing problems under different interest rates for
borrowing and investing.

Keywords: Backward SDE, numerical approximation, Monte Carlo,
option pricing.

AMS classification: 65C30, 65C05, 91G20, 91G60.

1 Introduction

Many pricing and optimization problems in financial mathematics can be re-
formulated in terms of backward stochastic differential equations (BSDEs),
see e.g. the classical survey paper by El Karoui et al. (1997). These equa-
tions are non-anticipating terminal value problems for stochastic differential
equations of the form

dY; = f(t,Y;, Zo)dt + ZedWs, Y = €.

Here, a D-dimensional Brownian motion W, the square-integrable terminal
condition £ (measurable with respect to the filtration generated up to time T
by the Brownian motion) and the so-called driver f are given. The solution
itself consists of a pair of square-integrable adapted processes (Y, Z), such
that the corresponding integral equation is satisfied.

!Saarland University, Department of Mathematics, PO Box 151150, D-66041 Saar-
briicken, Germany. bender@math.uni-sb.de, steiner@math.uni-sb.de.



Roughly speaking, in many pricing and hedging problems, Y; corresponds
to the option price and Z; is related to the hedging portfolio. In many
portfolio optimization problems, Y; corresponds to the value process while
an optimal control can often be derived from Z;. Finally, BSDEs can also
be applied in order to obtain Feynman-Kac-type representation formulas for
nonlinear parabolic PDEs. Here Y; and Z; correspond to the solution and
the gradient of the PDE, respectively. With these applications in mind, the
numerical approximation of BSDEs becomes an important, but challenging
problem.

One branch of numerical algorithms for BSDEs exploits the connection
to PDEs and basically reduces the numerical approximation of the BSDE to
solving the corresponding parabolic PDE numerically, see e.g. Douglas et
al. (1996); Milstein and Tretyakov (2006); Ma et al. (2009). The practical
applicability of these algorithms may be limited due to high-dimensionality
or lack of smoothness of the coeflicients. However, for low-dimensional prob-
lem with smooth coefficients the PDE methods are hard to beat. Another
branch of algorithms, which is the one we discuss in the present paper, deals
directly with the stochastic problem. These stochastic algorithms can typi-
cally be decomposed into a two-step procedure. The first step consists of a
time discretization of the BSDE. The main difficulty here is that, on the one
hand, the discretization quite naturally works backwards in time, because
the terminal condition is given. On the other hand, the numerical solution
should be adapted to the filtration (because the true solution is so). How-
ever, the information grows forwards in time. This problem can be solved by
projecting the solution on the available information in each step while going
backwards in time. While these ideas can be traced back to the papers by
Bally (1997) and Chevance (1997), a detailed analysis of the corresponding
time discretization scheme under quite general assumptions was first given
by Zhang (2004) and Bouchard and Touzi (2004). However, ‘projecting on
the available information’ means that in each time step a conditional expec-
tation must be evaluated. Going backwards step by step one, hence, ends
up with a high order nesting of conditional expectations. As the conditional
expectation cannot be calculated in closed form, in a second step one has
to apply an approximation procedure for the conditional expectations which
can be nested without running into explosive computational costs.

In this paper we will focus on the least-squares Monte Carlo approach for
estimating the conditional expectations which was made popular in financial
mathematics by Longstaff and Schwartz (2001) in the context of Bermudan
option pricing. It was first applied to BSDEs and analyzed in this setting by
Gobet et al. (2005) and Lemor et al. (2006). The basic idea here is to replace
the conditional expectations by projections on finite-dimensional subspaces
which are spanned by pre-selected basis functions. The coefficients for the
projection on the finite-dimensional subspaces are approximated by the solu-
tion of a linear least-squares problem making use of simulated sample paths.



After having discussed the time discretization step and the least-squares
Monte Carlo approach, we propose the use of basis functions, which form a
system of martingales. A similar idea can be found in Glasserman and Yu
(2002) in the context of Bermudan option pricing. For the BSDE case the
use of martingale basis functions is motivated by the following observation:
Going backwards in time, one actually has to evaluate three conditional
expectations per time step. If the approximation of Y at time t;;1, say,
is a linear combination of basis functions and these basis functions satisfy
appropriate conditions related to the martingale property, then two of the
conditional expectations can be calculated in closed form. Only one condi-
tional expectation which involves the nonlinearity of the driver f must still
be approximated by least-squares Monte Carlo. Based on this observation
we suggest a simplified version of the least-squares Monte Carlo algorithm,
when ‘martingale basis functions’ are at our disposal. An example shows
how to construct such basis functions for a multi-dimensional Black-Scholes
setting, and we point to possible extensions for more general models. We
also analyze the projection error of the new scheme based on martingale
basis functions.

Finally, we present a simulation study for the pricing problem of a call
spread option under different interest rates for borrowing and investing. Here
we compare the original least-squares Monte Carlo scheme with the new
scheme, which exploits the use of martingale basis functions. The numerical
experiments contain situations with a small and a larger Lipschitz constant
of the nonlinearity of the driver and with options on a single stock or on
the maximum of several stocks. Overall we find that the use of martingale
basis functions improves on the quality of the numerical solutions in our test
example and, at the same time, significantly reduces the simulation costs.

The paper is organized as follows: In Section 2 we give a review of the
least-squares Monte Carlo scheme for BSDEs. In this section we also refer to
various variants concerning the time discretization and the approximation
of the conditional expectations which are available in the literature. Section
3 is devoted to the new scheme based on martingale basis functions, while
the numerical experiments are discussed in Section 4.

2 Least-squares Monte Carlo for BSDEs

In this section we give a review of the least-squares Monte Carlo approach
to BSDEs initiated by Gobet et al. (2005). As it is the case for most of
the numerical algorithms for BSDEs, it consists of two steps: a time dis-
cretization and a procedure for the approximation of (nested) conditional
expectations. We will discuss both steps separately, pointing to alternative
ways for designing algorithms to solve BSDEs.

Before we explain the time discretization step we first introduce the



standing assumptions throughout the paper. The aim is to approximate a
decoupled forward backward SDE of the form

dXt = b(t,Xt)dt+U(t,Xt)th, X() = X,
ayy = [f(t, X4, Yy, Zy)dt + ZedWy,  Yr = g(Xr).

Here W, = (Wiy,...,Wpy)*, (the star denoting matrix transposition), is
a D-dimensional Brownian motion on [0,7] and Z; = (Z14,...,Zp4). The
process X is RM-valued and the process Y is R-valued. We assume Lipschitz
continuity of the coefficient functions in the following sense:

Assumption 2.1. There is a constant x such that

|b(t,z) —b(t', 2')| + |o(t,x) — o(t', 2))]
+f(tz,y,2) — f(E, 2y, )+ [g(z) — g(2)]
< Rk(WVE=t]+lz =2+ ly =y [+ ]2 = 2))

for all (t,z,y,2), (t,2',y,2") €[0,T] x RM x R x RP,

With this assumption we strive for notational simplicity rather than
for generality. We emphasize that, for example, path dependent terminal
conditions of the form Y7 = ®(X), where the functional ¢ satisfies some
suitable Lipschitz conditions on the path space, can be easily incorporated,
see Zhang (2004) or Lemor et al. (2006).

2.1 Time discretization

For the time discretization we consider a partition 7 = {tg,...,tn} of the
interval [0,7], ie. 0 =1ty < t1 < ta < --- <ty =T. We suppose that
the forward SDE is already discretized in a suitable way by a process X[,
t; € m, such that

max B[| Xy, — X7 ?] < Cl| (1)

for a constant C > 0, and (Xg, Ft,)t;en is Markovian. In the numerical ex-
amples in Section 4, X is a (multi-dimensional) geometric Brownian motion
and can, hence, be sampled perfectly on the grid . In general situations,
one can e.g. apply an Euler scheme on X. We now motivate a natural time
discretization for the pair (Y, Z), which works backwards in time. Denoting
AZ’ = ti+1 - ti, AWdﬂ' = Wd,tH_l - I/th.7 and AVVZ = (Awl,i7 ey AWDJ')*

for t; € w, we write

Yy, = Y;ﬁi+1 - f(tiv Xti? Yiis Zti)Ai - ZtiAWi' (2)



Multiplying with a Brownian increment AW, ; for some d = 1,...,D and
taking conditional expectation yields,

0 = E[AWd,’L(}/tl +f(tletm}/%NZtl)A’L”gtl]

D

|F1,] =Y ElZ14, AWy i AW | F,]
=1

|Fe.] — Zag, A

~ E[AW.Y;

i+1

= E[AWg;Y;

i+1

This suggests that, given Y3, ,,, Zy,

2

can be approximated as

1

Zy =~
ti A,

E[AW] Y., |F,] (3)

i+1

In order to obtain an approximation of Y;,, given Y;
conditional expectation in (2) and get

1, we simply take

Y;fi = E[YM%] ~ E[Y;fi-»-l - f(t%thY;fw Zti)Ai|§ti]
~ ED/ti-&-l - f(ti7 Xth;fiﬂ’Zti)Ai’?ti]' (4)
The last approximation makes the approximation explicit in time. The

heuristics in (2)—(4) lead to the time discretization (Y™, Z™) for (Y, Z) which
was studied by Zhang (2004) and Bouchard and Touzi (2004):

}/;5711;7 = g(Xtﬂ—N)’ Ztﬂ—N = 07
1

Zi = EAWI YR =N =10
Y;r = E[YZZA - f(tl,Xg?YZrJrl?Zg)Al‘?tz]v i=N-1,...,0. (5

The results in Zhang (2004) and Bouchard and Touzi (2004) (see also Lemor
et al., 2006) imply that, under Assumption 2.1, the time discretization error
in the L2-sense is of order 1/2, i.e. there is a constant C' (independent of )
such that

T
sup E[Y; — Y72 + / B2 — ZF") < Clnl, (6)
0<t<T 0

where (Y™, ZT) is the piecewise constant interpolation of (5). We note that
Bally (1997) and Chevance (1997) were the first to study this type of time
discretization with a (hardly implementable) random time partition respec-
tively under strong regularity assumptions.

Although the time discretization scheme in (5) is explicit in time, each
time step requires the evaluation of conditional expectations, which leads to
a high order nesting of conditional expectations. The numerical approxima-
tion of nested conditional expectations is a highly demanding problem, in
particular when the forward SDE takes values in a high-dimensional state



space. We will discuss some aspects related to this issue in the next subsec-
tion.

Before doing so, we give some remarks concerning related results on the
the time discretization of BSDEs:

1. The first line of (4) suggests an implicit scheme for the Y-part replacing

By, — f(t, XT, Y]

i+1 tit1?

Z ) A T,

in (5) by
EY,]

it+1 ’Srtz] - f(tzv sz }/t:rv ZZ:)AZ

Concerning the time discretization error, the convergence of this im-
plicit scheme is also of order 1/2, see Bouchard and Touzi (2004).
It requires, however, some iteration procedure to become explicit in
time. The iteration can be done in each time step (inner iteration)
as in Gobet et al. (2005) or mimicking a Picard iteration (outer iter-
ation) as in Bender and Denk (2007) and Gobet and Labart (2010).
Bender and Denk (2007) argue that the outer iteration reduces the er-
ror propagation when the conditional expectations are approximated
numerically. Gobet and Labart (2010) explain how to obtain efficient
control variates for the estimation of the conditional expectations in a
Monte Carlo setting via the outer iteration. As an alternative method
for reducing the variance, Bender and Moseler (2010) adjust the im-
portance sampling technique to a BSDE setting.

2. When the terminal condition ¢ is less regular than Lipschitz contin-
uous, a time discretization error of order 1/2 can still be achieved in
many cases by choosing appropriate, possibly non-equidistant, parti-
tions, see Gobet and Makhlouf (2010). Under stronger smoothness
conditions on the coefficient functions b, o, f,g the error at time 0
|Yo — Y| converges to zero at a rate of 1, see Gobet and Labart
(2007) who extend a related result by Chevance (1997). For a time
discretization scheme of BSDEs with jumps under Lipschitz conditions
we refer to Bouchard and Elie (2008). For coupled forward backward
SDEs, Bender and Zhang (2008) provide sufficient conditions to obtain
a time discretization error of order 1/2 and an iterative procedure for
decoupling the equation. The case of second order BSDEs is discussed
in Bouchard et al. (2009).

3. Some first results on the time discretization of BSDEs with quadratic
growth of the driver f in the z-variable can be found in Imkeller et
al. (2010) and Richou (2010). Imkeller et al. (2010) apply a trunca-
tion argument and, thus, use an approximation via Lipschitz drivers,
while Richou (2010) makes use of (time-dependent) bounds on Z;. So,
from a practical point of view, in both cases the situation is, at best,



comparable with the Lipschitz case with a ‘large’ Lipschitz constant.
However, the constant C' in (6) depends exponentially on the Lipschitz
constant of f. So, it is no suprise that our numerical results in Section
4 demonstrate that even in the Lipschitz case with a large Lipschitz
constant, numerical algorithms may run into problems.

4. For reflected BSDEs a time discretization scheme related to (5) was
studied by Ma and Zhang (2005) and Bouchard and Chassagneux
(2008). Their results suggests that, in general, this scheme only con-
verges at a rate of 1/4.

2.2 Approximation of conditional expectations

In order to transform the time discretization scheme in (5) into a viable
numerical scheme, the conditional expectations must be replaced by an ap-
proximation procedure which can be nested several times without running
into explosive costs. Different techniques have been suggested in the litera-
ture including;:

e Approximation of the driving Brownian motion by trees for low-dimen-
sional problems, see Briand et al. (2001) and Ma et al. (2002).

e Cubature methods, see Crisan and Manolarakis (2010), and sparse
grids methods, see Gunzburger and Zhang (2010), which rely on some
smoothness assumptions.

e Quantization methods, see Bally and Pages (2003) for reflected BSDEs
and Delarue and Menozzi (2006) for coupled FBSDEs.

e Nonparametric kernel estimators and Malliavin Monte Carlo, as dis-
cussed by Bouchard and Touzi (2004).

e Least-squares Monte Carlo, which we will now explain in more detail.

The least-squares Monte Carlo method for approximating conditional
expectations was made popular in financial mathematics by the Longstaff
and Schwartz (2001) algorithm for the pricing of American options. More
generally, it can be applied to compute conditional expectations of the
form E[Y|X] for square integrable random variables X and Y numeri-
cally, provided a machinery for sampling independent copies of the pair
(X,Y) is at hand. The method builds upon the elementary property that
E[Y|X] = u(X), where the function u solves

u = argmin E[|v(X) — Y|?]
v

and v runs over all measurable functions with E[|v(X)[?] < co. In order
to simplify this infinite-dimensional minimization problem, one chooses a



row vector of so-called basis functions n(z) = (n1(x),...,nx(z)), for some
K € N, and considers the K-dimensional minimization problem

o) = arg min E[|n(X) o —Y)?.
acRK

In a final step the problem can be simplified to a linear least-squares problem.
To this end one just replaces the expectation by a sample mean

L
1
(K,L) _ . 2
o = arg min — E X)a— Y|4,
gaERK L = (X AV

where (X, \Y), A=1,..., L, are independent copies of (X,Y). Given the
matrix

ATCL) = \}L (77k(AX)),\:L...,L,k:L...,K7
one has
]_Y
QKL) _ ((‘A(K,L))*A(K,L))il (AEDy |
LY

(Here, one can apply the pseudo-inverse of AUGL) Cif the inverse in the pre-
vious expression does not exist). The least-squares Monte Carlo estimator
for the conditional expectation u(x) := E[Y|X = z] is then given by

u D) () = n(z) o D),

Clearly, this estimation procedure has two error sources, a systematic error
induced by the choice of basis functions and a simulation error.

Gobet et al. (2005) first suggested the use of least-squares Monte Carlo
for BSDEs and analyzed the different error sources. We now describe the
algorithm proposed by Lemor et al. (2006), which combines the explicit
time discretization scheme (5) with least-squares Monte Carlo for estimating
the conditional expectations. Notice first that, due to the Markovianity of
(XL, Ft, )t;en, the time discretization in (5) can be rewritten as

YETV = g(XtWN)a ZtTrN = 07
T 1 * VT T .
Z = R EAWIYLIXL i=N-1..0

Vi = B, —ft, XY, Z0)NXE], i=N-1,...,0. (7)
Hence, there are functions y (x) and 2] (x) such that
Vi =yl (X5), Zp =21 (X]).

These functions (y[(z), 2] (z)) are estimated recursively by least-squares

Monte Carlo. To this end one chooses basis functions

no(i,x) = (Mo (4, ), ..., mo,k (1, x))



for the estimation of yJ (x), and

Ud(i,ﬂf) = (nd,l(ivx)a v 777d,K(iax))7 d= 17' . 'aDv

for the estimation of the dth component 27 ,;(z) of 27 (z). In principle, the
number of basis functions can be different for each time step and for the y-
and z-part, which we suppress for simplicity. Then, given L independent
copies (A)\VVZ‘, AXg+1)i:0,...7N,1, A= 1, e ,L, of (AW“ Xt72+1)i=0,...,N717 we
define

7 ’K>L — ~7T7K7L —
gy (@) = glx), T =0,
L 2
oKL 1 Cemy . AWai r kL, on
Qg - 8 argﬂlgfl{ L ,\Z::l <77d(l, )‘Xti) o A, Yit1 ()\Xti+1)
237;K’L(x) = nd(i,x)a;’f{’L, d=1,....,D; i=N-1,...,0,
L
amK,L — arg min lz<ﬁo(z )\XW)Q_Q?EKL()\XW )
0,2 acRK T —~ ’ t; i+1 tit1
2
~m,K,L ~m,K,L s
+f(tl’ )\ng’y’z:’_l’ (AXZ:_;'_l)?Z’ZT’ 7 (Ath))A'L>
~m,K,L . K,L .
gt (@) = noli,x) ag:i o i=N-1,...,0. (8)

Once the basis functions are chosen and the sample paths are generated,
the algorithm is straightforward to implement, as it only requires to solve
some linear least-squares problems numerically.

The L2-error between (77" (x), z ZKL(x)) and (y7 (x), 2] (x)) with re-
spect to the law of X77 has been analyzea by Lemor et al. (2006), Theorem 2
and Remark 1, for a suitably truncated scheme. The complete error analysis
is rather technical, particularly because the use of the same simulated paths
for estimating all conditional expectations induces a somewhat complicated
dependency structure. We now roughly explain the influence of the different
error sources, but refer the interested reader to the original paper by Lemor
et al. (2006) for the very details. In order to simplify the presentation, we
assume that the partition 7 of [0, 7] is equidistant with (N 4 1) time points:

1. The time discretization error decreases at a rate of N~1/2, see (6).

2. The projection error is induced by choosing the basis functions. The
squared projection error can be bounded by a constant times

N-1 b
1 ; 2 . . 9
ZZ% alergK E[YS—no(i, X7,) ]+; agﬁ{f}{ E(V/AZE, —nali, XT) of?].

(9)
Notice, that this expression is the sum of the squared distance between
the time discretized solution (Y;T,/A;Z) and its best projection on



the basis functions. The time discretized solution and its best projec-
tion are both not available in closed form (but for trivial cases). So this
error bound is still difficult to quantify except for some special classes
of basis functions such as indicator functions of hypercubes which form
a partition of the state space of X, see Gobet et al. (2005).

Recall that throughout the algorithm conditional expectations of the
form E[Y,T, |X[] are approximated recursively for i = N —1,...,0.
The approximation errors in the different time steps may sum up in
the worst case, which explains the sum over time of the projection

errors.

3. We finally discuss the simulation error. The results by Lemor et al.
(2006) imply that it can be bounded in terms of the number of time
points N (up to logarithmic factors) by N=/2 for p € [0,1], if the
number of basis functions K increases proportional to N°, § > 0, and
the number of simulated paths L increases proportional to N2t20+¢,
Here the worst contribution stems from estimating the conditional
expectation E[AX? i YT, |X[] for the Z-part, because the variance

blows up when the time partition becomes finer due to the factor
AW
Ay

To sum up, a finer time partition requires a better choice of the basis
functions (typically a significant increase in the number of basis functions),
which in turn leads to a larger number of simulated paths. We note that
the number of simulated paths must grow polynomially in the number of
basis functions, while even an exponential growth of sample paths is nec-
essary for the Longstaff-Schwartz algorithm for pricing American options,
see Glasserman and Yu (2004). Nonetheless our numerical study in Section
4 will exhibit some limitations of the algorithm, when a fine time grid is
required.

3 Martingale basis functions

In this section we propose the use of basis functions, which form a system
of martingales. This approach is in the spirit of Glasserman and Yu (2002)
who applied martingale basis functions for computing dual upper bounds
for American options. We first motivate the martingale basis approach.
Taking another look at the time discretization scheme (7), we notice
that three conditional expectations must be approximated in each time step,

10



namely

AW}
B |SAv, 1) (10)
BV, X7, 1)
BUf (s, XE, Y7, 20 X (12)

We have observed in the previous section that estimating the conditional
expectation in (10), which is related to the Z-part of the solution, is the
dommant term for Choosmg the number of simulated paths in order to deal

. Moreover, we have seen that estimating
the conditional expectation in (11) leads to an unfortunate propagation in
time of the projection error. So, estimating the conditional expectation in
(12) appears to be numerically the easiest of the three estimation problems,
particularly as the multiplication with the time step 4A; is expected to reduce
the error. Hence, our aim is to choose the basis functions in such a way that
the conditional expectations in (10) and (11) can be computed in closed
form, when Y;” is replaced by a linear combination of basis functions.

+
To fix the ideas, let us assume that, at time t¢;11, an approximation

gfff’L(Xg;H) of Y7 =y (X],,) is already constructed and g)’r+lfL(x) is

a linear combination of basis functions, i.e.

K

~m, K, L .

IR @) =D B nos(i+1,2)
k=1

for some f31,...,8x € R. If the basis functions form martingales in the
following sense

Elno k(i +1, X7, )IXE = 2] = no (i, x),

we can compute the conditional expectation of type (11) in closed form:

KL
Blyi ™ (X7, )IXE) = Zﬁk no.k (i, X70).
k=1
Similar considerations for the conditional expectation of type (10) then lead
to the following assumption on the basis choice.

Assumption 3.1. We choose, at time ¢ty = T, a row vector of K basis
functions

no(N,z) = (noa (N, z), ..., m0,x (N, z)).
Then, we define the basis functions ngq(i,x) = (9a,1(7,2),..., 04K, z)),
d=20,...,D, at the earlier time steps ¢ = 0,..., N — 1 via the conditional
expectations

nok(isx) = Elnor(N, X{)|X] = 2] (13)
AWdz
A;

no,k (N, X7,,)

Nak(i,z) = E X;;:x], d=1,...,D, (14)

11



which we assume to be computable in closed form.

The terminology martingale basis functions refers to the setting of As-
sumption 3.1. Note, that by the tower property of the conditional expecta-
tions, we have

nok(ix) = Elnok(i+1, X7 )IXE = 4, (15)

W ,
Ai 7 nO,k(Z + 1,XZ:+1)

77d7]€(’i, I‘) = F

ngﬁ, d=1,...,D(16)

Before we provide some examples for martingale basis functions, we first
explain how the least-squares Monte Carlo algorithm for BSDEs can be
simplified, when a set of martingale basis functions is available. The modified
algorithm exploits properties (15)—(16).

If, for the terminal condition g, the conditional expectations

AW
A

i

Elg(XT)XF =], E [ g(XT.)

X;r_:ac]

are available in closed form, one, of course, adds g to the martingale ba-
sis. Otherwise an initialization step at time ¢ty = T is required in order
to approximate the terminal condition g by a linear combination of basis
functions. Such approximation can e.g. be done by a least-squares Monte
Carlo projection of g on the basis:

L
7, K,L 1 ™ ™ 2
By _argﬁnénn ZZ(HO(N, AXtN)ﬂ—g(/\XtN)) )

where here and in the following the averaging is again over independent sam-
ple copies (A W, AXt1+1) 0,..N—1, A=1,..., L, of (AWZ,XtZH) 0., N—1-
77 K L' ¢ RX has been chosen and

no(N,z) By T KL is interpreted as an approximation of g(z). Given BN L the
modified algorithrn computes, fori =N —1,...,0,

In any case, we suppose that a vector 3y

7, K, L . KL
y’:r-f—l (LU) = 770(2 + 17 .’13) /BZT+1
~m, K, L . m,K,L
Zd’L (:U) = nd(lax) ,BZ'Jrl y d= 1,...,1)7
1 L
a7, K,L .
ST = arg min — E 7, \ X[
ﬁz gﬂERK L )\:1<770( A tz)ﬁ

2
~m,K,L A7r KL
X T OXE, ), T OXT))A)

7, K,L 7, K,L a7, K, L
ﬂ' = ﬁi+1 +ﬁi . (17)

)

The algorithm terminates at time ¢ = 0 with

95" (@) = mo(0, 2) 87

12



The final approximation for (Y;7, Z[") is given by (4, KL(X”) AR KL(Xt’Z)).

We emphasize that in the modified algorithm, by employmg properties
(15)—(16) of the martingale basis functions, only the conditional expectation
of type (12) is approximated by least-squares Monte Carlo.

We now give some examples for basis functions which can be included
into martingale bases, when the forward SDE is a (multi-dimensional) ge-
ometric Brownian motion. This situation corresponds to the numerical ex-
amples in Section 4.

Example 3.2. Suppose we are given D Black-Scholes stocks, which are for
simplicity assumed to be independent and identically distributed, i.e.

Xd,t :xoeXP{(H*U2/2)t+UWd,t}7 d= ]-a"‘v-Da

where 9,0 > 0 and u € R. Here, X can be sampled perfectly, and we
hence write X instead of X™. The martingale basis functions which we
apply for the numerical examples below are built from indicator functions
of hypercubes, monomials, and the payoff function of a max-call option.

For the indicator functions of the form 7ab = 1jab] = 1ia; b1]x-x[ap,bp]
one easily calculates,

E[na b(XT ‘Xt = $

||,:]U

D
l[ad bd] (Xar)| Xat, = zd] = H N(aq) — N(bg),
d=1

where N is the cumulative distribution function of a standard normal and
fory=a,b

_ log(ya/xa) — (u— 0.50%)(T — t;)
Ya = VT—L .

For monomials np(z) := 2" - - - 247 one has

Elnp(Xr)| Xy, = ] Hm exp{(papt + 0.5pa(pa — 1)o*)(T — t;)}.

For the payoff functions of a max-call option ng (x) = (max4=1 . pzq—K)4,
it can be derived from the results by Johnson (1987) that

D
Elng(Xr)| Xy, =] = EGM(T_ti)deO,E(ad7+)
a1

log (K/xq) — (u — 0.502)(T —t;)
e ovIT —1;

::]b

);
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where Np y is the distribution function of a D-variate normal with mean
vector 0 and covariance matrix ¥. Moreover,

g$d/ )+ (n+0.50°)(T — t;)
—=(log(za/xz) + (T — t;))

T, ; /

(log(zq/xp) + o*(T — t;))

log

—_
[\

Sl

and

L 1/V2 1/vV2 - 1/V2
1/v2 1 /2 - 1)2
s | 1/v2 1/2 1 1/2

1/ﬁ 1)2 1/2 |

Hence, for such functions the conditional expectations required in (13) are
available.

Concerning the conditional expectations of the form (14), we assume
that n(z) is a function such that no(i,z) := E[n(X¢)|X:, = 2| can be com-
puted. Under appropriate growth conditions (which allow to introduce the
derivatives below under the integral sign), we get ford = 1,..., D and i < N,

. AWdl T T 0 .
ng(i,x) ;= F |:Az (X5, | X5 = aj} = U:Uda—xdno(z,x). (18)

Indeed, for the one-dimensional case (D = 1) one easily computes

d d .
J:L‘d—no(z x) = ox%E [170(1 +1, X)Xy, = :c]

770(1' +1, xe”“+(“_0‘5”2)Ai)du

ot \/27rA‘
& du 770(2 + 1,:Be”“+(“_0'5”2mi)du

2

2
\/27TA / ¢
no(i + 1 ave‘””(“_0'5“2)Ai)i <—€_2uAi> du

“mw L

du
u2
/ no(i + 1 we"““‘“o“r’"zmi)ie*fidu
\/m A;

AW; AW;
- E|: A n0(1+17Xti+1)|Xti :x:| :E|: A (XtN)

Xi = x] .
The multi-dimensional case can be treated analogously. Using formula (18)

we can then calculate the conditional expectations (14) for e.g. the indicator
functions, monomials, and the call payoff.
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Remark 3.3. The above example is, admittedly, somewhat simplistic. We
note, however, that for more sophisticated models, good closed-form ap-
proximations for many European option prices and their deltas are often
available. These can be applied to built basis functions in the spirit of the
previous example, which at least approximately fit into the martingale basis
setting.

We now study the projection error, i.e. the error induced by choosing
the basis functions, in the setting of martingale basis functions. In order
to separate this error from the simulation error, we now assume that the
orthogonal projections on the basis can be computed in closed form. Hence,
we define

2
7K 3 s ™
By" = arg min Bno(N, X7,) § - g(XtN)] )

and fori=N —1,...,0,

K , K
y’:r-i-l ( ) = 7)0(@ + 1,37) ﬁl?r-‘rl
2§1K(93) = (i) BN, d=1,...,D,
A, K . .
7 = arg min F 1, XT
B g min no(i, X7,) B
2
~m, K A K
+f(t’i7Xt7rvyz7r+1 (Xt +1) m (Xt ))A ]

At time ¢ = 0 we set,
o, K K
o (x) = no(0,2) By

Theorem 3.4. Under Assumptions 2.1 and 3.1, there is a constant C' such

that
N—-1
ATI'K A7rK )
OgllfngHY;t (Xt )’ |+ 'E—o HZt (Xt )| 1A;

IN

c( inf_E{lm(N. X7,) 5 - g(X7, )P
BER

N-1
+ 20 A ink Bll(i, X7)  — Bl (s XT YL, zz:nxz;nﬂ)mm
=0

The proof will be postponed to the Appendix.

Remark 3.5. Recall that the first term on the right hand side of (20) van-
ishes, when the terminal condition g can be added to the martingale basis.
The remaining error term averages over time the squared projection errors
between E[f(t;, X[, Y/, ., Z{)|X{] and its best projection on the basis. So
here we do not observe the unfavorable error propagation over time, which
we found in the upper bound for the projection error of the orignial scheme

in (9).
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Remark 3.6. We notice that, by a straightforward application of the law of
large numbers, the simulation error in the martingale basis setting converges
to zero, as the number of simulated paths L tends to infinity. A preliminary
error analysis for a suitably truncated scheme suggests, that the simula-
tion error converges at N~?/2 for p € [0,1] (N the number of time steps
in an equidistant partition), if the number of basis functions K increases
proportional to N% § > 0, and the number of simulated paths L increases
proportional to N2H9+P (compared to N*2%7 in the original scheme). A
detailed analysis is, however, beyond the scope of this paper.

4 Numerical experiments

4.1 The test example

We now introduce the test example for our numerical experiment, which is
the pricing problem of a call spread option under different interest rates.
Actually, this example is taken from Lemor et al. (2006) and hence allows
for a comparison with their results. We shall also consider some variations
of this example in order to study the influence of larger Lipschitz constants
and multi-dimensional situations.

Suppose we are given a market with D risky assets X;, which are modeled
by Black-Scholes stocks. For simplicity we assume that the D stocks are
independent and identically distributed, i.e.

Xg1 = zoexp{(p—0?/2)t + oWy}, d=1,...,D,

where Wy = (Wiy,...,Wpy) is a D-dimensional Brownian motion and
xzg,0, 1t > 0. The trader can also invest into a riskless bond with rate
r > 0 for investing and rate R > r for borrowing from the bond. Our aim
is to price a call spread option on the maximum of the stocks, which here is
assumed to be of the form

= Xy — K -2 Xy — K
§ (dmaXD 4T 1>+ ( max Xqr 2>+

—1,..., —1,...,

for constants K1, K> > 0. Following Lemor et al. (2006) we choose the
constants

2o =100, = 0.05, ¢ = 0.2, T =0.25, r = 0.01, K; = 95, K = 105.

As interest rate for borrowing we choose R = 0.06 for the economically
sensible case with a small Lipschitz constant. In order to test the algorithms
in a situation with larger Lipschitz constant we shall also consider the case
R = 3.01. We run this problem for the one-dimensional case (D = 1), where
the option reduces to a call spread option on a single stock, and for the
three-dimensional problem (D = 3).
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It follows from results by Bergman (1995) that this option pricing prob-
lem under different interest rates can be formulated in terms of a BSDE
by

T ( —7") D D
Y, = g—/t (v + £ ;Zd,s—(R—r)(Ys—algzd,s))ds

o

D .7
-3 / ZgsdWy .
d=1"1%

Note that in the case of a vanilla call option, the investor is bound to per-
petually borrow money in order to hedge the option. Hence the closed-form
solution for such option is given by the hedging problem in a standard Black-
Scholes setting with a bank account given by ef**. Contrarily, for the call
spread option case the problem is truly nonlinear and the solution (Y, Z) of
the BSDE is not available in closed form. Therefore we require a tool to
measure the performance of the numerical algorithm. We here stick to an
error criterion suggested and studied in Bender and Steiner (2010). We now
explain the idea in the general setting of the present paper.

Let us suppose that some approximation (y (z), 2] (z)) of (yI(x), 2] (x))
for every t; € m was computed by some numerical scheme. In the examples
we consider the approximations obtained by the least-squares Monte Carlo

scheme (g, L), 27595 (2)) in (8) and by the martingale basis scheme

et

(g;“K’L (x), Qf’K’L (x)) in (17). Given a generic approximation (¢7 (x), 27 (z)),
we set

(YT, Z7) = (97 (X7). 27 (XT))

and define ()A/t:r, Z{; ), t € [0,T], by piecewise constant interpolation.
Then we consider as an error criterion

(97, 27) = Ellg(X7,) = Y[, Pl

i—1 i—1
+ o max BV - V=7 flty, XV Z0)A = 3 25 AW .
- 7=0 7=0

We emphasize that this criterion does only depend on the numerical solution
(97 (x), 2{.(x)) and, thus, can be consistently estimated by a plain Monte
Carlo approach. The second term on the right hand side measures, whether
the approximative solution is ‘close’ to solving the SDE (run as a forward
SDE). The first term on the right hand side measures how well it fits to the
terminal condition. So, in a sense, we check how close the approximative
solution is to solving the BSDE, while we are actually interested in how close
it is to the true solution of the BSDE.

On the one hand, the error criterion is of some interest quantitatively
due to its simple and meaningful interpretation. Moreover, it is intuitively
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clear that being close to solving the BSDE is necessary for being close to
the solution of the BSDE. On the other hand, the criterion is also of in-
terest qualitatively, because there are constants ¢y, ce, C' > 0 such that for
sufficiently fine partitions 7

1€ (57, 27) — coln] (21)
T
< sup E[Y; -Y/? +/ E[|Z; — Z7|2)dt
te[0,7T7] 0
< O™ ™) + ), (22)

see Bender and Steiner (2010). This means that the square root of the error
criterion is — up to terms of order 1/2 in the mesh size of the partition —
equivalent to the L?-error between approximation and true solution. We
also emphasize that the constant co can be taken as 0, when the driver
f(t,z,y, z) does not depend on (¢,x) which is the case in our option pricing
example. Thus, in such situation, we arrive at the improved lower bound

T
q€a(§7,57) < sup E[Y: — V2] + / BlZ - Z7Pdt. (23)
t€[0,T] 0

Remark 4.1. Note that we cannot expect that the squared L?-error

T
sup B[V~ ¥7P)+ [ El2: - 27
t€[0,7] 0

converges to zero faster than at the order ||, because this error typically
corresponds to the L2-regularity in ¢ of the solution Y; and so persists, even
if Yt:r coincides with Y3, on the grid 7. So, by looking at the error criterion,
we are mainly aiming to judge whether the way, in which the estimator for
the conditional expectation is designed in dependence of the mesh of the
partition, retains the convergence rate of order 1/2 in the mesh or not. The
error criterion decreases more slowly than |7| in the latter case.

4.2 Numerical results

Case 1: ‘Small’ Lipschitz constant

We first consider the one-dimensional case (D = 1) and set R = 0.06.
In this case, the nonlinearity has a rather small Lipschitz constant of (R —
r)/o = 0.25. Concerning the time discretization we apply an equidistant
partition with IV time steps. For the original least-squares Monte Carlo
scheme we choose as basis functions the payoff function of the call spread
and, following Lemor et al. (2006), indicator functions of K equidistant
intervals which form a partition of the domain [40,180]. For the scheme
based on martingale basis functions, we also use the payoff function and the
same number of indicator functions at terminal time ¢ = 7', and then the
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basis functions at the other time steps are computed by formulas (13) and
(14). However, the intervals for the indicator function are not chosen in an
equidistant way, but such that X hits each interval with equal probability.
For different values 3, > 0, we choose in dependence of v € N

N=[2v2""], K= [14 \@(ﬁﬂ)(v—l)/?] N e
: - , .

Table 1 shows the numerical approximations for the price Y{ of the call
spread option under different interest rates for borrowing and investing.
Here, LSM stands for the original least-squares Monte Carlo scheme by
Lemor et al. (2006) and MBF stands for the use of martingale basis functions.

Yo
N 2 3 4 6 8 11 16 23 32 45 64 91 128 181

LSM 1.85 1.25 4.17 286 253 281 282 298 293 295 293 295 295 295
LSM 7.63 3.95 266 299 271 314 286 295 293 294 295

LSM 3.59 3.52 256 2.63 282 283 294 293 294 294

279 451 290 292 293 294 295 295 295 295 296 296 296 2,96
LSM  6.20 4.56 3.01 333 3.63 3.05 290 282 294 290 295 293 294 294
LSM 1.08 3.17 258 3.18 3.10 280 277 289 290 293 294 294

MBF 281 265 4.01 3.06 295 295 295 295 295 295 296 296 296 296
MBF 284 285 297 293 293 294 295 295 295 295 296 296 296 2.96

SO NIt FUCIC N 0 )
=
=
josl
|

Table 1: Numerical price Yy of the call spread option

For all variations of the two algorithms the numerical prices converge to
values around 2.96. Overall, the convergence of the MBF-algorithm appears
to be faster than for the LSM-algorithm. Moreover, in this example in the
MBF-algorithm a faster increase of the number of basis functions (§ = 1
vs. [ = 0.5) and a faster increase of the number of sample paths (v = 3
vs. v = 2) does not significantly change the numerical results. Contrarily,
for the LSM-algorithm, the values for Yy are improved by increasing 8 and
~v. We emphasize that the choice of the parameters 5 and v may drastically
change the computational effort. For instance, for N = 45 and v = 5, about
12 million paths must be simulated, while for N = 45 and v = 2 only 1024
paths are required.

In order to derive information about the quality of the whole numerical
solution (Y-part and Z-part at all time points) and not only about the
Yy-value, we plot the error criterion, which we motivated in the previous
subsection. Figure 1 illustrates the error criterion (on a logarithmic scale)
for 8 = 1, which is estimated using a new sample of L independent paths.
In this case, the projection error in the LSM-scheme theoretically converges
at order 1/2 in the number of time steps N. In order to get the same
theoretical convergence rate (up to logarithmic factors) for the simulation
error, v = b is required. v = 4 is the theoretical threshold for convergence,
while for v = 3 convergence of the simulation error is not supported by the
theoretical analysis in Lemor et al. (2006). The error criterion is smaller for
a larger number of sample paths (i.e. larger values of ), which indicates that
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Figure 1: Error criterion for g =1

the larger computational effort improves on how close the numerical solution
is to solving the BSDE. Somewhat surprisingly, the difference between the
cases 7 = 5 and v = 4 is rather small and for both values of v a convergence
of the LSM-scheme at order 1/2 in the number of time steps is indicated by
the error criterion. For v = 3 the error criterion is significantly larger. Here
it is less obvious, whether the LSM-scheme with 3 = 3 converges at all, but
definitely it does not seem to converge at the same speed as v = 4,5. For
the MBF-algorithm we observe, that the error criterion is significantly lower
with v = 3 than it is for the LSM-scheme with v = 5. The slope of the line of
about -0.95 suggests that the MBF-algorithm with v = 3 converges almost
at rate of 1/2. We recall that it is hardly possible to run the LSM-algorithm
with v > 4 for larger values than N = 64 (and hence to further decrease the
error) in an acceptable time due to the tremendous simulation costs.
Figure 2 shows the error criterion for the case f = 0.5. Here, for the
LSM-algorithm, the projection error theoretically decreases as N~1/4 and
so does the simulation error (up to logarithmic factors) for v = 4. The
theoretical convergence threshold for the simulation error is v = 3. A look
at the error criterion indicates that the LSM-algorithm for v = 2 does not
seem to converge in accordance with the theoretical error bounds. For v = 3
and v = 4, the error criterion only slightly differs. The slope of the lines is
about -0.9 in both cases, which corresponds to a rate of about 0.45. This
suggests that, in practice, the worst case error propagation backwards in
time, which is reflected in theoretical rate 1/4, is not present. Again, for the
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Figure 2: Error criterion for 8 = 0.5

MBF-scheme the error criterion is overall smaller and the scheme converges
with lower simulation costs at v = 2. Indeed, the additional simulation effort
for v = 3 does not improve the convergence behavior of the MBF-scheme.
The slope is at -0.95 identical to the case 8 = 1.

In summary, in this example we find that using martingale basis functions
leads to significant improvements of the numerical approximations of the
whole solution of the BSDE. Moreover, the improved numerical solutions
are computed with drastically less simulation effort.

Case 2: ‘Large’ Lipschitz constant

We now test the algorithms in a situation with a larger Lipschitz con-
stant, but still in the one-dimensional case. As the Lipschitz constant of
f enters exponentially in some of the error estimates, we expect that the
numerical algorithms may run into difficulties. We set R = 3.01. Hence,
the nonlinearity in f has as Lipschitz constant (R — r)/o = 15. Of course,
from the point of view of the financial application an interest rate of 301%
is not relevant, but we believe that it is important to test the algorithms
in some extreme situations as well. Moreover, as R tends to infinity, the
price of the call spread option under different interest rates converges to the
superhedging price under the no-borrowing constraint, see e.g. Bender and
Kohlmann (2008). So the case of a large rate R for borrowing may still be of
some interest from a financial point of view. We note that the superhedging
price under the no-borrowing constraint can be computed analytically for
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the call spread option by applying the techniques developed by Broadie et
al. (1998). It is 7.18 and serves as an upper bound for our test BSDE, in
which we use the same specification for the number of time steps, the basis
functions, and the number of sample paths as in the previous example.

Yo
N 2 3 4 6 8 11 16 23 32 45 64 91 128 181
B v type
LSM  29.52 5.14 13.52 11.78 6.78 8.67 7.41 736 113.35 157.49 4994.81

LSM 3282 2044 1199 6.96  5.66 7.28 38.87 105.70 6.84  91.01
MBF 18.58 1596 -22.23 -11.80  6.23 1412847 8.84 7.99 7.33 6.90 6.66 6.53 6.47 6.44
MBF  12.27 474.02 113.35 129.68 10.52 9.78  8.89 7.97 7.35 6.91 6.66 6.53 6.47 6.44

[N A

Table 2: Numerical value of Yy for the case with higher Lipschitz constant

Table 2 displays the numerical approximations for Y calculated with the
LSM-algorithm and the MBF-algorithm. On the one hand, for the LSM-
algorithm no convergence pattern can be observed for v = 4 and N up to
64 and v =5 and N up to 45. As in the latter case (y = 5) the algorithm
theoretically converges at a rate of 1/2 in the number of time steps N, we
conclude that larger values of N are required. As the number of sample
paths also increases as N7, large values of N become, however, numerically
untractable. Recall that N = 45 and v = 5 already leads to 12 million
sample paths. Nonetheless, the somewhat wild fluctuations in the estimated
Yp-values suggest that even larger number of sample paths cannot be avoided
in the LSM-algorithm for this example. On the other hand, for the MBF-
algorithm the pattern of the estimated Yy-values apparently converges for
v =2 and v = 3. Convergence is not yet achieved for NV = 181, but it seems
plausible that Yj is about 6.40.

A look at the error criterion, which is plotted in Figure 3, confirms
these observations. The LSM-algorithm is seen not to be in the range of
convergence for the given values of N. For the MBF-algorithm we first note
that the observed convergence behavior does not really differ for the cases
v =2 and 7 = 3. So, again, the use of more sample paths than for v = 2
does not appear to be necessary for this scheme. It is interesting that the
error criterion for the MBF-algorithm is comparable in absolute values to
the case of the small Lipschitz constant for N > 16.

This example demonstrates that calculating some of the conditional ex-
pectations in closed form by using martingale basis functions stabilizes the
algorithm. Hence the new algorithm based on martingale basis functions
can compute reasonable approximations for the solution of the BSDE in sit-
uations, where the original algorithm already breaks down due to the large
Lipschitz constant of the nonlinearity.

Case 3: Three-dimensional case

We finally return to the case of the small Lipschitz constant, i.e. the
rate for borrowing R is again set to 6%, but we now price a call spread
option on the maximum of three stocks (D = 3). In the previous examples
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Figure 3: Error criterion for 8 = 1 and the case of a larger Lipschitz constant

the number of basis functions was increased with the number of time steps
N, in order to make the projection error converge as N tends to infinity.
In this example we test the use of a small number of basis functions. Here
we take as basis functions the constant 1, the three first-order monomials,
and the payoff function of the max-call-spread for the original least-squares
approach. For the MBF-algorithm, the basis functions are only specified this
way at terminal time and are the computed by formulas (13) and (14) at the
other time points. Fixing a finite number of basis functions automatically
introduces a bias to the numerical scheme which cannot be removed, but this
procedure corresponds to what is usually done in Bermudan option pricing
by the Longstaff-Schwartz algorithm. For the number of time steps and the
number of sample paths we use the same specifications as before.

Yo
N 2 3 4 6 8 11 16 23 32 45
type
LSM -096 6.30 261 3.03 290 3.09 3.05 3.08 312 3.09
LSM 850 3.57 3.10 3.08 280 3.08 3.14 3.09 3.09 3.09
MBF 3.05 4.64 3.03 3.10 3.10 3.11 3.12 312 312 3.12
MBF 291 3.19 3.10 3.10 3.13 3.12 3.12 3.12 3.12 3.12

WN O |2

Table 3: Price Yy of the 3-dimensional max-call-spread

The numerical prices for the max-call-spread on three stocks under differ-
ent interest rates are shown in Table 3. Here the values of the LSM-algorithm
and the MBF-algorithm converge to similar but slightly different values. In
both cases the number of simulated paths (y = 4 vs. v = 5 for the LSM-
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Figure 4: Error criterion for the 3-dimensional max-call-spread

algorithm, v = 2 vs. v = 3 for the MBF-algorithm), does not significantly
change the convergence pattern.

We now look at the error criterion for this example (Figure 4). It shows
that the simple basis consisting of the payoff function and some monomials
is clearly inappropriate to recover the whole solution of the BSDE numeri-
cally. Indeed, for the LSM-scheme the error criterion stays roughly constant
for N > 11 at a level larger than 10. This clearly indicates that the error
arising from the choice of the small basis dominates the time discretization
error and the simulation error, which both converge like N~1/2. In the MBF-
scheme the basis functions computed from the payoff function correspond
to the price of the European option (without different interest rates) and to
the deltas and are therefore automatically constructed in a more problem-
specific way. We observe that for the MBF-algorithm and N < 45 the error
criterion corresponds to a decrease of the error at order 1/2. This indicates
that the projection error is still dominated by the time discretization error
and the simulation error for this range of N. We did not try larger values
for N, but of course the projection error will be dominant for sufficiently
large N. The key observation, which we make here, is that also for multi-
dimensional problems a reasonable approximation of the whole solution of
the BSDE may still be possible with only a few relevant basis functions, in
particular when one can additionally exploit the fact that some of the con-
ditional expectations can be computed in closed form by using martingale
basis functions.
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To conclude, in our numerical examples we find that the use of martin-
gale basis functions yields significantly better numerical approximations at
a much lower computational cost compared to the original least-squares
Monte Carlo scheme. However, the new algorithm is less generic, because
the construction of martingale basis functions depends on the law of X and
restricts the choice of basis functions. So, we finally recommend to exploit
the advantages of martingale basis functions when a good set of such func-
tions is available.

A Proof of Theorem 3.4

Throughout the proof, C' denotes a generic constant, which may vary from
line to line. In order to simplify the notation, and without any real loss of
generality, we restrict ourselves to the case D = 1. We also make use of the
following abbreviations:

fz7r = f(tlathvyﬂ—

tiv1?

™, K a7, K ~m, K
Zg)v f = f(tuXZZ’ytz_,'_l(XtT)?Ztl (Xg:))

1

Furthermore, PZ-K , 7 =0,...N, denotes the orthogonal projection on the

linear span of {no1(i, X7),...,mo,x(i,XT)} as a subspace of L*(P). Then
we obtain by the definitions in (5) and (19) and Young’s inequality fo every
v>0

BlY7 — P (XD < A+ yA) BBV, — of (XF, )IXFIP)
Ai T T T
+(1+ vAi>7EHPiK<fZ- Ky — BlfFIXT)
= (I) + (IT).

The orthogonality and the contraction property of PZK as well as the Lips-
chitz condition of f and the definition of PX yield

Ai s T T s ™
(IT) = (1+ 7A¢)7E[!P¢K(fi Y = PR+ [PE(FF) = EIfFIXT

207 r omK r amK [ yr
- E[|Yti+1 - y:’—i—l (Xti+1)|2 + 12 — 20 (Xti)|2]

< (1+~4A))

Ai . . T T v
+(1+ 7A¢)7 ﬂleng Ellno(i, XT)8 — E[fT|XT]].
(24)
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Next, we obtain by the definitions in (5) and (19) and Hélder’s inequality

Ellzy; - &7 K(X”)I ]

:EHE[ = O (X O NXT
AW o T . T
= BB YL, — 955 (XT,,) = BT, — 95 (X7, ) IXT X

]- ATT ]- vy ~ATC e
HYW — g (XTL )P = —EIEWYE,, — 050 (XT,)IXEIPL (25)
A

Applying this result on (24) for v = 2k? we get

EY,] — 97" (XT)PP) < (1+26°A0)(L+ M) EY],, — a7y (X7, )P

CA; inf E[lno(i, X])B — E[fT|X]]?]-
+ Jinf, [0 (i, XT) B8 — E[f]|XT])?]

Thanks to the discrete Gronwall inequality and the definiton of yJT{;K(XfN),
we get

E[Y7 - g7 (XI)P) < C inf_Ellno(N, X7,)8 — 9(X7,)’]
BER

N-1
+CZ inf Ellmo(s, X;;)8 = ELfFIXE J7]. - (26)

] )

So we have proved the required approximation (20) for the Y-part. It re-
mains to prove the upper bound for the Z-part. By (25) and the definitions
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in (5) and (19) we have for every I' > 0

> AE(ZT - (X
1=0

N-1 N-1
T A7rK Aﬂ’K ™
S EH}/;Z_;,J yz—‘,—l Xt1+1 Z E ’Y;/ (X )| }
i=0 =0
N-1
Aer T, K
~2 3 NE{YT = g (XD HEUTIXT] - PR
=0
N-—1
< BIYR =gy (XTI + Y ATEY,T = 57" (XT)P]
=0
N— 1A N— 1A
£ LR - P Y S EIELTIXT) - PEUP
=0 1=0
2
T ATI'K A7rK
< BV - 5 OGP+ T+ 2 mas BV - OGP
2,{2 N—-1
T Z E(|Z] - (Xt )]
=0
1

N—
fZ A inf, Ellm(i. X7)8  E[f71X7].

Setting I' = 4x? and taking (26) into account immediately gives the estimate
for the Z-part.
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