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Christian Bender1

December 21, 2010

Abstract

In this paper we study the pricing problem of multiple exercise op-
tions in continuous time on a finite time horizon. For the corresponding
multiple stopping problem, we prove, under quite general assumptions,
the existence of the Snell envelope, a reduction principle as nested sin-
gle stopping problems, and a Doob-Meyer type decomposition for the
Snell envelope. The main technical difficulty arises from the fact that
the price process of a multiple exercise option typically exhibits dis-
continuities from the right hand side, even if the payoff process of the
option is right-continuous. We also derive a dual minimization prob-
lem for the price of the multiple exercise option in terms of martingales
and processes of bounded variation. Moreover, we explain how the pri-
mal and dual pricing formulas can be applied to compute confidence
intervals on the option price via Monte-Carlo methods and present a
numerical example.

Keywords: Doob-Meyer decomposition, duality, option pricing, Monte-
Carlo methods, multiple exercise options, swing options.

AMS classification: 91B28, 60G40, 65C05, 60G44.

1 Introduction

Options with several early exercise rights are popular in different financial
markets, in particular in energy markets. Due the lack of storability and
the varying demand for energy, options have been designed which admit
flexibilty concerning the timing of delivery. In a simple version of such a
swing option, the buyer of the option is entitled to exercise a certain right
(e.g. the delivery of some amount of energy) several times until the maturity
of the option. The number of exercise rights and possible constraints on how
to use the rights are specified in the contract (see e.g. Jaillet et al., 2004).
One of such constraints which is typically included in a swing option is

1Saarland University, Department of Mathematics, PO Box 151150, D-66041 Saar-
brücken, Germany. bender@math.uni-sb.de.
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the so called refraction period. The refraction period is the minimal time
between exercising two rights. For swing options, which include the delivery
of energy, the refraction period is at least the time required for the physical
delivery.

The buyer of a multiple exercise option is faced with the problem of
exercising the rights optimally while obeying the refraction period. Mathe-
matically, this problem is a multiple stopping problem, which we here treat
in a continuous time setting with finite time horizon (i.e. with finite ma-
turity). The aim of the present paper is to study such a multiple stopping
problem (which we refer to as the primal problem) and to derive a dual
representation as a minimization problem. Primal and dual representation
can then be combined to design a Monte-Carlo algorithm for the pricing of
multiple exercise options.

Our first main result is Theorem 2.2, which summarizes some structural
results on the multiple stopping problem. Under the assumption that the
cashflow Z(t), which can be exercised at most n times by the holder of the
option, is right-continuous (up to maturity) and satisfies an integrability
condition, we prove the existence of the Snell envelope and its Doob-Meyer
decomposition. Moreover, we derive a reduction principle of the multiple
stopping problem as a nested sequence of single stopping problems. Such
reduction principle is well-known in discrete time (see Haggstrom, 1967;
Cairoli and Dalang, 1996). In continuous time it was studied by Carmona
and Touzi (2008) and Zeghal and Mnif (2006) under stronger conditions than
the ones imposed in the present paper. The main technical difficulty related
to Theorem 2.2 is that the value process of the multiple stopping problem
typically exhibits discontinuities from the right, (although the cash-flow Z
is right-continuous). The lack of right-continuity even occurs in very simple
examples, e.g. if the cashflow Z is constant 1 until maturity (see Example
4.1 below). It is a consequence of the finite maturity and the refraction
period, which are both part of the swing contracts traded in industry prac-
tice. The refraction period is also essential from a mathematical point of
view, because, without refraction period, all n optimal exercise times for the
multiple stopping problem would cluster at an optimal time for the single
stopping problem, i.e. the value of the multiple stopping problem would
trivially reduce to n times the value of the single stopping problem with the
same cashflow.

As a second contribution we derive a dual minimization problem for the
price of the multiple exercise option in continuous time. In the classical case
of an American option (i.e. a single exercise right) a dual minimization prob-
lems in terms of martingales is due to Rogers (2002) and Haugh and Kogan
(2004). Extensions to multiple exercise option were only known in a discrete
time setting. One such extension by Meinshausen and Hambly (2004) yields
a dual minimization problem in terms of a martingale and (n− 1) stopping
times for the marginal price of an additional nth right. The Meinshausen-
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Hambly dual, and its generalization to volume constraints by Bender (2010)
(see also Aleksandrov and Hambly, 2010, for an alternative proof), requires
that the refraction period equals the discrete time step, and may, thus,
not be tranferable to a continuous time setting. Recently, Schoenmakers
(2010) came up with an alternative multiple dual in discrete time, which
is a minimization problem over martingales only. Theorem 2.3 below can
be interpreted as a generalization of the Schoenmakers dual to a continuous
time setting. The conceptually new feature of the continuous time multiple
dual is that not only the martingale part, but also the increasing part of
the Doob-Meyer decomposition of the price process matters. Consequently,
we end up with a minimization problem over martingales and processes of
bounded variation.

We also discuss how the primal and the dual formulation for the price
of a multiple exercise option can be applied to compute the option price
numerically by a Monte-Carlo approach. Our algorithm extends the primal-
dual approach by Andersen and Broadie (2004) from a single exercise rights
to several rights. After a time discretizaton of the option is performed, the
algorithm consists of three steps. First, a dynamic programming formulation
suggested by the reduction principle is solved approximatively. We apply the
least-squares Monte-Carlo approach (Longstaff and Schwartz, 2001) for the
conditional expectations, but other estimators e.g. using quantization (Bally
and Pagès, 2003) or Malliavin Monte-Carlo (Bouchard et al., 2004; Carmona
and Touzi, 2008) are possible. As a second step, based on the approximative
continuation values one obtains candidates for ‘close-to-optimal’ stopping
times which are applied to calculate a lower bound on the option price.
The final step consists of performing the Doob-Meyer decomposition of the
approximative solution of the dynamic program numerically, which is then
plugged into the dual formulation and yields an upper bound of the price.
We use a nested simulation approach (Andersen and Broadie, 2004) for the
numerical Doob-Meyer decomposition, but one could alternatively apply
the non-nested procedure by Belomestny et al. (2009) (if the filtration is
generated by a Brownian motion).

The paper is organized as follows: The main results are stated in Section
2, which also contains a detailed comparison to the results by Schoenmak-
ers (2010). Section 3 is devoted to the Monte-Carlo algorithm, which are
illustrated by some numerical experiments. The proof of the main results
are postponed to Sections 5 and 6.

2 Statement of the main results

We consider an option which can be exercised up to n times by the holder
of the option. A refraction period δ > 0 imposes the constraint that a min-
imal time period of δ must lie in between two exercises. The discounted
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cash-flow of the option is modeled by a stochastic process Z(t), 0 ≤ t ≤ T ,
adapted to a filtration (Ft)t∈[0,T ], where the underlying probability space
(Ω,F, (Ft)t∈[0,T ], P ) is assumed to satisfy the usual conditions. In our con-
text P is already a fixed pricing measure (i.e. the discounted tradable
and storable primary securities in the market are σ-martingales under P ).
Throughout the paper, the following conditions are imposed on the dis-
counted cash-flow Z:

(H): (Z(t), 0 ≤ t ≤ T ) has right-continuous, nonnegative paths and

E[ sup
0≤t≤T

|Z(t)|p] <∞

for some p > 1.

We emphasize that, due to the refraction period, it may be beneficial for
the holder not to exercise all of the rights. We incorporate this feature in
the problem formulation by exercising some of the rights later than time T
where we set the cash-flow equal to zero. Precisely, we extend Z(t) and Ft

on the positive real line by setting

Zt = 0, Ft = FT

for T < t < ∞. This extension induces a discontinuity from the right at
t = T , unless Z(T ) = 0.

Given a stopping time σ, we denote by Sσ the set of (Fs)0≤s<∞-stopping
times taking value bigger or equal to σ. For n ∈ N, δ > 0, and t ≥ 0 we
define

∆δ,n = {(u1, . . . , un) ∈ [0,∞)n; ui ≥ ui+1 + δ for all i = 1, . . . , n− 1},
∆δ,n

t = ∆δ,n ∩ {(u1, . . . , un) ∈ [0,∞)n; un ≥ t}

Finally, for every stopping time σ, Sn
δ,σ contains those n-tuples of stopping

times (τ1, . . . , τn) ⊂ Sσ taking values in ∆δ,n. Then, the discounted price of
the multi-exercise option with n exercise rights and refraction period δ in
the price system induced by P at time σ is given by

Ȳ ∗,n(σ) = esssup
(τ1,...,τn)∈Sn

δ,σ

n∑
ν=1

E[Z(τν)|Fσ].

The aim of this paper is to analyze the structure of the multiple stop-
ping problem Ȳ ∗,n(σ), which we consider the primal pricing formula for the
multiple exercise option, and to derive an equivalent minimization problem
in terms of martingales and processes of bounded variation, which can be in-
terpreted as a dual formulation. The primal and dual pricing formulas then
serve as a starting point for designing a Monte Carlo algorithm to compute
confidence intervals on the option price of the multiple exercise option.

4



Our first main result includes a reduction principle of the multiple stop-
ping problem in terms of single stopping problems and a Doob-Meyer de-
composition for Ȳ ∗,n. Both results are valid under condition (H) and are
also crucial for the derivation of the dual pricing formula. Before we can
properly state the corresponding theorem, we introduce two notions on the
path regularity.

Definition 2.1. We call a stochastic process X Dn-RC, if its discontinuities
from the right are included in the set Dn := {T − νδ; ν = 0, . . . , n− 1}. It
is called Dn-RCLL, if it additionally has left limits.

Theorem 2.2. Suppose (H). Then, for every n ∈ N, it holds that:
– (Sn) (Snell envelope) There is an Dn-RCLL supermartingale Y ∗,n(t) such
that for every stopping time σ

Y ∗,n(σ) = Ȳ ∗,n(σ)

and
E[ sup

0≤t<∞
|Y ∗,n(t)|p] <∞.

– (DMn) (Doob-Meyer-decomposition) There is an RCLL martingale M∗,n

with M∗,n(0) = 0 and E[sup0≤t<∞ |M(t)|] <∞ and a predictable, integrable,
Dn-RCLL, nondecreasing process A∗,n with A∗,n(0) = 0 such that for every
0 ≤ t <∞

Y ∗,n(t) = Y ∗,n(0) +M∗,n(t) −A∗,n(t).

– (Rn) (Reduction principle) There is an adapted, Dn-RC process Zn(t) such
that

Y ∗,n(σ) = esssup
τ∈Sσ

E[Zn(τ)|Fσ].

and
E[ sup

0≤t<∞
|Zn(t)|p] <∞.

Here Zn(t) is a modification of Z(t) + E[Y ∗,n−1(t+ δ)|Ft] such that

Zn(τ) = Z(τ) + E[Y ∗,n−1(τ + δ)|Fτ ]

for every stopping time τ (with the convention Y ∗,0 ≡ 0).

The proof will be given in Section 4 below.
The reduction principle follows the intuition that the option with n ex-

ercise rights is as good as an option with a single right which promises the
cash-flow plus the right to enter a contract with (n−1) rights δ years later, i.e.
a single optimal stopping problem with cash-flow Z(t)+E[Y ∗,n−1(t+δ)|Ft].
In a discrete time setting it is easily verified and can be traced back to
Haggstrom (1967), see also Cairoli and Dalang (1996). In continuous time
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it is derived by Carmona and Dayanik (2008) on an infinite time horizon
(T = ∞), and on a finite time horizon by Carmona and Touzi (2008) and
Zeghal and Mnif (2006) under more restrictive assumptions than (H). The
main technical difficulty related to Theorem 2.2 in the general case is that we
cannot expect the processes Y ∗,n(t) to have a right-continuous modification
on [0, T ] for n ≥ 2, see Example 4.1 below. This problem cannot be avoided
on a finite time horizon due to the presence of the refraction period, unless
the discounted cash-flow vanishes at terminal time, i.e. Z(T ) = 0. Due to
the lack of right-continuity of Y ∗,n(t) and Zn(t) neither the standard formu-
lation of the Doob-Meyer decomposition (e.g. Karatzas and Shreve, 1991,
Theorem 1.4.10) nor the standard theory of optimal stopping (e.g. Karatzas
and Shreve, 1998, Appendix D) are at our disposal.

With the structural results in Theorem 2.2 at hand are now in the po-
sition to state the second main result on dual pricing of multiple exercise
options in continuous time. For the case of a single exercise n = 1 right it
coincides with the dual formulation of Rogers (2002) and Haugh and Kogan
(2004) in terms of the martingale part of the Doob-Meyer decomposition.
The conceptual novelty for several exercise rights is that also the increasing
process of the Doob-Meyer decomposition enters the formula.

Theorem 2.3 (Dual pricing formula). Suppose (H). Then:
(i) Suppose M1, . . .Mn are RCLL martingales with Mν(0) = 0 and

E[ sup
0≤t≤T

|Mν(t)|] <∞, ν = 1, . . . , n

and A1, . . . , An−1 are integrable adapted processes of bounded variation with
Aν(0) = 0 and such that Aν is Dν-RCLL for ν = 1, . . . , n− 1. Then,

Y ∗,n(t) ≤ E

[
sup

u1,...,un∈∆δ,n
t

n−1∑
ν=1

(
Z(uν) − (Mν(uν) −Mν(uν+1))

+Aν(uν+1 + δ) − E[Aν(uν+1 + δ)|Fuν+1 ]
)

+Z(un) − (Mn(un) −Mn(t))

∣∣∣∣∣Ft

]
(ii) Moreover, with the Doob-Meyer decomposition in Theorem 2.2,

Y ∗,n(t) = sup
u1,...,un∈∆δ,n

t

{
n−1∑
ν=1

(
Z(uν) − (M∗,ν(uν) −M∗,ν(uν+1))

+A∗,ν(uν+1 + δ) − E[A∗,ν(uν+1 + δ)|Fuν+1 ]
)

+Z(un) − (M∗,n(un) −M∗,n(t))

}
.
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The proof is postponed to Section 5.
Remark 2.4. (A technical remark) Thanks to Proposition 4.4 and Remark
4.5 below, the processes E[Aν(t + δ)|Ft] in part (i) of Theorem 2.3 have a
modification Aν(t) such that Aν(τ) = E[Aν(τ + δ)|Fτ ] for every bounded
stopping time τ . Expressions such as E[Aν(uν+1 + δ)|Fuν+1 ] in part (i) of
Theorem 2.3 are to be read as the respective modifications.

We close this section by a comparison of Theorem 2.3 with the dual
formulation for multiple exercise options obtained by Schoenmakers (2010)
in discrete time. Hence, we switch to a discrete time setting with K time
steps and consider a discrete time stochastic process Z(k), k = 0, . . . ,K,
adapted to some filtration (Fk)k=1,...,K . As in the continuous time setting
we extend the process and the filtration by setting Z(k) = 0, Fk = FK for
k ≥ K + 1. We assume that δ ∈ N and consider the discrete time multiple
stopping problem

Y d,n(k) = esssup
(τ1,...,τn)∈Sd,n

δ,k

n∑
ν=1

E[Z(τν)|Fk], k ∈ N,

where S
d,n
δ,k is the subset of Sn

δ,k taking values in Nn. (The superscript d
indicates that we study the discrete time problem). We embed this discrete
time multiple stopping problem in the continuous time setting with maturity
T = K + 1 by defining

Z(t) = Z(k), Ft = Fk, k ≤ t < k + 1, k ∈ N.

Moreover, we denote by Y ∗,n(t) the Snell envelope for the continuous time
multiple stopping problem with discounted cash-flow Z(t), cp. Theorem 2.2,
(Sn). It is straightforward to verify that Y ∗,n(t) has RCLL and piecewise
constant paths:

Y ∗,n(t) = Y d,n(k), k ≤ t < k + 1, k ∈ N.

Now, Theorem 2.3 specializes to the discrete time multiple stopping problem
as follows.

Corollary 2.5 (Dual pricing formula in discrete time). In the discrete time
setting it holds:
(i) Suppose M1, . . .Mn are discrete time martingales starting in zero and
and A1, . . . , An−1 are integrable adapted processes in discrete time starting
in zero. Then, for every k ∈ N

Y d,n(k) ≤ E

[
sup

u1,...,un∈∆δ,n
k ∩Nn

n−1∑
ν=1

(
Z(uν) − (Mν(uν) −Mν(uν+1))

+Aν(uν+1 + δ) − E[Aν(uν+1 + δ)|Fuν+1 ]
)

+Z(un) − (Mn(un) −Mn(k))

∣∣∣∣∣Fk

]
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(ii) Moreover, if Y d,ν(k) = Y d,ν(0) +Md,ν(k) −Ad,ν(k) is the Doob decom-
position of the discrete time process Y d,ν(k) for ν = 1, . . . , n, then

Y d,n(k) = sup
u1,...,un∈∆δ,n

k ∩Nn

{
n−1∑
ν=1

(
Z(uν) − (Md,ν(uν) −Md,ν(uν+1))

+Ad,ν(uν+1 + δ) − E[Ad,ν(uν+1 + δ)|Fuν+1 ]
)

+Z(un) − (Md,n(un) −Md,n(k))

}
.

Schoenmakers (2010) considers a discrete time setting with refraction
period δ = 1, while the above corollary covers any refraction period δ ∈ N.
For δ = 1, we observe that the processes Ad,ν(k+δ) in (ii) are Fk-measurable
by predictability. Hence,

Ad,ν(uν+1 + δ) − E[Ad,ν(uν+1 + δ)|Fuν+1 ] = 0

and (ii) simplifies to

Y d,n(k) = sup
u1...,un∈Nn

u1>u2···>un≥k

{
n∑

ν=1

(
Z(uν) − (Md,ν(uν) −Md,ν(uν+1))

}
,

with un+1 := k. This is exactly the dual formulation of Schoenmakers
(2010). We observe, however, that this pure martingale dual for the multiple
stopping problem in discrete time only holds, when the time step is equal to
the refraction period. If the refraction period is a non-trivial multiple of the
time step, the increasing processes are indispensible even in discrete time.

3 A Monte Carlo algorithm and numerical results

In this section we explain how the results of the previous section can be
transformed into a viable numerical scheme. We suggest to perform a time
discretization and then to compute a confidence interval for the price of the
time discretized option. At the end of the section we provide a numerical
example.

3.1 Time discretization

As a first step to a viable numerical scheme we discretize the discounted
cash-flow process Z(t), 0 ≤ t ≤ T . To this end we again extend Z to the
whole positive line by setting Z(t) = 0 for t ∈ (T,∞). Given the refraction
period δ > 0, we define

T0 = inf{S ≥ T ;
S

δ
∈ N}.
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We then choose a κ ∈ N and consider an equidistant partition of [0, T0] with
K = (κT0)/δ time points

{tk := k
δ

κ
; k = 0, . . . ,K}.

We assume a Markovian setting for the numerical algorithm. Precisely, let
(X(k),Ftk), k = 0, . . . ,K, be a discrete time Markov process such that

Z(tk) = h(k,X(k)), k = 0, . . . ,K

for some deterministic function h(k, x). By construction, the refraction pe-
riod δ in the original continuous time setting (t ∈ [0,∞)) correponds to a
refraction period of κ ∈ N in the time discretized setting (k = 0, 1, . . .). Con-
sequently, as an approximation to the option price of the multiple exercise
option with n rights,

Y ∗,n(0) = esssup
(τ1,...,τn)∈Sn

δ,0

n∑
ν=1

E[Z(τν)],

we consider the discrete time multiple stopping problem

Y d,n(0) = esssup
(σ1,...,σn)∈Sd,n

κ,0

n∑
ν=1

E[h(σν , X(σν))]. (1)

Here S
d,n
κ,0 contains the n-tuples of N-valued (Ftk)k=0,1,...-stopping times with

σν ≥ σν+1 + κ for ν = 1, . . . , n− 1 and h(k, x) := 0 for k ≥ K + 1.
Note, that the finer the time partition for the continuous time problem,

the larger the refraction period κ for the time discretized problem. Hence,
we really need to numerically solve a discrete time multiple stopping problem
with non-trivial refraction period (κ ≥ 2).

Combining the reduction principle for multiple stopping problems with
the dynamic programming principle for discrete time (single) optimal stop-
ping problems and the Markovian setting, we get

Y d,n(0) = yn(0, X(0)),

where the functions yν(k, x), ν = 1, . . . , n, can be defined recursively. In-
deed, given

yν(k, x) = 0, k = K + 1,K + 2, . . . , ν = 1, . . . , n, (2)

we construct, for ν = 1, . . . , n and k = K, . . . , 0

qν(k, x) = E[yν(k + 1, X(k + 1))|X(k) = x],
qν
κ(k, x) = E[yν(k + κ,X(k + δ))|X(k) = x],
yν(k, x) = max{h(k, x) + qν−1

κ (k, x), qν(k, x)}. (3)
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Moreover, it is well-known (e.g. Bender and Schoenmakers, 2006) that op-
timal stopping times σ∗,nν , ν = 1, . . . , n for the discrete multiple stopping
problem (1) with n rights exist and can be constructed via the continuation
values qν(k, x) as

σ∗,nn+1 = −κ,
σ∗,nν = inf{k ≥ σ∗,nν+1 + κ; h(k,X(k)) + qν−1

κ (k,X(k)) ≥ qν(k,X(k))},
ν = n, . . . , 1. (4)

3.2 Constructing confidence intervals for the price

We now explain how to construct confidence intervals for the time-discretized
problem (1) in the Markovian setting. The first step is to solve the backward
dynamic program (2)–(3) approximatively. Although the backward dynamic
program is explicit in time, one cannot expect that the nested conditional
expactations in (3) are available in closed form. Hence, the conditional ex-
pectations have to be replaced by an estimator which can be nested without
exploding cost. Several Monte-Carlo methods are discussed in the literature,
which also work for problems with high-dimensional state space, for exam-
ple quantization methods (Bally and Pagès, 2003), Malliavin Monte-Carlo
(Bouchard et al., 2004; Carmona and Touzi, 2008), and least-squares Monte-
Carlo (Longstaff and Schwartz, 2001). In the numerical example below we
shall apply least-squares Monte-Carlo. However, to keep the presentation
generically, for the moment we only suppose that approximations

q̂ν(k, x), q̂ν
κ(k, x), ν = 1, . . . , n, k = 0, . . . ,K, (5)

of
qν(k, x), qν

κ(k, x), ν = 1, . . . , n, k = 0, . . . ,K,

are pre-computed by some numerical method. (The approximations are, of
course, extended by 0 for k > K). We then define

ŷν(k, x) = max{h(k, x) + q̂ν−1
κ (k, x), q̂ν(k, x)}. (6)

By construction, ŷn(0, X(0)) is an approximation of the time-discretized
option price Y d,n(0). In order to judge the success of the numerical method
which was implemented for the computation of ŷn(0, X(0)), we now propose
to construct confindence intervals for Y d,n(0) making use of the approximate
backward dynamic program (5). This approach may be seen as a multiple
exercise generalization of the procedure by Andersen and Broadie (2004).

For the lower bounds we proceed as follows:

• Simulate L sample paths Xλ, λ = 1, . . . , L, of X.
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• Along the simulated paths Xλ, λ = 1, . . . , L, define approximations to
the optimal stopping times by

σ̂λ,n
n+1 = −κ,

σ̂λ,n
ν = inf{k ≥ σλ,n

ν+1 + κ; h(k,Xλ(k)) + q̂ν−1
κ (k,Xλ(k))

≥ q̂ν(k,Xλ(k))}, ν = n, . . . , 1. (7)

By the structure of the optimal stopping times in (4) we expect that
the stopping times σ̂λ,n

ν are ‘close-to-optimal’, if the numerical approx-
imation of the backward dynamic program (5) was successful.

• An (unbiased) approximation of the lower bound for Y d,n(0) based on
using the stopping times σ̂ (instead of the optimal ones σ∗) can be
obatined by the sample mean

Y low,n(0) :=
1
L

L∑
λ=1

n∑
ν=1

h(σ̂λ,n
ν , Xλ(σ̂λ,n

ν )). (8)

For the construction of (asymptotic) confidence intervals we also store
the corresponding empirical standard deviation slow,n.

For the upper bounds we make use of Corollary 2.5, the discrete time ver-
sion of the dual pricing formula in Theorem 2.3. Corollary 2.5 suggests
that we numerically approximate the Doob decomposition of the processes
ŷν(k,X(k)), ν = 1, . . . , n, defined via (6). Recall that the Doob decomposi-
tion of ŷν(k,X(k)) is given by

ŷν(k,X(k)) = ŷν(0, X(0)) + M̂ν(k) − Âν(k)

where the martingale part M̂ν and the predictable part Âν are given by

M̂ν(0) = 0, Âν(0) = 0
M̂ν(k) = M̂ν(k − 1) + ŷν(k,X(k)) − E[ŷν(k,X(k))|X(k − 1)]
Âν(k) = Âν(k − 1) + ŷν(k − 1, X(k − 1)) − E[ŷν(k,X(k))|X(k − 1)].

Note also that expressions such as Âν(k + κ) − E[Â(k + κ)|Ftk ], which are
required in the dual representation, can be rewritten as

Âν(k + κ) − E[Â(k + κ)|Ftk ]
= M̂(k + κ) −M(k) + E[ŷν(k + κ,X(k + κ))|X(k)] − ŷν(k + κ,X(k + κ)).

Hence, the essential step for calculating the dual upper bounds by simulation
is to estimate the conditional expectations

E[ŷν(k + 1, X(k + 1))|X(k)], E[ŷν(k + κ,X(k + κ))|X(k)]

along simulated paths. This can be done as follows:
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• Simulate L′ new sample paths of X, which we denote again by Xλ, λ =
1, . . . , L′. (As the lower bounds are already constructed, no confusion
should arise from this ambiguous notation).

• Given pairs (λ, k), we sample M copies Xλ,µ(k + 1) and Xλ,µ(k + κ),
µ = 1, . . . ,M , with the law of X(k + 1), resp. X(k + κ), conditional
on {X(k) = Xλ(k)}. We now define, for ν = 1, . . . , n,

Q̂ν
λ(k) =

1
M

M∑
µ=1

ŷν(k + 1, Xλ,µ(k + 1))

Q̂ν,κ
λ (k) =

1
M

M∑
µ=1

ŷν(k + κ,Xλ,µ(k + κ))

as unbiased estimators for E[ŷν(k + 1, X(k + 1))|X(k) = Xλ(k)] and
E[ŷν(k + κ,X(k + κ))|X(k) = Xλ(k)].

• We now approximate the martingale part of the Doob decomposition
of ŷν(k,Xλ(k)), ν = 1, . . . , n, by

M̂ν
λ (0) = 0,

M̂ν
λ (k) = M̂ν

λ (k − 1) + ŷν(k,Xλ(k)) − Q̂ν
λ(k − 1)

Moreover, we approximate Âν(k + κ) − E[Â(k + κ)|Ftk ] along the L′

simulated ‘outer’ paths Xλ, λ = 1, . . . , L, by

M̂ν
λ (k + κ) − M̂ν

λ (k) + Q̂ν,κ
λ (k) − ŷν(k + κ,Xλ(k + κ)).

• Replacing the expectation in Corollary 2.5, (i), by the sample mean
we finally end up with the dual estimator for the time discretized price

Y up,n(0)

:=
1
L

L∑
λ=1

(
sup

u1,...,un∈Nn

uν≥uν+1+κ

n−1∑
ν=1

(
h(uν , Xλ(uν)) − (M̂ν

λ (uν) − M̂ν
λ (uν+1 + κ))

+Q̂ν,κ
λ (uν+1) − ŷν(uν+1 + κ,Xλ(uν+1 + κ))

)
+h(un, Xλ(un)) − (M̂n

λ (un) − M̂n
λ (k))

)

(with the convention un+1 = −κ). Again, we also store the empirical
standard deviation sup,n for the construction of (asymptotic) confi-
dence intervals.

12



We emphasize that the use of the unbiased estimators Q̂ν
λ(k) and Q̂ν,κ

λ (k)
instead of the true conditional expectations E[ŷν(k + 1, X(k + 1))|X(k) =
Xλ(k)] and E[ŷν(k+κ,X(k+κ))|X(k) = Xλ(k)] induces an additional bias
up. This is due to interchanging supremum and expectation analogously
to the American option case discussed by Andersen and Broadie (2004).
Consequently, an asymptotic 95% confidence interval for the price of the
time discretized multiple exercise option Y d,n(0) is given by

[Y low,n(0) − 1.96slow,n, Y up,n(0) + 1.96sup,n].

This interval can be shrunken to some extent by increasing the number of
sample paths L, L′, and M . However, a gap will remain due to solving the
backward dynamic program approximatively (cp. (5)).

3.3 A numerical example

We now illustrate the above algorithm by a numerical example. We consider
a stylized swing option contract. The spot price for electricity is modeled by
an exponential of a Gaussian Ornstein-Uhlenbeck process. This toy model
was suggested by Lucia and Schwartz (2002). It is however a main advan-
tage of the proposed algorithm that it can be generically applied to any
Markovian model. In particular, it is applicable to the non-Gaussian expo-
nential Ornstein-Uhlenbeck models which have been proposed by Benth et
al. (2007) and Hambly et al. (2009). For more information on the modeling
of electricity prices we refer to the recent monograph by Benth et al. (2008).

After a time discretization is performed, we assume that the underlying
Markovian process in discrete time is given by X(k) where

log(X(k)) = (1 − ρ)(log(X(k − 1)) − µ) + µ+ σε(k), X(0) = x0,

ε(k) are i.i.d standard Gaussian random variables and the parameters are
specified as

σ = 0.5, ρ = 0.9, µ = 0, x0 = 1.

The holder of the swing option has the right to buy elecricity for a strike
price of S at n times but is subject to a refraction period of κ ∈ N. Corre-
spondingly, the payoff function is given by

h(k, x) = (x− S)+

for k ≤ K and is extended by 0 for k > K. In this example we consider the
parameter values

S = 1, n = 3, K = 50, κ = 1, . . . , 20.

So, in particular we are interested in the effect of the refraction period on the
option price, which is the novel feature of the dual upper bound in Corollary
2.5.
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refr. 95% confidence
period Y low,2(0) Y up,2(0) interval

1 3.311 3.317 [3.309, 3.323]
2 3.278 3.288 [3.276, 3.293]
3 3.254 3.270 [3.252, 3.276]
4 3.231 3.246 [3.229, 3.251]
5 3.209 3.227 [3.207, 3.232]
6 3.186 3.200 [3.160, 3.205]
8 3.139 3.152 [3.137, 3.157]
10 3.089 3.103 [3.086, 3.108]
12 3.038 3.053 [3.036, 3.058]
14 2.984 3.002 [2.982, 3.007]
16 2.929 2.945 [2.927, 2.950]
18 2.873 2.889 [2.871, 2.894]
20 2.813 2.829 [2.811, 2.834]

Table 1: Numerical results for two exercise rights (lower estimator, upper
estimator, 95% confidence interval) for different refraction periods.

In order to obtain the numerical results, reported below, we proceed as
follows: The approximation of the continuation values within the dynamic
program are pre-calculated by a least-squares regression with 1000 paths
and the two basis functions ψ1(x) = 1 and ψ2(x) = (x − S)+. The lower
biased estimator is calculated with Λ = 300000 simulated paths. For the
upper estimator we apply Λ′ = 2000 outer paths and M = 100 inner paths.

Table 1 reports the values of the lower and upper estimators Y low,n(0)
and Y up,n(0) for n = 2 exercise rights and the corresponding 95% confidence
intervals for various values of the refraction period ranging from 1 to 20. The
numerical results for n = 3 rights are displayed in Table 2. In both cases
and for all refraction periods κ = 1, . . . , 20, the width of the 95% confidence
interval is less than 1% relative to the price. For comparison we also give a
95% confidence interval for the single exercise case. It is

[1.856, 1.866].

Figure 1 displays the 95% confidence intervals for the discretized option
price with two and three exercise rights as a function of the refraction period
κ. We observe that the price of the option with three exercise rights decreases
faster than the one with two exercise rights as the refraction period decreases.
For a refraction period κ as large as 20, the additional third right only
yields a very small marginal price. This was to be expected, because the
refraction period (κ = 20) is rather large compared to the number of time
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refr. 95% confidence
period Y low,3(0) Y up,3(0) interval

1 4.534 4.545 [4.532, 4.552]
2 4.439 4.455 [4.436, 4.461]
3 4.368 4.393 [4.365, 4.399]
4 4.300 4.321 [4.298, 4.327]
5 4.227 4.255 [4.225, 4.261]
6 4.154 4.177 [4.151, 4.183]
8 3.996 4.021 [3.993, 4.028]
10 3.829 3.855 [3.826, 3.861]
12 3.653 3.679 [3.651, 3.685]
14 3.466 3.494 [3.463, 3.500]
16 3.275 3.299 [3.273, 3.305]
18 3.089 3.109 [3.086, 3.114]
20 2.919 2.939 [2.917, 2.945]

Table 2: Numerical results for three exercise rights (lower estimator, upper
estimator, 95% confidence interval) for different refraction periods.

0 2 4 6 8 10 12 14 16 18 20
2.5
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Figure 1: Comparison of the 95% confidence interval for the price of the
(discretized) swing option with two exercise rights (dashed lines) and three
exercise rights (solid lines) as function of the refraction period κ.
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Strike # of rights Meinhausen-Hambly Schoenmakers
upper bound upper bound

1 2 3.322 (0.0028) 3.317 (0.0027)
1 3 4.552 (0.0035) 4.545 (0.0033)
0 2 5.305 (0.0028) 5.301 (0.0027)
0 3 7.527 (0.0034) 7.521 (0.0032)

Table 3: Comparison of the upper biased estimators calculated by the
Meinshausen-Hambly algorithm and the Schoenmakers algorithm for refrac-
tion period κ = 1. Standard deviation in round brackets.

steps (K = 50). So in many scenarios it is profitable to exercise two out of
the three rights only.

When the refraction period equals the time step, i.e. κ = 1, the above
algorithm boils down to the one suggested by Schoenmakers (2010). In this
case, an upper bound of a discrete time multiple exercise option can be com-
puted alternatively by the Meinshausen-Hambly algorithm (Meinshausen
and Hambly, 2004). This algorithm actually computes upper bounds for the
marginal price of an additional nth right. The corresponding dual repre-
sentation can be linked to Roger’s dual (Rogers, 2002) by interpreting the
marginal price as an optimal stopping problem with a modified cash-flow
process, see Bender (2010). Without going into any further details, we com-
pare the numerical upper bounds of the Meinshausen-Hambly algorithm and
the Schoenmakers algorithm in Table 3 for the same problem as above with
strike S = 1 and S = 0.

In our simulation study the upper bounds calculated by the Schoen-
makers algorithm are slightly smaller in all cases, but the differences to the
upper bounds calclulated by the Meinshausen-Hambly algorithm are almost
negligible. We also note that the standard deviations resulting from both
algorithms (performed with the same number of sample paths) is almost
identical. So, when it comes to accuracy, our (admittedly small) simulation
study suggests that both upper bound algorithms perform comparably well.
For larger number of exercise rights we expect that the Meinshausen-Hambly
algorithm is faster, as the pathwise maxima are to be computed over smaller
sets.

We emphasize again that, for the time discretization of a continuous time
problem, it is essential to treat discrete time multiple stopping problems with
refraction period κ ≥ 2. In this respect, an advantage of the Schoenmakers
algorithm is that it can be generalized from κ = 1 to refraction periods
κ ∈ N, as discussed in the present paper. Contrarily, no generalization
of the Meinshausen-Hambly algorithm to non-trivial refraction periods is

16



known.

4 Proof of Theorem 2.2

In this section we prove the existence of the Snell envelope, the Doob-Meyer
decomposition, and the reduction principle for the multiple stopping problem
Ȳ ∗,n as stated in Theorem 2.2. As the main technical difficulties arise from
the lack of right-continuity, we will first explain by a simple example that
this problem is unavoidable.
Example 4.1. Suppose Z(t) = 1 for t ∈ [0, T ]. Then it is optimal to exercise
Z as early and as often as possible up to time T . Hence,

Ȳ ∗,n(t) = inf{ν = 0, . . . , n; t+ νδ > T}.

In particular,

Ȳ ∗,1(t) =
{

1, 0 ≤ t ≤ T
0, t > T

Ȳ ∗,2(t) =


2, 0 ≤ t ≤ T − δ
1, T − δ < t ≤ T
0, t > T,

and so on. This rather trivial example illustrates that the discontinuity from
the right of the cash-flow Z at time t = T , which is forced by the finite time
horizon (unless Z(T ) = 0), propagates backwards in time as the number of
exercise rights increases. So the path regularity for Y ∗,n stated in Theorem
2.2 really is the best one can hope for.
Remark 4.2. Carmona and Touzi (2008) and Zeghal and Mnif (2006) also
discuss the reduction principle for multiple stopping problems in continuous
time on a finite time horizon for discounted cash-flows Z with continuous
paths, respectively with right-continuous paths which are left-continuous in
expectation, under stronger conditions than (H). The argumentation in both
papers implicitly requires that the right-continuity of the discounted cash-
flow Z(t) is inherited by the processes Zn(t) and Y ∗,n(t). Then, standard
results on the optimal stopping of right-continuous processes can be applied
iteratively. Example 4.1 shows that one cannot expect in general that the
right-continuity is inherited, but some extra condition such as Z(T ) = 0
need to be imposed.

We now turn to the proof of Theorem 2.2. As a ramification we first
prove two propositions.

Proposition 4.3. Under condition (H) it holds that, for every n ∈ N and
every stopping time σ

Ȳ ∗,n+1(σ) = esssup
τ∈Sσ

E[Z(τ) + E[Ȳ ∗,n(τ + δ)|Fτ ]|Fσ]
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The proof is identical to the proof of Proposition 3.1 in Carmona and
Dayanik (2008). We emphasize that Proposition 4.3 is much weaker than
the reduction principle in Theorem 2.2, (iii). The reduction principle in the
latter theorem states that Ȳ ∗,n+1(σ) is obtained as the value of the single
stopping problem of the stochastic process Zn+1. Contrarily, Proposition 4.3
only characterizes Ȳ ∗,n+1(σ) as the value of stopping the family of random
variables (Z(τ) + E[Ȳ ∗,n(τ + δ)|Fτ ])τ∈Sσ optimally.

The next proposition is crucial for constructing the process Zn in The-
orem 2.2, (Rn).

Proposition 4.4. Suppose A is an adapted, nondecreasing, integrable Dn-
RCLL process with A(0) = 0. Then the process E[A(t + δ)|Ft] has an
Dn+1-RCLL modification A(t) which is a submartingale and satisfies A(τ) =
E[A(τ + δ)|Fτ ] for every bounded stopping time τ .

Proof. Case 1: A is RCLL: For s ≤ t we have

E[E[A(t+ δ)|Ft]|Fs] = E[A(t+ δ)|Fs] ≥ E[A(s+ δ)|Fs],

because A is nondecreasing. Hence, E[A(t + δ)|Ft] is a nonnegative sub-
martingale. Due to the right-continuity of A and monotone convergence, we
observe that

E[E[A(t+ δ)|Ft]] = E[A(t+ δ)]

is a right-continuous function in t. Therefore, the process E[A(t + δ)|Ft]
has a RCLL modification by Theorem 1.3.13 in Karatzas and Shreve (1991),
which we denote by A(t). Suppose now that τ is a stopping time bounded
by a. We denote by D = {k/(2n); k, n ≥ 1} the set of dyadic rationals and
construct a sequence of (D ∩ [0, a]) ∪ {a}-valued stopping times by

τk =
{

a, τ = a
k
2n , τ < a and k−1

2n ≤ τ < k
2n

Note that τk is bounded by a, τk ↓ τ and τk takes countably many values only.
Due to the last property it is straightforward to verify thatE[A(τk+δ)|Fτk

] =
A(τk) for each τk. Now, fix some B ∈ Fτ . As Fτ ⊂ Fτk

, we get

E[1BA(τk + δ)] = E[1BE[A(τk + δ)|Fτk
]] = E[1BA(τk)]. (9)

By the right-continuity of A and monotone convergence, the left hand side
converges to E[1BA(τ + δ)]. For the right-hand side, we recall that A(t)
is a nonnegative RCLL submartingale. By the optional sampling theorem
(justified by the boundedness of the sequence τk by a), it follows that for
every λ > 0

E[1{Aτk
>λ}Aτk

] ≤ E[1{Aτk
>λ}Aa], P ({Aτk

> λ}) ≤ E[Aa]
λ

.
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Hence, the sequence (A(τk)) is uniformly integrable and so is the sequence
(1BA(τk)). Interchanging limit and expectation and making use of the right-
continuity of A we see that the right-hand side in (9) converges to E[1BA(τ)].
Thus, for every B ∈ Fτ ,

E[1BA(τ + δ)] = E[1BA(τ)],

i.e. E[A(τ + δ)|Fτ ] = A(τ).

Case 2: A is Dn-RCLL: For ti ∈ Dn we define

∆+Ati = Ati+ −Ati

ARC(t) = A(t) −
∑

ti∈Dn

1{t>ti}∆
+Ati ,

i.e. all jumps from the right-hand side of A are removed in the process ARC ,
which is thus RCLL and nondecreasing. By the first case we find an RCLL
modification ARC of E[ARC(t+δ)|Ft] such that ARC(τ) = E[ARC(τ+δ)|Fτ ]
for every bounded stopping time τ . However, for every ti ∈ Dn the process
E[∆+Ati |Ft] is a nonnegative martingale. Therefore, an analogous argument
as in Case 1 yields an RCLL modification Ai such that Ai(τ) = E[∆+Ati |Fτ ].
Plugging these processes together we observe that

A(t) = ARC(t) +
∑

ti∈Dn

1{t+δ>ti}A
i(t)

is a Dn+1-RCLL modification of

E

ARC(t+ δ) +
∑

ti∈Dn

1{t+δ>ti}∆
+Ati

∣∣∣∣∣∣Ft

 = E[A(t+ δ)|Ft]

which fulfills A(τ) = E[A(t + δ)|Fτ ] for every bounded stopping time τ . A

clearly is a submartingale as a sum of finitely many submartingales.

Remark 4.5. If the process A in the previous proposition is only of bounded
variation (instead of nondecreasing), we can decompose A(t) = A1(t)−A2(t),
where A1, A2 are adapted, nondecreasing, Dn-RCLL and start in 0. Hence,
applying the previous proposition to A1 and A2 we observe that the process
E[A(t + δ)|Ft] still has an Dn+1-RCLL modification A(t) which satisfies
A(τ) = E[A(τ + δ)|Fτ ] for every bounded stopping time τ .

We now simultaneously give the proof the three assertions in Theorem
2.2 by induction on n. Hence, for the remainder of the section we assume
that (H) is in force.

For n = 1 we can make use of well-known results for the single optimal
stopping problem with right-continuous cash-flow Z on [0, T ].
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(S1) The existence of the Snell envelope Y ∗,1(t) on [0, T ] is shown e.g. in
Karatzas and Shreve (1998), Proposition D7. For t ∈ (T,∞) we can simply
let Y ∗,1(t) = 0, because Z(t) = 0 for t > T . For the integrability note that

E[ sup
0≤t<∞

|Y ∗,1(t)|p] = E[ sup
0≤t≤T

|Y ∗,1(t)|p]

and |Y ∗,1(t)| is dominated by the martingale E[sup0≤u≤T |Z(u)||Ft], which
is p-integrable on [0, T ] by Doob’s maximal inequality and condition (H).
(DM1) The standard Doob-Meyer decomposition applies on [0, T ] because
of the integrability of Y ∗,1(t). For t > T we set

M∗,1(t) = M∗,1(T ), A∗,1(t) = A∗,1(T ) + Z(T )

(R1) is trivial.
We now suppose that the assertions (Sn), (DMn), and (Rn) are already

proved for some n ∈ N. We can and shall assume w.l.og. that nδ ≤ T .
Otherwise it is not possible to exercise the (n+ 1) rights up to time T and
the stopping problem is equivalent to the one with n rights.

As a first step we show that Ȳ ∗,n+1(σ) is the value of stopping a stochastic
process Zn+1(t) optimally. This optimal stopping problem is, however, non-
standard because of the discontinuities of Zn+1 from the right hand side.

Lemma 4.6. The process Z(t) + E[Y ∗,n(t+ δ)|Ft] has an Dn+1-RC modi-
fication Zn+1(t) such that for every stopping time

Zn+1(τ) = Z(τ) + E[Y ∗,n−1(τ + δ)|Fτ ].

Moreover,
E[ sup

0≤t<∞
|Zn+1(t)|p] <∞

and, for every stopping time σ,

Ȳ ∗,n+1(σ) = esssup
τ∈Sσ

E[Zn+1(σ)|Fτ ].

Proof. Applying the inductive hypothesis (DMn) for the Doob decomposi-
tion we get, for every bounded stopping time τ ,

E[Y ∗,n(τ + δ)|Fτ ] = Y ∗,n(0) +M∗,n(τ) − E[A∗,n(τ + δ)|Fτ ].

By Proposition 4.4 the process E[A∗,n(t+ δ)|Ft] has an Dn+1-RCLL modi-
fication A∗,n satisfying

E[A∗,n(τ + δ)|Fτ ] = A∗,n(τ).

Hence, for every bounded stopping time τ ,

Z(τ) + E[Y ∗,n(τ + δ)|Fτ ] = Zn+1(τ), (10)

20



where the Dn+1-RC process Zn+1 is defined by

Zn+1(t) := Z(t) + Y ∗,n(0) +M∗,n(t) − A∗,n(t).

In particular, Zn+1 is a Dn+1-RC modification of Z(t) + E[Y ∗,n(t + δ)|Ft]
satisfying (10) for bounded stopping times. As Z(t) = 0 and Ft = FT

for t > T , all processes involved in the above considerations stay constant
for t > T . Hence (10) also holds for unbounded stopping times. We now
prove the integrability condition on Zn+1. As Zn+1 is a modification of
Z(t)+E[Y ∗,n(t+ δ)|Ft], we obtain that the Dn+1-RCLL process |Zn+1(t)−
Z(t)| is bounded by the RCLL martingale E[sup0≤u<∞ |Y ∗,n(u)||Ft]. By
the inductive hypothesis (Sn) this martingale is p-integrable and, hence, by
Doob’s maximal inequality

E[ sup
0≤t<∞

|Zn+1(t) − Z(t)|p] <∞.

The triangle inequality yields the asserted integrability of Zn+1, thanks to
assumption (H) and the fact that Z vanishes on (T,∞).

We now combine (10) with the inductive hypothesis (Sn) on the existence
of the Snell envelope and Proposition 4.3 and get for every stopping time σ,

Ȳ ∗,n+1(σ) = esssup
τ∈Sσ

E[Z(τ) + E[Ȳ ∗,n(τ + δ)|Fτ ]|Fσ]

= esssup
τ∈Sσ

E[Z(τ) + E[Y ∗,n(τ + δ)|Fτ ]|Fσ]

= esssup
τ∈Sσ

E[Zn+1(τ)|Fσ]

As a next step we introduce the set of stopping times Sσ+ taking values
strictly larger than a stopping time σ and define the auxillary stopping
problem

X̄∗,n+1(σ) = esssup
τ∈Sσ+

E[Zn+1(τ)|Fσ].

By definition, we have

X̄∗,n+1(σ) ≤ Ȳ ∗,n+1(σ).

Lemma 4.7. For every stopping time σ, it holds that

Ȳ ∗,n+1(σ) =
{

X̄∗,n+1(σ), σ /∈ Dn+1

max{Zn+1(σ), X̄∗,n+1(σ)}, σ ∈ Dn+1

Proof. It is obvious that Ȳ ∗,n+1(σ) = max{Zn+1(σ), X̄∗,n+1(σ)} for every
stopping time σ. So it suffices to show that X̄∗,n+1(σ) ≥ Ȳ ∗,n+1(σ) on
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{σ /∈ Dn+1}. To this end, suppose τ ∈ Sσ. We define a sequence (τN ) ⊂ Sσ+

by

τN =
{

τ, τ > σ
σ + 1/N, τ = σ

Recall that Zn+1 is right-continuous at σ on {σ /∈ Dn+1}. Therefore,
Zn+1(τN ) converges to Zn+1(τ) on {σ /∈ Dn+1}. In view of the previous
lemma we can apply dominated convergence in order to obtain

E[Zn+1(τ)|Fσ] = lim
N→∞

E[Zn+1(τN )|Fσ] ≤ X∗,n+1(σ) on {σ /∈ Dn+1}.

Taking the supremum over all stopping times τ ∈ Sσ, we get X∗,n+1(σ) ≥
Y ∗,n+1(σ) on {σ /∈ Dn+1}, hence the assertion.

Lemma 4.8. (i) The process X̄∗,n+1(t) has an RCLL modification X∗,n+1(t)
which is a supermartingale and satisfies X̄∗,n+1(τ) = X∗,n+1(τ) for every
stopping time τ .
(ii) The process Ȳ ∗,n+1(t) has a Dn+1-RCLL modification Y ∗,n+1(t) which
is a supermartingale and satisfies Ȳ ∗,n+1(τ) = Y ∗,n+1(τ) for every stopping
time τ .

Proof. (i) We fix a stopping time σ. The same argumentation as in Lemma
D.1 of Karatzas and Shreve (1998) shows that the random variables of the
form E[Zn+1(τ)|Fσ], τ ∈ Sσ+, are closed under pairwise maximization.
Thus, there is a sequence (ρ∗k)k∈N ⊂ Sσ+ such that E[Zn+1(ρ∗k)|Fσ] non-
decreasingly converges to X̄∗,n+1(σ). Consequently, for τ ≤ σ,

E[X̄∗,n+1(σ)|Fτ ] = lim
k→∞

E[Zn+1(ρ∗k)|Fτ ] ≤ X̄∗,n+1(τ) (11)

In particular, the process X̄∗,n+1(t) is a supermartingale. We will now show
that it has an RCLL modification X∗,n+1(t). In view of Theorem 1.3.13
in Karatzas and Shreve (1991) it suffices to show that the mapping t 7→
E[X̄∗,n+1(t)] is right-continuous. We fix some t ≥ 0. As explained above
there is a sequence (ρ∗k) ⊂ St+ such that E[Zn+1(ρ∗k)|Ft] nondecreasingly
converges to X̄∗,n+1(t). In particular, given an ε > 0, we can choose k
sufficiently large and get

E[X̄∗,n+1(t)] ≤ E[Zn+1(ρ∗k)] + ε/2.

For h > 0 we define the stopping times

ρk,h =
{

ρ∗k, ρ∗k > t+ h
t+ 2h, ρ∗k ≤ t+ h

,

and observe that ρk,h ∈ S(t+h)+. As ρ∗k > t, it holds that ρk,h(ω) = ρ∗k(ω) if
h is sufficiently small (depending on ω). In particular Zn+1(ρk,h) converges
to Zn+1(ρ∗k) almost surely, and by dominated convergence,

lim
h→0

E[Zn+1(ρk,h)] = E[Zn+1(ρ∗k)] ≥ E[X̄∗,n+1(t)] − ε/2.
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Hence, for sufficiently small h

E[X̄∗,n+1(t+ h)] ≥ E[Zn+1(ρk,h)] ≥ E[X̄∗,n+1(t)] − ε.

Since X̄∗,n+1 is a supermartingale, we have E[X̄∗,n+1(t)] ≥ E[X̄∗,n+1(t+h)]
for h > 0. Therefore, the map t 7→ E[X̄∗,n+1(t)] is right-continuous.

We denote the RCLL modification of X̄∗,n+1(t) by X∗,n+1(t). Finally
we show that X̄∗,n+1(τ) = X∗,n+1(τ) for every stopping time τ . This is
certainly true for stopping times taking vaules in the countable set D =
{k/(2n); n, k ≥ 1} of dyadic rationals. Given a stopping time τ we can
choose a sequence τk with vaules in D such that τk ↓ τ (analogously to the
construction in the proof of Proposition 4.4). By right-continuity of X∗,n+1

and dominated convergence (which is justified by the integrability of Zn+1

derived in Lemma 4.6), we, thus, obtain

X∗,n+1(τ) = lim
k→∞

E[X∗,n+1(τk)|Fτ ] = lim
k→∞

E[X̄∗,n+1(τk)|Fτ ].

Hence it remains to prove that

lim
k→∞

E[X̄∗,n+1(τk)||Fτ ] = X̄∗,n+1(τ) (12)

To this end we fix some stopping time ρ ∈ Sτ+ and define a sequence of
stopping times

ρk =
{

ρ, τk < ρ
τk + 1, τk ≥ ρ

Then, ρk ∈ Sτk+ and ρk(ω) = ρ(ω) for sufficiently large k depending on ω,
because ρ > τ and τk ↓ τ . Consequently, Zn+1(ρk) converges to Zn+1(ρ), as
k tends to infinity. By dominated convergence (making again use of Lemma
4.6) and (11) we obtain

E[Zn+1(ρ)|Fτ ] = lim
k→∞

E[Zn+1(ρk)|Fτ ] ≤ lim inf
k→∞

E[X̄∗,n+1(τk)|Fτ ]

≤ lim sup
k→∞

E[X̄∗,n+1(τk)|Fτ ] ≤ X̄∗,n+1(τ)

Taking the supremum over ρ ∈ Sτ+ yields (12) and completes the proof of
part (i).

(ii) An analogous argumentation as in part (i) shows that for τ ≤ σ,

E[Ȳ ∗,n+1(σ)|Fτ ] ≤ Ȳ ∗,n+1(τ).

Hence Ȳ ∗,n+1(t) is a supermartingale. We define

Y ∗,n+1(t) =
{
Ȳ ∗,n+1(t), t ∈ Dn+1

X∗,n+1(t), t /∈ Dn+1.
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By part (i) and Lemma 4.7, Y ∗,n+1(t) is a Dn+1-RCLL modification of
Ȳ ∗,n+1(t) and, for every stopping time τ ,

Y ∗,n+1(τ) = 1{τ /∈Dn+1}X
∗,n+1(τ) + 1{τ∈Dn+1}Ȳ

∗,n+1(τ)

= 1{τ /∈Dn+1}X̄
∗,n+1(τ) + 1{τ∈Dn+1}Ȳ

∗,n+1(τ) = Ȳ ∗,n+1(τ).

We can now complete the induction step for Theorem 2.2.

Proof of (Sn+1). Existence is shown in Lemma 4.8. The integrability condi-
tion is satisfied, because

E[ sup
0≤t<∞

|Y ∗,n+1(t)|p] = E[ sup
0≤t≤T

|Y ∗,n+1(t)|p]

≤ E[|E[ sup
0≤u≤T

Zn+1(u)|Ft]|p] <∞ (13)

by Doob’s maximal inequality and Lemma 4.6. (Recall that Y ∗,n+1(t) = 0
for t > T .)

Proof of (Rn+1). This follows by combining Lemmas 4.6 and 4.8.

Proof of (DMn+1). On an interval [T − νδ, T − (ν − 1)δ], ν = 1, . . . , n, we
consider the process

Y ν(t) =
{

Y ∗,n+1(t), t ∈ (T − νδ, T − (ν − 1)δ]
limu↓T−νδ Y

∗,n+1(u), t = T − νδ
,

which is a well-defined RCLL process on [T − νδ, T − (ν − 1)δ]. It is a
supermartingale, because it coincides with the supermartingale X∗,n+1 on
[T − νδ, T − (ν − 1)δ) and with the supermartingale Y ∗,n+1 on (T − νδ, T −
(ν − 1)δ]. By (13),

E[ sup
T−νδ≤t≤T−(ν−1)δ

|Y ν(t)|p] <∞.

Thus, the RCLL supermartingale Y ν(t) belongs to class D and admits a
Doob-Meyer decomposition

Y ν(t) = Y ν(T − νδ) +Mν(t) −Mν(T − νδ) − (Aν(t) −Aν(T − νδ))

for t ∈ [T − νδ, T − (ν − 1)δ], where Mν is an RCLL martingale and Aν is a
nondecreasing predictable and integrable RCLL process. The p-integrability
of supt |Y ν(t)| and the integrability of Aν ensure that

E[ sup
T−νδ≤t≤T−(ν−1)δ

|Mν(t) −Mν(T − νδ)|] <∞. (14)
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Finally, on the interval [0, T − nδ] we have the Doob-Meyer decomposition
of the RCLL (restricted to this interval!) supermartingale Y ∗,n+1

Y ∗,n+1(t) = Y ∗,n+1(0) +M(t) −A(t).

We now define recursively, M∗,n+1(t) = M(t), A∗,n+1(t) = A(t) on [0, T−nδ]
and, for t ∈ (T − νδ, T − (ν − 1)δ], ν = 1, . . . , n,

M∗,n+1(t) = M∗,n+1(T − νδ) +Mν(t) −Mν(T − νδ),
A∗,n+1(t) = A∗,n+1(T − νδ) +Aν(t) −Aν(T − νδ)

+Y ∗,n+1(T − νδ) −X∗,n+1(T − νδ).

Then, M∗,n+1 is an RCLL martingale and, by (14),

E[ sup
0≤t≤T

|M∗,n+1(t)|] <∞.

Moreover, A∗,n+1 is Dn+1-RCLL and nondecreasing, because Y ∗,n+1(T −
νδ) ≥ X∗,n+1(T−νδ). It is predictable as the sum of a predictable and a left-
continuous adapted process. Finally, we obtain, for t ∈ (T−νδ, T−(ν−1)δ],

Y ∗,n+1(t) − Y ∗,n+1(T − νδ)
= Y ν(t) − Y ν(T − νδ) − (Y ∗,n+1(T − νδ) −X∗,n+1(T − νδ))
= Mν(t) −Mν(T − νδ) − (Aν(t) −Aν(T − νδ))

−(Y ∗,n+1(T − νδ) −X∗,n+1(T − νδ))
= M∗,n+1(t) −M∗,n+1(T − νδ) − (A∗,n+1(t) −A∗,n+1(T − νδ)).

Recursively we now observe that we have constructed a decomposition as
required in Theorem 2.2, (ii), on the interval [0, T ]. For t > T we set

M∗,n+1(t) = M∗,n+1(T ), A∗,n+1(t) = A∗,n+1(T ) + Z(T ).

The proof of Theorem 2.2 is now complete.

5 Proof of the dual representation

This final section is devoted to the proof of the dual pricing formula.

Proof of Theorem 2.3. (i) Suppose (τ1, . . . , τn) ∈ Sn
δ,t and Mν , Aν are as

stated in the assertion. As Z(t) = 0 for t ≥ T , we can assume w.l.o.g that
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τ1 is bounded from above by T + (n+ 1)δ. Then, by optional sampling and
the tower property of conditional expectations, we get,

n∑
ν=1

E[Z(τν)|Ft] = E

[
n−1∑
ν=1

(
Z(τν) − (Mν(τν) −Mν(τν+1))

+Aν(τν+1 + δ) − E[Aν(τν+1 + δ)|Fτν+1 ]
)

+Z(τn) − (Mn(τn) −Mn(t))

∣∣∣∣∣Ft

]

By Remark 4.5 and the boundedness of τ1, we obtain,

n∑
ν=1

E[Z(τν)|Ft] ≤ E

[
sup

u1,...,un∈∆δ,n
t

n−1∑
ν=1

(
Z(uν) − (Mν(uν) −Mν(uν+1))

+Aν(uν+1 + δ) − E[Aν(uν+1 + δ)|Fuν+1 ]
)

+Z(un) − (Mn(un) −Mn(t))

∣∣∣∣∣Ft

]

The assertion now follows by taking the supremum over all (τ1, . . . , τn) ∈ Sn
δ,t.

(ii) The proof goes by induction on n with the case n = 1 covered in
Rogers (2002). Suppose now that the claim is already proved for some n ∈ N.
By Theorem 2.2, (Rn+1), we observe that Y ∗,n+1 is the Snell envelope of a
single optimal stopping problem with cash-flow

Zn+1(t) = Z(t) + E[Y ∗,n(t+ δ)|Ft] (up to modification).

By the Doob-Meyer type decomposition in Theorem 2.2, (DMn), we obtain

E[Y ∗,n(t+ δ)|Ft]
= Y ∗,n(0) +M∗,n(t) −E[A∗,n(t+ δ)|Ft]
= Y ∗,n(0) +M∗,n(t+ δ) −A∗,n(t+ δ)

−(M∗,n(t+ δ) −M∗,n(t)) +A∗,n(t+ δ) − E[A∗,n(t+ δ)|Ft]
= Y ∗,n(t+ δ) − (M∗,n(t+ δ) −M∗,n(t)) +A∗,n(t+ δ) − E[A∗,n(t+ δ)|Ft].

We now apply the inductive hypothesis on Y ∗,n(t + δ) in order to obtain,
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for 0 ≤ un+1 ≤ T ,

Zn+1(un+1)

= Z(un+1) + sup
u1,...,un∈∆δ,n

un+1+δ

{
n−1∑
ν=1

(
Z(uν) − (M∗,ν(uν) −M∗,ν(uν+1))

+A∗,ν(uν+1 + δ) − E[A∗,ν(uν+1 + δ)|Fuν+1 ]
)

+Z(un) − (M∗,n(un) −M∗,n(un+1 + δ))

}
−(M∗,n(un+1 + δ) −M∗,n(un+1))
+A∗,n(un+1 + δ) − E[A∗,n(un+1 + δ)|Fun+1 ]

= Z(un+1) + sup
u1,...,un∈∆δ,n

un+1+δ

{
n∑

ν=1

(
Z(uν) − (M∗,ν(uν) −M∗,ν(uν+1))

+A∗,ν(uν+1 + δ) − E[A∗,ν(uν+1 + δ)|Fuν+1 ]
)}

Now, thanks to Theorem 2.2 we can follow the argumentation in Rogers
(2002) for the cash-flow Zn+1. Indeed, by Theorem 2.2, (Rn+1), we have,
Zn+1(un+1) ≤ Y ∗,n+1(un+1). Hence, by Theorem 2.2, (DMn+1), and since
A∗,n+1 is nondecreasing,

Y ∗,n+1
t ≥ sup

un+1≥t

{
Y ∗,n+1

t − (A∗,n+1(un+1) −A∗,n+1(t))
}

= sup
un+1≥t

{
Y ∗,n+1

un+1
− (M∗,n+1(un+1) −M∗,n+1(t))

}
≥ sup

un+1≥t

{
Zn+1

un+1
− (M∗,n+1(un+1) −M∗,n+1(t))

}
= sup

u1,...,un+1∈∆δ,n+1
t

{
n∑

ν=1

(
Z(uν) − (M∗,ν(uν) −M∗,ν(uν+1))

+A∗,ν(uν+1 + δ) − E[A∗,ν(uν+1 + δ)|Fuν+1 ]
)

+Z(un+1) − (M∗,n+1(un+1) −M∗,n+1(t))

}
.

Here we plugged in the alternative representation for Zn+1 in the last step.
The converse inequality now follows immediately from (i).
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