On the Low-rank Approximation by the Pivoted Cholesky Decomposition

H. Harbrecht, M. Peters, R. Schneider

Preprint 76
On the Low-rank Approximation by the Pivoted Cholesky Decomposition

H. Harbrecht, M. Peters, R. Schneider

Preprint 76
The consecutive numbering of the publications is determined by their chronological order.

The aim of this preprint series is to make new research rapidly available for scientific discussion. Therefore, the responsibility for the contents is solely due to the authors. The publications will be distributed by the authors.
ON THE LOW-RANK APPROXIMATION
BY THE PIVOTED CHOLESKY DECOMPOSITION

HELMUT HARRECHT, MICHAEL PETERS, AND REINHOLD SCHNEIDER

Dedicated to the victims of the earthquake 2010 in Chile

Abstract. The present paper is dedicated to the application of the pivoted
Cholesky decomposition to compute low-rank approximations of dense, positive
semi-definite matrices. The resulting approximation error is rigorously controlled
in terms of the trace norm. Exponential convergence rates are proved under the
assumption that the eigenvalues of the matrix under consideration exhibit a suffi-
ciently fast exponential decay. By numerical experiments it is demonstrated that
the pivoted Cholesky decomposition leads to very efficient algorithms to separate
the variables of bi-variate functions.

1. Introduction

Many problems in science and engineering lead to high, densely populated matrices
which are symmetric and positive semi-definite. Often they arise from the discretiza-
tion of symmetric and positive semi-definite functions, especially in the context of
partial differential equations.

Consider a domain \(\Omega \subset \mathbb{R}^n \) and a symmetric bi-variate function \(f \in L^2(\Omega \times \Omega) \).
Then, we call the function \(f \) positive semi-definite if the corresponding (symmetric)
Hilbert-Schmidt operator
\[
\mathcal{K} : L^2(\Omega) \to L^2(\Omega), \quad (\mathcal{K}u)(x) = \int_{\Omega} f(x, y) u(y) \, dy
\]
is positive semi-definite
\[
\int_{\Omega} \int_{\Omega} f(x, y) u(x) u(y) \, dx \, dy = (\mathcal{K}u, u)_{L^2(\Omega)} \geq 0 \quad \text{for all} \quad u \in L^2(\Omega).
\]

Symmetric and positive semi-definite functions appear in many applications. For
example, the second statistical moment of a stochastic function, the two-point cor-
relation, falls into this class of functions. Furthermore, to compute the singular value
decomposition of a function \(g \in L^2(\Omega_1 \times \Omega_2) \), also known as the Karhunen-Loève
expansion, one has to compute the eigenvalues of the Hilbert-Schmidt operator with
the symmetric and positive semi-definite kernel function
\[f(x, y) = \int_{\Omega_1} g(x, z)g(y, z) \, dz. \]

Further applications arise from quantum chemistry \cite{4, 14, 17} or in inverse problems \cite{13}.

When spending \(n \) degrees of freedom to approximate functions from \(L^2(\Omega) \), an approximation of \(f \in L^2(\Omega \times \Omega) \) yields a symmetric and positive semi-definite matrix of size \(n \times n \). Since \(n \) is typically large, this causes serious obstructions when dealing numerically with such problems. Therefore, we intend here to compute a symmetric low-rank approximation to \(f \), namely
\[f_m(x, y) := \sum_{i=1}^{m} \psi_i(x)\psi_i(y) \text{ such that } \| f - f_m \|_{L^2(\Omega \times \Omega)} \leq \varepsilon. \]

The best approximation in \(L^2(\Omega \times \Omega) \) is of course the expansion into the largest eigenpairs \((\lambda_i, \varphi_i) \) of the related Hilbert-Schmidt operator. However, the eigenpair computation is quite expensive as it needs the access to the full matrix.

An alternative approach for computing a symmetric low-rank approximation is provided by the pivoted Cholesky decomposition. This approach is quite similar to the adaptive cross or mosaic-skeleton approximation \cite{1, 2, 6, 7, 24}. Nevertheless, there are important advantages in comparison with standard adaptive cross approximation.

1. We are able to rigorously control the approximation error in terms of the trace norm.
2. The pivoting strategy is exact, i.e., we need to search for the pivot element only on the main diagonal of the matrix which is easily accessible.
3. In case of a sufficiently fast exponential decay of the eigenvalues of the matrix \(A \) we can proof that the pivoted Cholesky decomposition converges exponentially. For given \(\varepsilon > 0 \) it computes a rank-\(m \) approximation \(A_m \) such that \(\text{trace}(A - A_m) \leq \varepsilon \) and \(m \) being proportional to \(|\log(\varepsilon/n)| \).
4. The algorithm is extremely easy to implement, having only \(O(m^2n) \) complexity.

An exponential decay of the eigenvalues is for example obtained in case of analytical functions and \(\Omega \subset \mathbb{R} \) \cite{23}. Nevertheless, our proof is purely algebraically. We do not need the function’s smoothness in difference to the convergence analysis of adaptive cross approximation \cite{1}.

Numerical experiments (see Sect. 4) even indicate that the pivoted Cholesky decomposition always converges optimal in the sense of the rank \(m \) being proportional to
the number of terms required for the singular value decomposition. This is observed in particular in the case of functions of finite smoothness where it is known that the eigenvalues decay only algebraically.

We emphasize that the pivoted Cholesky decomposition is a well established algorithm in numerical linear algebra, see [8, 11, 12] and the reference therein. It is implemented for instance in the LINPACK library [5], particularly to factorize positive semi-definite matrices. However, except for publications in quantum chemistry where the method is quite popular, we are not aware of a paper in which it has been used in the context of low-lank approximations. It is a purely algebraically black-box method to compute low-lank approximations of matrices, where the approximation error is controlled in the trace norm. Since it is a symmetric low-rank decomposition, it can in particular be used for the fast computation of the largest eigenpairs (cf. Section 4), as required for the Karhunen-Loève expansion.

The rest of the paper is organized as follows. In Section 2 we survey on the algorithmic details of the Cholesky decomposition for positive semi-definite matrices. Section 3 motivates the use of the pivoted Cholesky decomposition to calculate low-rank approximations of matrices. As our main result we present the purely algebraic convergence proof (Thm. 3.2). Section 4 is devoted to numerical applications arising from the context of partial differential equations. We compute the variance of an elliptic second order boundary value problem with stochastic right hand side. Then, we consider the fast eigenpair computation of symmetric and positive semi-definite Hilbert-Schmidt operators. Finally, we discuss the application of the pivoted Cholesky decomposition for the fast computation of the two-electron integral matrix in quantum chemistry.

To avoid the repeated use of generic but unspecified constants, we denote throughout this paper by $C \lesssim D$ that C is bounded by a multiple of D independently of parameters which C and D may depend on. Obviously, $C \gtrsim D$ is defined as $D \lesssim C$, and $C \sim D$ as $C \lesssim D$ and $C \gtrsim D$.

2. Cholesky decomposition for positive semi-definite matrices

Let $0 \neq A \in \mathbb{R}^{n \times n}$ be a symmetric and positive semi-definite matrix with eigenvalues $\lambda_i \geq 0$, $i = 1, 2, \ldots, n$. Due to the identity $\text{trace}(A) = \sum_{i=1}^{n} \lambda_i > 0$ there exists at least one positive diagonal entry $a > 0$. We assume without loss of generality that it is located at the $(1,1)$-position. Otherwise we find an index $1 < \ell \leq n$ such that the ℓ-th diagonal entry is positive and swap the first and the ℓ-th column and row. This might be expressed in terms of a symmetric permutation matrix $P \in \mathbb{R}^{n \times n}$ satisfying $P^2 = I$. The Schur complement relative to the $(1,1)$-entry is then again a
symmetric and positive semi-definite matrix. For sake of clearness in representation we shall prove this statement.

Lemma 2.1. Let the matrix

\[
A = \begin{bmatrix}
a & b^T \\
b & C
\end{bmatrix} \in \mathbb{R}^{n \times n}
\]

be symmetric and positive semi-definite with \(a > 0 \). Then, the Schur complement

\[
S := C - \frac{1}{a}bb^T \in \mathbb{R}^{(n-1) \times (n-1)}
\]

is well-defined and also symmetric and positive semi-definite.

Proof. Since \(a > 0 \) the Schur complement is well-defined and also symmetric due to

\[
S^T = C^T - \frac{1}{a}(bb^T)^T = C - \frac{1}{a}bb^T = S.
\]

Consider \(y \in \mathbb{R}^{n-1} \) and set \(x := -b^Ty/a \in \mathbb{R} \). Then, it follows

\[
0 \leq \begin{bmatrix} x \\ y \end{bmatrix}^T A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + b^Ty \\ x^Tb + Cy \end{bmatrix}^T \begin{bmatrix} 0 \\ Sy \end{bmatrix} = y^TSy,
\]

i.e., \(S \) is also positive semi-definite. \(\square \)

As a consequence of this lemma, we can decompose the matrix \(A \) according to

\[
P_j \cdots P_2P_1AP_1P_2 = \frac{1}{a_1}P_2 \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}^T + \frac{1}{a_2} \begin{bmatrix} 0 \\ a_2 \\ b_2 \end{bmatrix} \begin{bmatrix} 0 \\ a_2 \\ b_2 \end{bmatrix}^T + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & S_2 \end{bmatrix},
\]

or generally

\[
P_j \cdots P_2P_1AP_1P_2 \cdots P_j = \sum_{i=1}^{j} \hat{\ell}_i \hat{\ell}_i^T + \begin{bmatrix} 0 & 0 \\ 0 & S_j \end{bmatrix}
\]

with

\[
\hat{\ell}_i := \frac{1}{\sqrt{a_i}}P_jP_{j-1} \cdots P_{i+1} \begin{bmatrix} 0 \\ 0 \\ a_i/\sqrt{b_i} \end{bmatrix} \text{ \(i \) \(-1\) times}
\]

\[
(2.4)
\]
and

\[S_i := S_{i-1} - \frac{1}{a_i} b_i b_i^T \]

for all \(i = 1, 2, \ldots, j \). To obtain the final representation of the matrix \(A \) we multiply by the permutation matrices from both sides and get

\[
A = \sum_{i=1}^{j} \ell_i \ell_i^T + E_j \quad \text{with} \quad \ell_i := \frac{1}{\sqrt{a_i}} P_1 P_2 \cdots P_i \begin{bmatrix} 0 \\ \vdots \\ \frac{a_i}{b_i} \\ b_i \end{bmatrix} \quad \text{for all } i = 1, 2, \ldots, j.
\]

Here, the remainder matrix \(E_j \) is given by

\[
E_j := P_1 P_2 \cdots P_j \begin{bmatrix} 0 & 0 \\ 0 & S_j \end{bmatrix} P_j \cdots P_2 P_1.
\]

By introducing the matrix \(L_j = [\ell_1, \ell_2, \ldots, \ell_j] \), we can rewrite the decomposition in accordance with \(A = L_j L_j^T + E_j \).

If it holds rank \(A = k < n \), then the above algorithm terminates after \(k \) steps with \(E_k = 0 \) since the matrix \(A_k := L_k L_k^T \) has obviously rank \(k \) due to \(a_1, a_2, \ldots, a_k > 0 \).

If the algorithm completes without termination ahead of time and the \(P_i \) are always chosen as the identity, it produces the standard Cholesky decomposition.

3. Low-rank approximation

As we have seen, if rank(\(A \)) = \(m \), the above pivoted Cholesky decomposition will terminate after \(m \) steps with \(E_m = 0 \). Thus, the following question arises: assume that a rank-\(m \) matrix \(A_m \in \mathbb{R}^{n \times n} \) exists such that

\[
\| A - A_m \| \leq \varepsilon.
\]

Can the Cholesky decomposition be used to find this approximation? In other words, does the computation of \(m < n \) terms of (2.3)–(2.5) produce a rank-\(m \) approximation \(A_m = L_m L_m^T \) of \(A \) with \(\| A - A_m \| \lesssim \varepsilon \)?

To answer the above question we choose the trace norm as error measure. Then, the best possible reduction of the error in (2.2) is achieved if the trace norm of the Schur complement becomes small. This amounts to the problem

\[
\text{trace } S = \text{trace } A - \frac{1}{a_{i,i}} \| a_i \|_2^2 \to \min_{i=1}^{n}
\]

where \(a_i \) denotes the \(i \)-th column vector of \(A \) and \(a_{i,i} \) is the \(i \)-th diagonal entry.
Since the above minimization problem can only be solved when the complete matrix \(A \) is known, we shall use another strategy. Namely, we like to eliminate the value \(a_{i,j} \) of largest modulus. By choosing \(x \in \mathbb{R}^n \) such that
\[
x_i = \sqrt{a_{j,j}/a_{i,i}} \quad \text{and} \quad x_k = 0 \quad \text{otherwise},
\]
it follows
\[
0 \leq x^T A x = 2\left(\sqrt{a_{i,i}a_{j,j}} - |a_{i,j}| \right)
\]
and hence
\[
|a_{i,j}| \leq \sqrt{a_{i,i}a_{j,j}} \leq \frac{a_{i,i} + a_{j,j}}{2} \leq \max_{i=1}^n a_{i,i}, \quad j = 1, 2, \ldots, n.
\]
Consequently, the largest value in modulus lies on the diagonal of the matrix \(A \). Our strategy will thus be to choose the largest diagonal entry as pivot element. This is quite similar to the totally pivoted adaptive cross approximation [1, 2].

We emphasize that, due to (2.1), the series of pivot elements is strictly decreasing until the Schur complement vanishes or the algorithm is stopped. Putting all the above components together, we arrive at the following algorithm:

Algorithm 1: Pivoted Cholesky decomposition

Data: matrix \(A = [a_{i,j}] \in \mathbb{R}^{n \times n} \) and error tolerance \(\varepsilon > 0 \)

Result: low-rank approximation \(A_m = \sum_{i=1}^m \ell_i \ell_i^T \) such that \(\text{trace}(A - A_m) \leq \varepsilon \)

begin

set \(m := 1 \);
set \(d := \text{diag}(A) \) and \(\text{error} := \|d\|_1 \);
initialize \(\pi := (1, 2, \ldots, n) \);

while \(\text{error} > \varepsilon \) do

set \(i := \text{arg max}\{d_{\pi_j} : j = m, m+1, \ldots, n\} \);
swap \(\pi_m \) and \(\pi_i \);
set \(\ell_{m,\pi_m} := \sqrt{d_{\pi_m}} \);
for \(m + 1 \leq i \leq n \) do
 compute \(\ell_{m,\pi_i} := \left(a_{\pi_m,\pi_i} - \sum_{j=1}^{m-1} \ell_{j,\pi_m} \ell_{j,\pi_i} \right) / \ell_{m,\pi_m} \);
 update \(d_{\pi_i} := d_{\pi_i} - \ell_{m,\pi_m} \ell_{m,\pi_i} \);
 compute \(\text{error} := \sum_{i=m+1}^n d_{\pi_i} \);
end
increase \(m := m + 1 \);

end

Notice that only all diagonal entries of the matrix \(A \) and the \(m \) rows associated with the pivot elements need to be evaluated to compute the rank-\(m \) approximation. All other matrix coefficients do not enter the computation. This makes the method highly attractive for the sparse approximation of smooth nonlocal operators (see Thm. 3.2). For operators with kernel functions that exhibit a singularity on the
diagonal $x = y$ it might be better to introduce a suitable partitioning of the matrix which leads to the original adaptive cross approximation as introduced in [1, 2].

Theorem 3.1. Let $A \in \mathbb{R}^{n \times n}$ symmetric and positive semi-definite. Then, performing m steps of the pivoted Cholesky decomposition is of complexity $O(m^2 n)$.

Proof. The most expensive part in Algorithm 1 is the computation of the Cholesky vectors ℓ_k, $k = 1, 2, \ldots, m$. This requires

$$
\sum_{k=1}^{m} \sum_{i=k+1}^{n} \sum_{j=1}^{k-1} 1 \leq \sum_{k=1}^{m} (k-1)n \leq \frac{m^2}{2} n
$$

additions and multiplications each which proves the assertion. \hfill \square

In case of sufficiently fast exponentially decaying eigenvalues we can prove that the pivoted Cholesky decomposition computes a rank-m approximation which exponentially approximates the matrix A. For example, according to [23], the eigenvalues decay exponentially if the underlying function f is analytical on $\Omega \times \Omega \subset \mathbb{R}^2$. It even suffices to have piecewise analyticity in the sense of the smooth parts being the product domains $\Omega_i \times \Omega_j$ where $\Omega = \bigcup_{i=1}^{k} \Omega_i$.

Theorem 3.2. Assume that the eigenvalues of $A \in \mathbb{R}^{n \times n}$ satisfy

$$
4^m \lambda_m \lesssim \exp(-bm)
$$

for some $b > 0$ uniformly in n. Then, the pivoted Cholesky approximation A_m with rank $m \sim |\log(\varepsilon/n)|$ satisfies $\text{trace}(A_m - A) \lesssim \varepsilon$ uniformly as $\varepsilon > 0$ tends to zero.

Proof. Without loss of generality we assume that A is permuted in such a way that the k-th pivot is found at the (k, k)-position for all $k = 1, 2, \ldots, n$. Then, $L_m \in \mathbb{R}^{n \times m}$ is always lower triangular matrix. We partition the matrices A and L_m according to

$$
A = \begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}, \quad L_m = \begin{bmatrix}
L_{1,1} & 0 \\
L_{2,1} & 0
\end{bmatrix}.
$$

From

$$
A_m = L_m L_m^T = \begin{bmatrix}
L_{1,1} & L_{1,2}^T \\
L_{2,1} & L_{2,2}^T
\end{bmatrix} = \begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
$$

one readily infers that $L_{1,1} L_{1,1}^T$ is the (pivoted) Cholesky decomposition of $A_{1,1}$. Consequently, denoting the m-th largest eigenvalue of a matrix B by $\lambda_m(B)$, we have

$$
\frac{1}{\lambda_m(A_{1,1})} = \|A_{1,1}^{-1}\|_2 = \|L_{1,1}^{-1}\|_2^2.
$$
In accordance with [10] it holds for the pivoted Cholesky decomposition the (sharp)
worst case estimate \(\| L_{1,1}^{-1} \|_2 \leq \sqrt{4m + 6m - 1} / (3\ell_{m,m}) \). Hence, we arrive at

\[
\frac{1}{\lambda_m(A_{1,1})} \leq \frac{4^m + 6m - 1}{9\ell_{m,m}^2} \leq \frac{4^m}{\ell_{m,m}^2}.
\]

Since the trace error of \(A - A_m \) is bounded by \((n - m) \)-times the pivot element \(\ell_{m,m}^2 \), it follows immediately that

\[
\text{trace}(A - A_m) \leq 4^m (n - m) \lambda_m(A_{1,1}) \leq 4^m n \lambda_m(A_{1,1}).
\]

Define \(\Pi_m : \mathbb{R}^n \rightarrow \mathbb{R}^n \) as the orthogonal projection onto the first \(m \) coordinates in \(\mathbb{R}^n \). Then, the Courant-Fisher theorem implies

\[
\lambda_m(A_{1,1}) = \inf_{V \subset \mathbb{R}^n} \sup_{\dim(V) = m-1} \| A_{1,1}v \|_2
\]

\[
= \inf_{V \subset \mathbb{R}^n} \sup_{\dim(V) = m-1} \| \Pi_mA\Pi_m v \|_2
\]

\[
\leq \inf_{V \subset \mathbb{R}^n} \sup_{\dim(V) = m-1} \| Av \|_2
\]

\[
= \lambda_m(A).
\]

Inserting this estimate into (3.7) gives finally

\[
\text{trace}(A - A_m) \leq 4^m n \lambda_m(A) \lesssim n \exp(-bm).
\]

This implies \(|\log(\varepsilon/n)| \gtrsim m \) and thus the assertion. \(\square \)

\textbf{Remark 3.3.} Estimate (3.6) is sharp, i.e., the factor \(4^m \) cannot be removed. A corresponding example is found in e.g. [10]. However, also in case of the approximation theory of the adaptive cross approximation, based on polynomial interpolation, such an exponentially growing factor appears, see [1] for the details.

\textbf{Remark 3.4.} The trace norm of a matrix \(A \in \mathbb{R}^{n \times n} \) is equivalent to its \(\ell^2 \)-norm in case of exponentially decaying eigenvalues \(\lambda_m \sim \exp(-bm) \) due to

\[
\|A\|_2 = \max_{m=1}^n \lambda_m \sim 1
\]

and

\[
\text{trace}(A) = \sum_{m=1}^n \lambda_m \sim \sum_{m=1}^n \exp(-bm) \sim \int_0^n \exp(-bx) \, dx \sim 1.
\]
4. Applications and results

4.1. Two-point correlation functions. The two-point correlation function of second order elliptic problems with stochastic source terms are known to satisfy a deterministic partial differential equation of order 4 with the two-fold tensor product of the elliptic operator on the two-fold cartesian product $\Omega \times \Omega$ of the bounded physical domain $\Omega \subset \mathbb{R}^n$, i.e. in a computational domain of dimension $2n$.

Specifically, let A denote a linear, second order elliptic partial differential operator that maps the Hilbert space $H^1_0(\Omega)$ onto its dual $H^{-1}(\Omega)$. For a given stochastic load vector $f(\omega) \in H^{-1}(\Omega)$ with known expectation and two-point correlation, we consider the stochastic operator equation

$$Au = f.$$

Then the random solution’s expectation $E(u)$ satisfies the mean field equation

$$(4.8) \quad A\mathbb{E}(u) = \mathbb{E}(f)$$

while its two-point correlation is given by

$$(4.9) \quad (A \otimes A) \text{Cor}(u) = \text{Cor}(f),$$

see [18, 22] for details. Here, $\mathbb{E}(u)$ denotes the expectation or ensemble average for the random field $u \in H^1_0(\Omega)$ and $\text{Cor}(u) = \mathbb{E}(u \otimes u)$ where now $\mathbb{E}(-)$ denotes the expectation with respect to the product measure on the tensor product space $H^1_0(\Omega) \otimes H^1_0(\Omega)$ (see [18, 22]). Notice that $\text{Cor}(f) \in H^{-1}(\Omega) \otimes H^{-1}(\Omega)$ is a symmetric and positive semi-definite function, that is

$$\int_{\Omega} \int_{\Omega} \left(\text{Cor}(f) \right)(x, y) \psi(x) \psi(y) \, dx \, dy \geq 0 \quad \text{for all} \quad \psi \in H^1(\Omega).$$

Nevertheless, one is mainly interested in the variance which is computed by

$$\left(\text{Var}(u) \right)(x) = \left(\text{Cor}(u) \right)(x, x) - \left(\mathbb{E}(u) \right)^2(x).$$

In general, second order elliptic partial differential equations like (4.8) are solved by finite elements. To compute the solution of the high-dimensional (4.9) sparse tensor product spaces have been applied in [9, 18, 22]. Whereas one can use also standard finite element methods if a low-rank approximation

$$\left(\text{Cor}(f) \right)(x, y) \approx \sum_{i=1}^{m} \psi_i(x) \psi_i(y)$$

is available. Then, the two-point correlation of u is simply computed by

$$\left(\text{Cor}(u) \right)(x, y) \approx \sum_{i=1}^{m} \varphi_i(x) \varphi_i(y), \quad \text{where} \quad A \varphi_i = \psi_i, \ i = 1, 2, \ldots, m.$$

<table>
<thead>
<tr>
<th>ε</th>
<th>value of σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>85 46 27 14 9</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>234 122 66 37 21</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>442 236 123 68 38</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>710 371 198 108 61</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1038 539 290 157 87</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1426 748 395 214 118</td>
</tr>
</tbody>
</table>

Table 4.1. The rank to derive the relative trace error ε.

\begin{align*}
\mathbb{E}((V(u))(x)) & \approx \sum_{i=1}^{m} \varphi_i^2(x) - \left(\mathbb{E}(u)\right)^2(x).
\end{align*}

Especially, we have

\begin{align*}
\left(\mathbb{E}(u)\right)^2(x) & \approx \sum_{i=1}^{m} \varphi_i^2(x) - \left(\mathbb{E}(u)\right)^2(x).
\end{align*}

Therefore, if n finite elements are applied, the complexity of solving (4.9) is reduced to $\mathcal{O}(n \cdot m)$, provided that one solve is of linear cost. If m is small this means a large reduction compared to a naive computation which is of quadratic complexity $\mathcal{O}(n^2)$.

To demonstrate the approach, we triangulate of the domain Ω by uniform refinement of a coarse grid triangulation as seen in the left plot of Fig. 4.1. This yields a finite element mesh with about 800000 elements and 400000 nodes. On the given
triangulation we like to interpolate the (analytical) two-point correlation
\[
(\text{Cor}(f))(x, y) = \frac{1}{\sigma + \|x - y\|^2}, \quad \sigma > 0,
\]
by a piecewise linear function. To compute this interpolation, we perform the pivoted Cholesky decomposition until the relative trace norm is less than a given threshold parameter \(\varepsilon\). In Tab. 4.1, we tabulated the number of Cholesky steps required to get the desired accuracy, depending on the size of \(\sigma\). Notice that it holds \(\text{diam}(\Omega) = 4\).

The plot which accompanies Tab. 4.1 shows an illustration of the covariance function (4.10) in one spatial dimension. The approximation of the variance \(V(u)\) in case of \(\sigma = 0.2\), \(A = -\Delta\), and \(E(f) = 0\) is found in the right plot of Fig. 4.1.

Strang’s first lemma together with the Aubin-Nitsche trick yields the error estimate
\[
\|\text{Cor}(u) - \widehat{\text{Cor}(u)}\|_{L^2(\Omega \times \Omega)} \lesssim \|\text{Cor}(f) - \widehat{\text{Cor}(f)}\|_{L^2(\Omega \times \Omega)}.
\]
Here, “\(\widehat{\cdot}\)” indicates numerical approximation. Therefore, the solution’s accuracy is \(O(\varepsilon)\) provided that the \(L^2\)-error of low-rank approximation is \(\varepsilon\).

4.2. Generalized eigenvalue problems. For computing a low-rank approximation of a symmetric and positive semi-definite function \(f \in H^p(\Omega \times \Omega), p \geq 0\), we may exploit the eigenvalue decomposition of the Hilbert-Schmidt operator
\[
(Ku)(x) = \int_{\Omega} f(x, y)u(y) \, dy.
\]
This gives raise to the following decomposition
\[
f(x, y) = \sum_{k=1}^{\infty} \lambda_k \varphi_k(x) \varphi_k(y) \quad \text{where} \quad K \varphi_k = \lambda_k \varphi_k, \quad k = 1, 2, \ldots
\]
into orthonormal functions \(\{\varphi_k\}\). It follows immediately from [23] that the sequence of eigenvalues \(\{\lambda_k\}\) decays as \(\lambda_k \lesssim k^{-p/n}\). In case of \(f\) being even analytical, one can proof the (sub-) exponential rate \(\lambda_k \lesssim \sqrt{\exp(-bk)}\) for some \(b > 0\).

The Galerkin discretization of the eigenvalue problem yields a generalized eigenvalue problem
\[
Ax = \lambda B x, \quad A = [(K \psi_i, \psi_j)]_{i,j}, \quad B = [(\psi_i, \psi_j)]_{i,j}.
\]
Here, the system matrix \(A\) is symmetric and positive semi-definite and the mass matrix \(B\) is symmetric and positive definite. We shall assume that the ansatz functions are stable and compactly supported such that the mass matrix is well-conditioned and has only \(O(n)\) coefficients.

Having the low-rank approximation
\[
A \approx A_m := L_m L_m^T, \quad L_m \in \mathbb{R}^{n \times m}
\]
at hand, we can replace A by its low rank approximation to arrive at
\begin{equation}
L_m L_m^T x = \hat{\lambda} B x.
\end{equation}
Multiplying from the left and from the right by $B^{-1/2}$ yields
\begin{equation}
B^{-1/2} L_m L_m^T B^{-1/2} \hat{x} = \hat{\lambda} \hat{x}, \quad x = B^{-1/2} \hat{x}.
\end{equation}
Since $(B^{-1/2} L_m)(B^{-1/2} L_m)^T$ has the same eigenvalues as $(B^{-1/2} L_m)^T (B^{-1/2} L_m)$, we can replace the generalized eigenvalue problem (4.12) in $\mathbb{R}^{n \times n}$ by an equivalent standard eigenvalue problem in $\mathbb{R}^{m \times m}$:
\begin{equation}
L_m^T B^{-1} L_m \hat{x} = \hat{\lambda} \hat{x}, \quad x = B^{-1/2} \hat{x}.
\end{equation}
Compared to the original eigenvalue problem (4.11), this small eigenvalue problem is much cheaper to solve if $m \ll n$. Namely, the complexity is $O(m^2 n)$ instead of $O(n^3)$ since $B^{-1/2} L_i$ ($i = 1, 2, \ldots, m$) can iteratively be computed in linear complexity. It has only nonzero eigenvalues $\{\hat{\lambda}_k\}_{k=1}^m$ which coincide with the nonzero eigenvalues of large problem (4.12). The Bauer-Fike theorem implies immediately an error bound relative to the eigenvalues $\{\lambda_k\}_{k=1}^n$ of original problem (4.11):
\begin{align*}
|\lambda_k - \hat{\lambda}_k| & \leq \|B^{-1/2}(A - A_m)B^{-1/2}\|_2 \\
& = \|B^{-1}(A - A_m)\|_2 \\
& \lesssim \|A - A_m\|_2, \quad k = 1, 2, \ldots, m.
\end{align*}
For numerical test calculations we choose the unit square $[0, 1]^2$ as computational domain and consider the following kernel functions. Illustrations of these kernel functions are found in Tabs. 4.2–4.5.

1. The Gauss kernel
\begin{equation*}
f(x, y) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(\frac{|x - y|^2}{\sigma^2}\right)
\end{equation*}
which is analytical.

2. A jumping Gauss kernel
\begin{equation*}
f(x, y) = \frac{1}{a(x, y)\sqrt{2\pi}\sigma^2} \exp\left(\frac{|x - y|^2}{\sigma^2}\right)
\end{equation*}
with $a(x, y) = 1$ if $x, y < 0.5$, $a(x, y) = 4$ if $x, y \geq 0.5$ and $a(x, y) = -2$ elsewhere.

3. The Poisson kernel
\begin{equation*}
f(x, y) = \frac{1}{\sqrt{\sigma}} \exp(-\sigma|x - y|)
\end{equation*}
whose eigenvalues decay algebraically like $\lambda_k \sim k^{-2}$.
LOW-RANK APPROXIMATION BY THE PIVOTED CHOLESKY DECOMPOSITION

\[
\begin{array}{|c|c|c|c|c|}
\hline
\varepsilon & \text{value of } \sigma \\
\hline
1 & 0.5 & 0.1 & 0.05 & 0.01 \\
\hline
10^{-1} & 2 & 3 & 10 & 19 \\
10^{-2} & 3 & 5 & 15 & 28 \\
10^{-3} & 4 & 5 & 19 & 36 \\
10^{-4} & 5 & 6 & 21 & 39 \\
10^{-5} & 5 & 7 & 24 & 46 \\
10^{-6} & 5 & 8 & 27 & 50 \\
\hline
\end{array}
\]

Table 4.2. Gauss kernel: The rank to derive the relative trace error ε.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\varepsilon & \text{value of } \sigma \\
\hline
1 & 0.5 & 0.1 & 0.05 & 0.01 \\
\hline
10^{-1} & 2 & 3 & 10 & 17 \\
10^{-2} & 3 & 4 & 15 & 28 \\
10^{-3} & 4 & 5 & 18 & 34 \\
10^{-4} & 4 & 6 & 21 & 39 \\
10^{-5} & 5 & 7 & 24 & 45 \\
10^{-6} & 5 & 8 & 26 & 50 \\
\hline
\end{array}
\]

Table 4.3. Jumping Gauss kernel: The rank to derive the relative trace error ε.

(4) A random kernel which is given by

\[
A = \sum_{k=1}^{m} \lambda_k v_k v_k^T, \quad \lambda_k = \exp(-\sigma k), \quad v_k^T v_\ell = \delta_{k,\ell}.
\]

We generate $m = 2000$ vectors $\{v_k\}$ as n-dimensional arrays of uniformly distributed numbers which are then orthogonalized.

We subdivide the interval $[0, 1]$ into n equidistant intervals and apply continuous L^1-normalized piecewise linear ansatz and test functions. The integer n is chosen as 10^5 in case of the Poisson kernel and the random kernel, whereas it is chosen as 10^6 in case of the Gaussian type kernels. For different choices of the parameters σ and ε we compute the low-rank approximation by the pivoted Cholesky decomposition. The results are tabulated in the Tabs. 4.2–4.5.
It turns out that the algorithm always converges even though the kernel functions do not match the assumptions of Thm. 3.2 except for the Gaussian type kernels in case of $\sigma = 0.1$ and $\sigma = 0.5$. Even in case of the algebraically decaying Poisson kernel the approach is feasible, although we cannot reach a high accuracy. Moreover, the convergence of the Gauss and the jumping Gauss kernel are nearly identical. Contrary to our theory the convergence analysis of the adaptive cross approximation does not include discontinuous kernel functions since it is based on (global) polynomial interpolation, cf. [1, 2].

In Figs. 4.2 and 4.3 we plotted the trace error in the m-th step of the algorithm versus the rank of the matrix A_m (indicated by red stars). The eigenvalues of the matrix A correspond to the green squares, whereas the eigenvalues of the underlying Hilbert-Schmidt operator (i.e., the solution of generalized eigenvalue problem) correspond
Figure 4.2. Gaussian (left) and jumping Gaussian (right) kernel: Eigenvalues and trace error versus the rank.

to the blue boxes. In case of the exponentially decreasing eigenvalues, i.e., in case of the Gauss, the jumping Gauss and the random kernel, all curves exhibit the same exponential decay which means that the trace norm converges optimally. This issue comes from the fact that the trace norm is equivalent to the ℓ^2-norm if the eigenvalues decay exponentially:

$$
\sum_{k=1}^{\ell} \exp(-bk) \sim \int_0^{\ell} \exp(-bx) \, dx \sim \exp(-b\ell).
$$

In case of the Poisson kernel the eigenvalues decay only quadratically and thus the trace norm can converge at most only linearly. In fact, as figured out of Fig. 4.3, exactly this behavior is observed.
To compute the low-rank approximation of the Gaussian type kernels we needed only 4 minutes in case of $\varepsilon = 10^{-6}$ and $\sigma = 0.01$. Recall that $n = 10^6$ and $m \approx 240$. The transformation to the small eigenvalue problem (4.13) and its solution requires then only additional 3 minutes. This is much faster than the solution of the large eigenvalue problem (4.12) by the well-known ARPACK library [15] which provides an implicitly restarted Arnoldi/Lanczos method. Here, the solution requires 50 minutes which means that our approach leads to a speed-up of more than 10.

Our numerical experiments indicate that in general the exponential growth factor $4m$ in Thm. 3.2 does not appear in praxis. Likewise, concerning the influence of the factor n which appears in the error estimate of Thm. 3.2, we did not observe an increase of the rank when n is increased while ε is fixed.

4.3. Quantum chemistry. In quantum chemistry, in particular electronic structure calculation the following quantities

$$V^{h,j}_{a,i} := \sum_{s,s'=\pm \frac{1}{2}} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\varphi_a(r,s) \varphi_b(r',s') \varphi_i(r,s) \varphi_j(r',s')}{\|r - r'\|^2} \, dr \, dr'. \tag{4.14}$$

are called two-electron integrals. They play a crucial role in many circumstances, particularly in wave function methods like coupled cluster method etc. Here the functions $\varphi_i : \mathbb{R}^3 \times \{\pm \frac{1}{2}\} \to \mathbb{C}$, $(r,s) \mapsto \varphi_i(r,s) = \phi_i(r) \chi_i(s) \in H^1(\mathbb{R}^3) \times \{\pm \frac{1}{2}\}$, $i = 1, 2, \ldots, K$, are given atomic basis functions, where χ_i is one of the two basis spin functions α, β for either spin up or spin down. It may be assumed, after basis transformation, that the functions $\varphi_i(r,s)$ are pairwise orthogonal. For instance, this is the case for the eigenfunctions of the Fock operator, called canonical molecular orbitals.

In the formulation of second quantization, the Hamilton operator for the electronic Schrödinger equation

$$\mathcal{H}\Psi = E\Psi,$$

where

$$\mathcal{H}\Psi := \sum_{i=1}^N \left[-\frac{1}{2} \Delta_i - \sum_{j=1}^M \frac{Z_j}{\|r_i - R_j\|_2} + \frac{1}{2} \sum_{j \neq i}^N \frac{1}{\|r_i - r_j\|_2} \right] \Psi$$

is given by

$$\mathcal{H}\Psi = \sum_{p,q} h^p_q a^\dagger_p a_p + \frac{1}{2} \sum_{p,q,r,s} V^{p,q,r,s}_{q,s} a^\dagger_r a^\dagger_s a_p a_q$$

with the single-electron integrals

$$h^j_i := \sum_{s=\pm \frac{1}{2}} \int_{\mathbb{R}^3} \left\{ \nabla \varphi_i(r,s) \nabla \varphi_j(r,s) - \sum_{k=1}^M \frac{\varphi_i(r,s) \varphi_j(r,s)}{\|r - R_k\|_2} \right\} \, dr.$$
and the two-electron integrals defined in (4.14). The symbols a^\dagger and a denote creation and annihilation operators of second quantization.

The tensor V with K^4 entries can be casted in a matrix

$$V = \left[V_{a,i}^{b,j} \right] \in \mathbb{R}^{K^2 \times K^2}$$

with row indices (a, i), $a, i = 1, 2, \ldots, K$, and columns indexed by (b, j). It is reasonable, e.g. for local basis functions or even for polynomials, that the K^2 functions \(\varphi_a(r, s) \varphi_i(r, s) \) can be approximated simultaneously within a linear space of dimension $O(K)$. Consequently, the matrix V is essentially of rank $O(K)$ instead of K^2. This fact has firstly been observed in [3] and later used in density fitting or resolution of identity where an auxiliary basis set \(\{ \psi_p \} \) is constructed. We do not go into the details here and refer the reader to [25, 26, 27].

Since it is easy to see that V is symmetric and positive semi-definite, an $O(K)$-rank approximation can also be computed by the pivoted Cholesky factorization, with the mentioned advantages and properties. The whole computation requires at most $O(K^4)$ operation and reduces the memory requirement to $O(K^3)$. In particular, the cost of the matrix-vector multiplication is reduced to $O(K^3)$ while the approximation is satisfactory [14, 28]. In contrast to density fitting the accuracy can be controlled by the trace norm. Moreover, the sparsity of V could be maintained quite often during the Cholesky decomposition which reduces the complexity even to $O(K)$ for both, computation and storage. This effect can also be exploited in linear scaling DFT calculation. With these methods at hand, for large systems and using local basis functions, the whole cost could be reduced to $O(K)$ for linear scaling MP2 (Møller-Plesset 2nd order perturbation theory) [16, 19] or coupled cluster calculations [20, 21].

References

Helmut Harbrecht, Institut für Angewandte Mathematik und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

E-mail address: harbrecht@ians.uni-stuttgart.de

Michael Peters, Institut für Numerische Simulation, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Germany.

E-mail address: peters@ins.uni-bonn.de

Reinhold Schneider, Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.

E-mail address: schneidr@math.tu-berlin.de
Preprint Series DFG-SPP 1324

http://www.dfg-spp1324.de

Reports

[40] B. Niu, F.J. Hickernell, T. Müller-Gronbach, and K. Ritter. Deterministic Multi-

[41] P. Kittipoom, G. Kutyniok, and W.-Q Lim. Construction of Compactly Supported

[43] L. Grasedyck. Polynomial Approximation in Hierarchical Tucker Format by Vector-

[44] M. Hansen und W. Sickel. Best m-Term Approximation and Sobolev-Besov Spaces
of Dominating Mixed Smoothness - the Case of Compact Embeddings. Preprint 44,
DFG-SPP 1324, April 2010.

Convergence Rates for Greedy Algorithms in Reduced Basis Methods. Preprint 47,
DFG-SPP 1324, May 2010.

[49] H. Yserentant. The Mixed Regularity of Electronic Wave Functions Multiplied by

Preprint 50, DFG-SPP 1324, June 2010.

[52] E. Herrholz and G. Teschke. Compressive Sensing Principles and Iterative Sparse
Recovery for Inverse and Ill-Posed Problems. Preprint 52, DFG-SPP 1324, July
2010.

[53] L. Kämmerer, S. Kunis, and D. Potts. Interpolation Lattices for Hyperbolic Cross

