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On Elliptic Partial Differential Equations with Random
Coefficients∗

Antje Mugler and Hans-Jörg Starkloff

Abstract. We consider stationary diffusion equations with random coefficients which cannot
be bounded strictly away from zero and infinity by constants. We prove the existence of a unique
solution to the corresponding weak formulation with different solution and test function spaces.
Furthermore, the convergence of the Stochastic Galerkin solution is established under certain
conditions.

Key words. random partial differential equation, Stochastic Galerkin Methods, generalized
polynomial chaos

1 Introduction

In recent years there has been a growing interest in quantifying uncertainty in complex systems
which are modeled via algebraic, ordinary or partial differential equations with random input
data. For example, the stationary diffusion equation with a random coefficient is an instructive
model problem. Thus, we consider the boundary value problem consisting of the random partial
differential equation

−∇ · (κ∇u) = f

and some suitable boundary conditions. Thereby, the coefficient κ and also the forcing f are
random functions. In previous works (see for example Babuska et al. [1, 3, 4] or Schwab et al.
[5, 6, 14]) it is often assumed that there exist constants κ, κ > 0, such that

0 < κ ≤ κ(x, ω) ≤ κ a.e. and a.s.

Then the theorem of Lax-Milgram can be used to prove the existence of a unique weak solution.
In a first step towards a generalization of the problem setting Galvis and Sarkis [9] as well as
Gittelson [11] investigate this random partial differential equation where the coefficient is modeled
as a lognormal random field. That is, κ(x) = exp(G(x)) with a Gaussian random field G(x). In
this case, however, there do not exist constants κ, κ > 0 as above and thus the Lax-Milgram
theorem is not applicable. For this reason, the authors employ alternative techniques to prove
the existence and uniqueness of the weak solution and to obtain a priori error estimates of the
Stochastic Galerkin approximation to this solution. In the following we generalize these results to
arbitrary random input fields which can be bounded by random variables κmin, κmax > 0 a.s., that
is,

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) <∞ a.e. and a.s.

∗This work was supported by the Deutsche Forschungsgemeinschaft Priority Programme 1324.
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2 Setting and Problem Formulation
Let D ⊂ R

d, d ∈ N, be a bounded Lipschitz domain and (Ω,A,P) a probability space. We
consider the following boundary value problem

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) x ∈ D, ω ∈ Ω

u(x, ω) = 0 x ∈ ∂D, ω ∈ Ω (2.1)

with random coefficient κ and random forcing f . We assume that the coefficient function κ :
D × Ω→ R is a strongly measurable random variable with values in L∞(D) and that there exist
real-valued random variables κmin and κmax such that

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) <∞ a.e. and a.s. (2.2)

We define the pathwise bilinear form b(·, ·;ω) : H1(D)×H1(D)→ R by

b(u, v;ω) =

∫
D

κ(x, ω)∇u(x) · ∇v(x) dx

for ω ∈ Ω and we denote by 〈g, v〉H−1,H̊1 the duality pairing between g ∈ H−1(D) and v ∈
H̊1(D). Now, assuming that f is a random variable with values in H−1(D), we consider a path-
wise weak formulation of the boundary value problem:

Problem 2.1 (Pathwise Weak Formulation) Find a random variable ũ with values in H̊1(D),
such that

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D) (2.3)

holds almost surely.

Remark 2.2 In Problem 2.1 we look for a random variable ũ with values in H̊1(D), such that

P
(
b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

)
= 1. (2.3a)

Due to the separability of H̊1(D) this problem is equivalent to the weaker problem formulation:
Find a random variable ũ with values in H̊1(D), such that for all v ∈ H̊1(D) there holds

P
(
b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1

)
= 1. (2.4)

To see this consider a basis {ek, k ∈ N} of H̊1(D), then it follows from formulation (2.4) that for
all k ∈ N there holds

P
(
b(ũ(ω), ek;ω) = 〈f(ω), ek〉H−1,H1

0

)
= 1.

This implies that there exists a null set N ∈ A such that for all ω ∈ Ω \N

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H1
0

for all v ∈ span{ek, k ∈ N}.

Any v ∈ H̊1(D) can be approximated by a sequence (vn)n∈N with vn ∈ span{ek, k ∈ N} and
we denote by M ∈ A the null set such that condition (2.2) is fulfilled for κ(x, ω) a.e. for all
ω ∈ Ω \M , ũ(ω) ∈ H̊1(D) and f(ω) ∈ H−1(D) for all ω ∈ Ω \M . Then it follows that

b(ũ(ω), vn;ω)→ b(ũ(ω), v;ω) and 〈f(ω), vn〉H−1,H̊1 → 〈f(ω), v〉H−1,H̊1 , n→∞,

for all ω ∈ Ω \M and thus for all ω ∈ Ω \ (N ∪M) there holds

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

and P(Ω \ (N ∪M)) = 1.
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Since every realization of the coefficient κ is bounded by assumption (2.2) and f is a random
variable with values in H−1(D), by the theorem of Lax-Milgram (see e.g. [7] Theorem 2.7.7)
there exists a mapping ũ : Ω→ H̊1(D), ω 7→ ũ(ω) satisfying

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

for almost all ω ∈ Ω. Furthermore, the estimate

‖ũ(ω)‖H1(D) ≤ C
‖f(ω)‖H−1(D)

κmin(ω)
a.s. (2.5)

holds, where C > 0 is a suitable constant which does not depend on ω ∈ Ω. This mapping ũ is
a.s. uniquely defined and measurable as is proved in the next lemma.

Lemma 2.3 Assume κ : D × Ω → R is a strongly measurable random variable in L∞(D)
satisfying

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) <∞ a.e. and a.s.

for real-valued random variables κmin, κmax, and f is a random variable with values in H−1(D).
Then the mapping ũ : Ω → H̊1(D) is a random variable in H̊1(D) which is measurable with
respect to the σ-algebra σ(f, κ), generated by f and κ, and solves problem (2.3) and (2.4), re-
spectively.

Proof.
Since κ ∈ L∞(D) is strongly measurable and f ∈ H−1(D), there exist sequences (κn)n∈N ⊂
L∞(D) and (fn)n∈N ⊂ H−1(D) of σ(f, κ)-measurable, simple random variables with

‖κ− κn‖L∞(D) → 0 and ‖f − fn‖H−1(D) → 0, n→∞, a.s.

W.l.o.g. we can suppose that the simple random variables (κn)n∈N and (fn)n∈N are given by

κn(x, ω) =
n∑
i=1

κ
(n)
i (x)1

A
(n)
i

(ω) and fn(x, ω) =
n∑
i=1

f
(n)
i (x)1

A
(n)
i

(ω), n ∈ N,

with A(n)
i ∈ σ(f, κ), i = 1, . . . , n, n ∈ N, such that

⋃n
i=1A

(n)
i = Ω and A(n)

i ∩A
(n)
j = ∅ for i 6= j.

Thereby f (n)
i ∈ H−1(D) for all i = 1, . . . , n, n ∈ N, and since κ satisfies

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) <∞ a.e. and a.s.

for random variables κmin, κmax, we can assume for κ(n)
i ∈ L∞(D) that

0 < κmin(ω) ≤ κ
(n)
i (x) ≤ κmax(ω) <∞ a.e. and a.s. on A(n)

i

for all i = 1, . . . , n, n ∈ N.

Now, we define the approximate bilinear form bn(·, ·;ω) : H1(D)×H1(D)→ R by

bn(u, v;ω) :=

∫
D

κn(x, ω)∇u(x) · ∇v(x) dx

=
n∑
i=1

1
A

(n)
i

(ω)

∫
D

κ
(n)
i (x)∇u(x) · ∇v(x) dx, u, v ∈ H̊1(D)
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and the duality pairing yields

〈fn(ω), v〉H−1,H̊1 =
n∑
i=1

1
A

(n)
i

(ω)〈f (n)
i , v〉H−1,H̊1 , v ∈ H̊1(D).

Hence, the Lax-Milgram theorem implies that there exist unique functions u(n)
i ∈ H̊1(D), i =

1, . . . , n, n ∈ N, satisfying∫
D

κ
(n)
i (x)∇u(n)

i (x) · ∇v(x) dx = 〈f (n)
i , v〉H−1,H̊1 for all v ∈ H̊1(D).

Thus, the random variable un(x, ω) :=
n∑
i=1

u
(n)
i (x)1

A
(n)
i

(ω) fulfills

bn(un(ω), v;ω) = 〈fn(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

and is σ(f, κ)-measurable. Furthermore, it holds with v := un− um and a suitable constant c > 0

cκmin(ω)‖un(ω)− um(ω)‖2
H1(D)

≤
∫
D

κn(x, ω)∇un(x, ω) · ∇v(x, ω) dx−
∫
D

κm(x, ω)∇um(x, ω) · ∇v(x, ω) dx

+

∫
D

(κm(x, ω)− κn(x, ω))∇um(x, ω) · ∇v(x, ω) dx

≤ 〈fn(ω), v(ω)〉H−1,H̊1 − 〈fm(ω), v(ω)〉H−1,H̊1

+ ‖κn(ω)− κm(ω)‖L∞(D)‖um(ω)‖H1(D)‖v(ω)‖H1(D)

≤
(
‖fn(ω)− fm(ω)‖H−1(D) + ‖κn(ω)− κm(ω)‖L∞(D)‖um(ω)‖H1(D)

)
‖v(ω)‖H1(D)

and therefore

cκmin(ω)‖un(ω)− um(ω)‖H1(D)

≤ ‖fn(ω)− fm(ω)‖H−1(D) + ‖κn(ω)− κm(ω)‖L∞(D)‖um(ω)‖H1(D).
(2.6)

Since the norm of um(ω) is almost surely bounded

‖um(ω)‖H1(D) ≤
C

κmin(ω)
‖fm(ω)‖H−1(D) →

C

κmin(ω)
‖f‖H−1(D)

the right hand-side of (2.6) tends almost surely to zero when n,m → ∞. Thus the sequence
(un(ω))n∈N has as limit a random variable u ∈ H̊1(D) which is σ(f, κ)-measurable, too. More-
over the limit u solves the equation

b(u(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D) a.s.

because of

|b(u(ω), v;ω)− 〈f(ω), v〉H−1,H̊1|
≤ |b(u(ω), v;ω)− b(un(ω), v;ω)|+ |b(un(ω), v;ω)− bn(un(ω), v;ω)|

+ |bn(un(ω), v;ω)− 〈fn(ω), v〉H−1,H̊1 |
+ |〈fn(ω), v〉H−1,H̊1 − 〈f(ω), v〉H−1,H̊1 |
≤ κmax(ω)‖u(ω)− un(ω)‖H1(D)‖v‖H1(D)

+ ‖κ(ω)− κn(ω)‖L∞(D)‖un(ω)‖H1(D)‖v‖H1(D)

+ ‖f(ω)− fn(ω)‖H−1(D)‖v‖H1(D)
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and the convergencies ‖un(ω)‖H1(D) → ‖u(ω)‖H1(D) <∞, ‖u(ω)− un(ω)‖H1(D) → 0, ‖κ(ω)−
κn(ω)‖L∞(D) → 0 and ‖f(ω) − fn(ω)‖H−1(D) → 0 almost surely. Since the mapping ũ : Ω →
H̊1(D) is due to Lax-Milgram unique we have u = ũ a.s. and thus ũ is a σ(f, κ)-measurable
random variable in H̊1(D).

In analogy to variational formulations of boundary value problems with purely deterministic
input data we want to study also the corresponding variational formulation for random input data
which is sometimes referred to as “stochastic variational formulation”. Such a formulation is
obtained by defining a suitable bilinear form on a Hilbert space of random variables in H̊1(D),
e.g. a(u(·), v(·)) = EPb(u(·), v(·); ·), and correspondingly by defining a linear form. However,
since the coefficient κ is not bounded by constants but random variables we cannot directly use
the Lax-Milgram theorem to prove existence and uniqueness of the weak solution. To address this
problem we will define suitable solution and test function spaces to formulate the problem and
to ensure the existence of a unique weak solution. The key observation is obtained as follows:
Squaring inequality (2.5) and taking the expectation EP with respect to the probability measure P
yields

EP

(
‖ũ‖2

H1(D)

)
≤ C2EP

(
‖f‖2

H−1(D)

κ2
min

)
. (2.7)

Hence, the pathwise solution ũ is a second-order random variable in H̊1(D) if the second-order
moment of the H−1-norm of f , weighted with the reciprocal of the real-valued random variable
κ2
min, is finite. Thus, we need weighted function spaces in order to formulate the stochastic varia-

tional problem. Given a general real-valued random variable % > 0 a.s. we introduce the spaces

Um
% : = L2(Ω,A, %dP;Hm(D)), m ∈ Z, and

Ům
% : = L2(Ω,A, %dP; H̊m(D)), m ∈ N0,

where the %-weighted L2-spaces are defined by

L2(Ω,A, %dP;V ) :=
{
ξ : Ω→ V measurable : EP

(
‖ξ‖2

V %
)
<∞

}
with V = Hm(D) or H̊m(D), respectively. In fact, the elements of these spaces are equivalence
classes of V -valued random variables where two random variables ξ1 and ξ2 with values in V
coincide if ‖ξ1 − ξ2‖V = 0 a.s. Then endowing the spaces Um

% and Ům
% with the inner product

(u, v)Um% = EP
(
(u, v)Hm(D)%

)
, u, v ∈ Um

%

and the induced norm

‖u‖Um% =

√
EP

(
‖u‖2

Hm(D)%
)
, u ∈ Um

%

these spaces are also Hilbert spaces and there exist isomorphisms to the corresponding tensor
product spaces (see e.g. [13])

Um
%
∼= Hm(D)⊗ L2(Ω,A, %dP) and Ům

%
∼= H̊m(D)⊗ L2(Ω,A, %dP).

Thereby we denote by L2(Ω,A, %dP) the space L2(Ω,A, %dP;R) which is defined analogously to
L2(Ω,A, %dP;V ) above. Furthermore, we note that the seminorm

|u|U1
%

=

√
EP

(
|u|2H1(D)%

)
=

√√√√ ∫
D×Ω

|∇u(x, ω)|2%(ω) dx dP(ω)
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is equivalent to the norm ‖ · ‖U1
%

in Ů1
% and that the dual space of Ům

% can be identified with
the space U−m%−1 . For convenience we denote by Um or Ům the spaces Hm(D) ⊗ L2(Ω,A,P) or
H̊m(D)⊗L2(Ω,A,P), respectively. On occasion we will replace P by another probability measure
Q and write Um

Q := Hm(D)⊗ L2(Ω,A,Q) and Ům
Q := H̊m(D)⊗ L2(Ω,A,Q).

Then the stochastic weak formulation reads as follows:

Problem 2.4 (Stochastic Weak Formulation) Find û ∈ Ů1, such that

a(û, v) = 〈f, v〉 for all v ∈ Ů1
κ2min

, (2.8)

where the bilinear form a is given by

a(u, v) = EP

∫
D

κ(x)∇u(x) · ∇v(x) dx

 =

∫
Ω

b(u(ω), v(ω);ω) dP(ω) (2.9)

and the duality pairing between f ∈ U−1
1

κ2
min

and v ∈ Ů1
κ2min

is given by

〈f, v〉 = EP

(
〈f, v〉H−1,H̊1

)
=

∫
Ω

〈f(ω), v(ω)〉H−1,H̊1 dP(ω).

It is important to note that the solution and test function spaces are now different spaces. Further-
more, the domain of the bilinear form a is a proper subset of Ů1 × Ů1

κ2min
, i.e., the bilinear form

a is not defined or finite for all pairs (u, v) ∈ Ů1 × Ů1
κ2min

. Thus, an implicit requirement of the
weak formulation is to find a solution û such that the related bilinear form a(û, ·) is defined and
finite for all test functions.

3 Existence and Uniqueness of Weak Solution
In this section, we will present two alternative proofs of existence and uniqueness of a solution
to the weak formulation (2.8). Both approaches have benefits and drawbacks but when combined
appropriately they are a powerful tool to study weak solutions and their properties. First we state
a theorem which is a generalization of the Lax-Milgram theorem where the bilinear form is not
defined on a cartesian product.

Theorem 3.1 Let Hilbert spaces X1, X2, Y1, Y2 with dense and continuous embeddings X2 ⊂ X1

and Y2 ⊂ Y1 and a bilinear form a : X1 × Y1 ) Da → R be given such that

(i) the restricted bilinear forms a∣∣X1×Y2
: X1 × Y2 → R

and a∣∣X2×Y1
: X2 × Y1 → R are continuous,

(ii) there holds the inf-sup condition with a constant c > 0

inf
u∈X1\{0}

sup
v∈Y1\{0}

|a(u, v)|
‖u‖X1‖v‖Y1

≥ c > 0, and

(iii) for any v ∈ Y1 \ {0} there exists u ∈ X1 such that a(u, v) > 0.
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Then for any f ∈ Y ∗1 there exists a unique u ∈ X1 satisfying

a(u, v) = 〈f, v〉 for all v ∈ Y1.

Proof.
The operator Ta : X1 → Y ∗2 , u 7→ a(u, ·), is linear and continuous because of condition (i). The
restricted operator T̂a : X1 ) D(T̂a) → Y ∗1 ⊂ Y ∗2 associated with Ta is densely defined, since
X2 ⊂ D(T̂a) ⊂ X1 is densely embedded. The operator T̂a is also linear, injective, since

‖T̂a(u)‖Y ∗1 = sup
v∈Y1\{0}

|〈T̂a(u), v〉|
‖v‖Y1

= sup
v∈Y1\{0}

|a(u, v)|
‖v‖Y1

≥ c‖u‖X1 ,

and closed because for any sequence (un)n∈N ⊂ D(T̂a) with un → u in X1 such that T̂a(un)→ f
in Y ∗1 it follows from the continuity of Ta that u ∈ D(T̂a) and T̂a(u) = f . Now, we show that
the range of T̂a, denoted by R(T̂a), is closed. Assuming (T̂aun)n∈N is a convergent sequence in
R(T̂a) with limit f ∈ Y ∗1 then the inf-sup condition (ii) yields

c‖un − um‖X1 ≤ sup
v∈Y1\{0}

|a(un − um, v)|
‖v‖Y1

= sup
v∈Y1\{0}

|〈Ta(un − um), v〉|
‖v‖Y1

= ‖Ta(un − um)‖Y ∗1 → 0

which implies that (un)n is a Cauchy-sequence in X1 with limit u ∈ X1. Because T̂a is a closed
operator there holds T̂a(u) = f and the range R(T̂a) is closed. Thus, we can deduce from Ba-
nach’s closed range theorem (see e.g. [17] p. 205) that

R(T̂a) = N (T̂ ∗a )⊥

where T̂ ∗a : Y1 ) D(T̂ ∗a ) → X∗1 is the adjoint operator of T̂a. The null space of T̂ ∗a , denoted by
N (T̂ ∗a ), is defined as

N (T̂ ∗a ) = {v ∈ D(T̂ ∗a ) ( Y1 : 〈u, T̂ ∗a (v)〉 = 0 ∀u ∈ X1}.

From condition (iii) it follows that for any v ∈ D(T̂ ∗a ) ( Y1, v 6= 0, there exists u ∈ D(T̂a) such
that

〈u, T̂ ∗a (v)〉 = 〈T̂a(u), v〉 = a(u, v) > 0.

Therefore, the null space of T̂ ∗a contains only the zero element, i.e. N (T̂ ∗a ) = {0}, and thus
R(T̂a) = Y ∗1 , which completes the proof.

Corollary 3.2 For any f ∈ U−1
1

κ2
min

there exists a unique û ∈ Ů1 satisfying the stochastic weak

formulation (2.8) and the estimate

‖û‖U1 ≤ C‖f‖U−1
1

κ2
min

.

Proof.
We want to prove this result by employing Theorem 3.1 on the Hilbert spaces

X1 = Ů1, X2 = Ů1
κ2max
κ2
min

, Y1 = Ů1
κ2min

and Y2 = Ů1
κ2max
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and the bilinear form a : Ů1 × Ů1
κ2min

) Da → R as defined in (2.9). In the following we verify
all conditions of Theorem 3.1 generalizing the proof of Theorem 3.1 of Galvis and Sarkis in their
paper [9].

Since κ2
min ≤ κ2

max, the Hilbert space Ů1
κ2max
κ2
min

is densely and continuously embedded in the Hilbert

space Ů1 as well as the Hilbert space Ů1
κ2max

in the Hilbert space Ů1
κ2min

.

To condition (i): The restricted bilinear forms

a∣∣Ů1×Ů1
κ2max

: Ů1 × Ů1
κ2max

→ R and a∣∣Ů1
κ2max
κ2
min

×Ů1
κ2
min

: Ů1
κ2max
κ2
min

× Ů1
κ2min
→ R

are continuous because of∣∣∣∣a∣∣Ů1×Ů1
κ2max

(u, v)

∣∣∣∣ ≤ EP
(
κmax|u|H1(D)|v|H1(D)

)
≤ ‖u‖U1‖v‖U1

κ2max

and ∣∣∣∣a∣∣Ů1
κ2max
κ2
min

×Ů1
κ2
min

(u, v)

∣∣∣∣ ≤ EP

(
κmax
κmin

κmin|u|H1(D)|v|H1(D)

)
≤ ‖u‖U1

κ2max
κ2
min

‖v‖U1
κ2
min

.

To condition (ii): We define for u ∈ Ů1 the random variable vR with values in H̊1(D) by

vR :=

{
u

κmin
, κmax

κmin
≤ R

0, otherwise

and denote by BR the set

BR :=

{
ω ∈ Ω :

κmax(ω)

κmin(ω)
≤ R

}
.

Thus we obtain vR ∈ Ů1
κ2min

, since

|vR|2U1
κ2
min

=

∫
BR

|u(ω)|2H1(D) dP(ω) ≤ |u|2U1 <∞,

and by assumption (2.2) on the coefficient κ there holds

|a(u, vR)| =
∫

D×BR

κ(x, ω)

κmin(ω)
|∇u(x, ω)|2 dx dP(ω) ≥

∫
BR

|u(ω)|2H1(D) dP(ω).

Since P
(
Ω \

⋃
R>0BR

)
= 0, there exists for every δ > 0 a R > 0 such that∫

BR

|u(ω)|2H1(D) dP(ω) ≥ (1− δ)|u|2U1

and thus

sup
v∈Ů1

κ2
min

\{0}

|a(u, v)|
|v|U1

κ2
min

≥ |a(u, vR)|
|vR|U1

κ2
min

≥
(1− δ)|u|2U1

|u|U1

= (1− δ)|u|U1 .

Because δ > 0 can be chosen arbitrarily the inf-sup condition holds with constant c = 1.
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To condition (iii): Let be v ∈ Ů1
κ2min
\ {0} then we define

uR :=

{
vκmin,

κmax
κmin

≤ R

0, otherwise
and the set BR as above.

So we have uR ∈ Ů1
κ2max
κ2
min

because of

|uR|2U1
κ2max
κ2
min

=

∫
BR

|v(ω)|2H1(D)κ
2
max(ω) dP(ω)

≤ R2

∫
BR

|v(ω)|2H1(D)κ
2
min(ω) dP(ω) ≤ R2|v|2U1

κ2
min

<∞

and as above it follows for R huge enough

a(uR, v) =

∫
D×BR

κ(x, ω)κmin(ω)|∇v(x, ω)|2 dx dP(ω)

≥
∫
BR

|v(ω)|2H1(D)κ
2
min dP(ω) ≥ (1− δ)|v|2U1

κ2
min

> 0.

The estimate ‖û‖U1 ≤ C‖f‖U−1
1

κ2
min

follows immediately from the inf-sup condition.

Obviously, Corollary 3.2 is also true for problems with other boundary conditions as long as
the seminorm is a norm in the corresponding function spaces.

An alternative method to prove existence and uniqueness of the solution to problem (2.8)
where the coefficient κ is a lognormal random field, is given in the work of Gittelson [11]. For
this special case it can be shown that the unique pathwise solution ũ is also the unique solution of
the stochastic variational problem if it belongs to the solution space. Below we prove an analogous
result for the more general assumptions (2.2) on the random coefficient.

Theorem 3.3 For f ∈ U−1
1

κ2
min

the unique solution ũ of problem (2.3) belongs to Ů1 and it solves

also problem (2.8). Furthermore, any solution û ∈ Ů1 of the weak formulation (2.8) is σ(f, κ)-
measurable and there holds

û(x, ω) = ũ(x, ω) a.e. and a.s.

Proof.
Recalling that f ∈ U−1

1

κ2
min

and utilizing the estimate (2.7) we obtain

‖ũ‖2
U1 = EP‖ũ‖2

H1(D) ≤ C2EP
‖f‖2

H−1(D)

κ2
min

= C2‖f‖2
U−1

1
κ2
min

<∞.

Since ũ satisfies problem (2.3), there holds for all v ∈ Ů1
κ2min

b(ũ(ω), v(ω);ω) = 〈f(ω), v(ω)〉H−1,H̊1 a.s..
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Taking the expectation yields a(ũ, v) = 〈f, v〉 for all v ∈ Ů1
κ2min

and hence ũ solves problem (2.8).

Now, we consider a random variable û ∈ Ů1 satisfying

a(û, v) = 〈f, v〉 for all v ∈ Ů1
κ2min

.

Then we define for w ∈ H̊1(D) and A ∈ A the functions vw,A(x, ω) := w(x) 1A(ω)
κmin(ω)

. It follows

vw,A ∈ Ů1
κ2min

and we get

EP
1A

κmin
b(û, w; ·) = a(û, vw,A) = 〈f, vw,A〉 = EP

1A

κmin
〈f, w〉H−1,H̊1 .

Since A ∈ A can be chosen arbitrarily this implies for any w ∈ H̊1(D)

b(û(ω), w;ω) = 〈f(ω), w〉H−1,H̊1 a.s.

Hence, the random variable û with values in H̊1(D) solves problem (2.4) and since its solution is
almost surely unique and σ(f, κ)-measurable (cf. Lemma 2.3), there holds

û(x, ω) = ũ(x, ω) a.e. and a.s.,

i.e., the random variable û is measurable with respect to the σ-algebra σ(f, κ).

4 Stochastic Galerkin Discretization
Let ξ := (ξi)i∈Iξ with index set Iξ ⊆ N be a sequence of real-valued so called “basic” random
variables, such that there are measurable functions κξ, fξ : D ×R|Iξ| → R satisfying

κ(x, ω) = κξ(x, ξ(ω)) and f(x, ω) = fξ(x, ξ(ω)) a.e. and a.s.

Thereby the index set Iξ can be finite, i.e., Iξ = {1, . . . ,M}, M ∈ N, or the set of the natural
numbers, i.e., Iξ = N. Sequences of basic random variables can be obtained with the help of
Karhunen-Loève expansions (see e.g. [12]) or other series expansions (see e.g. [10]) of the input
data.

Then according to Theorem 3.3 the weak solution û of variational formulation (2.8) belongs
to L2(Ω, σ(ξ),P; H̊1(D)) since κ and f are σ(ξ)-measurable.

In the following we assume that the random variable ξ = (ξi)i∈Iξ on the probability space
(Ω,A,P) has the distribution F P

ξ and that any ξi, i ∈ Iξ, possesses finite moments of arbitrary
order, i.e., EP|ξi|n <∞, n ∈ N, and a continuous distribution function F P

ξi
.

In order to apply the Stochastic Galerkin Method we define the space

UN,K,p := Up ⊗ UN,K ⊂ Ů1

which serves as solution space for the Stochastic Galerkin approximation. The function space
Up := span{ϕi, i ∈ Ip} is a finite-dimensional subspace of H̊1(D) obtained by a uniform
p version of the Finite Element Method (FEM) and UN,K is a finite-dimensional subspace of
L2(Ω, σ(ξ1, . . . , ξK),P) ⊆ L2(Ω, σ(ξ),P) with {1, . . . , K} ⊆ Iξ. Since we want to use gener-
alized polynomial chaos (see e.g. [15, 16]), i.e. polynomials in the underlying basic random
variables ξ, we construct the finite dimensional space UN,K as follows,

UN,K := span

ξα :=
∏
i∈Iξ

ξαii , α ∈ ΛN,K

 .
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We choose the index set

ΛN,K ⊂ Λ := {α ∈ N|Iξ|0 : α has only finitely many non-zero entries}

such that the total degree of the multivariate polynomials is bounded,

ΛN,K = {α ∈ Λ : αi = 0 ∀ i > K, |α| ≤ N }, |α| :=
∑
i∈Iξ

αi.

As discretized test function space we choose

VN,K,p :=

{
u

κmin
: u ∈ UN,K,p

}
.

Then the discrete version of the weak formulation (2.8) reads as follows:

Problem 4.1 (Discrete Weak Formulation) Find ûN,K,p ∈ UN,K,p, such that

a(ûN,K,p, v) = 〈f, v〉 for all v ∈ VN,K,p. (4.1)

The existence of a unique Stochastic Galerkin solution ûN,K,p ∈ UN,K,p to problem (4.1) can be
proved under the assumptions in the following lemma.

Lemma 4.2 If κ2max
κ2min

∈ Lr(Ω,A,P) for some r > 1 then for any f ∈ U−1
1

κ2
min

there exists a unique

ûN,K,p ∈ UN,K,p such that

a(ûN,K,p, v) = 〈f, v〉 for all v ∈ VN,K,p.

Proof.
Since κ2max

κ2min
∈ Lr(Ω,A,P) for some r > 1 and UN,K,p = span{ξαϕi, α ∈ ΛN,K , i ∈ Ip} we obtain

with 1 ≤ s <∞ such that 1
r

+ 1
s

= 1 that

EP

(
|ξαϕi|2H1(D)

κ2
max

κ2
min

)
= |ϕi|2H1(D)EP

(
|ξ|2ακ

2
max

κ2
min

)
≤ |ϕi|2H1(D)

(
EP|ξ|2αs

) 1
s

(
EP

(
κ2
max

κ2
min

)r) 1
r

<∞

for all α ∈ ΛN,K , i ∈ Ip, i.e. u ∈ U1
κ2max
κ2
min

for all u ∈ UN,K,p and v ∈ U1
κ2max

for all v ∈ VN,K,p.

Hence, we can define the Hilbert spaces

X1 = UN,K,p ⊂ U1, X2 = UN,K,p ⊂ U1
κ2max
κ2
min

,

Y1 = VN,K,p ⊂ U1
κ2min

and Y2 = VN,K,p ⊂ U1
κ2max

with the dense and continuous embeddingsX2 ⊂ X1 and Y2 ⊂ Y1. The continuity of the restricted
bilinear forms a as demanded in Theorem 3.1 follows from the continuity of the restricted bilinear
forms a∣∣Ů1×Ů1

κ2max

and a∣∣Ů1
κ2max
κ2
min

×Ů1
κ2
min

. By utilizing the relation

|u|2U1 ≤ a

(
u,

u

κmin

)
for all u ∈ UN,K,p
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we obtain a discrete inf-sup condition

|u|U1 ≤ a(u, u/κmin)

|u|U1

=
a(u, u/κmin)

|u/κmin|U1
κ2
min

≤ sup
v∈VN,K,p\{0}

a(u, v)

|v|U1
κ2
min

for all u ∈ UN,K,p \ {0}

and that for any v ∈ VN,K,p \ {0} the function u := vκmin ∈ UN,K,p fulfills

a(u, v) = a(u, u/κmin) ≥ |u|2U1 > 0.

Then applying Theorem 3.1 completes the proof.

Now, we want to investigate the approximation error of this Stochastic Galerkin solution
ûN,K,p. Employing the discrete inf-sup condition we get a quasi-optimal result for the Galerkin
solution, i.e., the error can be bounded by a best approximation error in another – a stronger –
norm.

Lemma 4.3 If κ2max
κ2min

∈ Lr(Ω,A,P) for some r > 1 and û ∈ Ů1
κ2max
κ2
min

then the following estimate

holds
|û− ûN,K,p|U1 ≤ C̃ inf

z∈UN,K,p
|û− z|U1

κ2max
κ2
min

with a constant C̃ > 0 (independent of N,K and p) for the solutions û and ûN,K,p of the weak
formulation (2.8) and the discrete weak formulation (4.1), respectively.

Proof.
Utilizing the discrete inf-sup condition and a(û − z, v) = a(ûN,K,p − z, v) for all v ∈ VN,K,p we
obtain

|û− ûN,K,p|U1 ≤ |û− z|U1 + |ûN,K,p − z|U1

≤ |û− z|U1 + sup
v∈VN,K,p\{0}

|a(ûN,K,p − z, v)|
|v|U1

κ2
min

= |û− z|U1 + sup
v∈VN,K,p\{0}

|a(û− z, v)|
|v|U1

κ2
min

≤ |û− z|U1 + sup
v∈VN,K,p\{0}

EP
(
κmax|û− z|H1(D)|v|H1(D)

)
|v|U1

κ2
min

≤ |û− z|U1 + |û− z|U1
κ2max
κ2
min

≤ 2|û− z|U1
κ2max
κ2
min

for all z ∈ UN,K,h.

Consequently we measure the error in the stronger U1
κ2max
κ2
min

-norm and we assume the following.

Assumption 4.4 Let q := EP
κ2max
κ2min

< ∞ and assume κ2max
κ2min

is σ(ξ)-measurable, i.e., there exists a

measurable transformation tκ2max
κ2
min

: R|Iξ| → R
+ with κ2max

κ2min
= tκ2max

κ2
min

(ξ).
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Then the measure Q with dQ = 1
q
κ2
maxκ

−2
mindP is a probability measure. In the following we

consider the function spaces Um
Q and Ům

Q instead of Um
κ2max
κ2
min

and Ům
κ2max
κ2
min

, m ∈ Z, which coincide

with Um
κ2max
κ2
min

and Ům
κ2max
κ2
min

but are much easier to handle due to the corresponding probability space

(Ω,A,Q) at hand.

Corollary 4.5 If κ2max
κ2min

∈ Lr(Ω,A,P) for some r > 1 and Assumption 4.4 is fulfilled there holds

for û ∈ Ů1
Q with a suitable constant C > 0 (independent of N,K and p)

|û− ûN,K,p|U1 ≤ C inf
z∈UN,K,p

|û− z|U1
Q

(4.2)

for the solutions û and ûN,K,p of the corresponding weak formulation (2.8) and discrete weak
formulation (4.1).

Proof.
This result follows immediately from Lemma 4.3 and Assumption 4.4.

By choosing a suitable z ∈ UN,K,p and applying the triangle inequality to the right-hand side
of (4.2) we can identify different sources of the approximation error. To see this, we introduce
some notations: We denote by

ΠŮ1
Q,N,K,p

: Ů1
Q → UN,K,p

the orthogonal projection onto UN,K,p, and by

ΠŮ1
Q,N,K

: Ů1
Q → H̊1(D)⊗ UN,K

the orthogonal projection onto H̊1(D)⊗ UN,K ,

both with respect to the U1
Q-norm. Assuming û ∈ Ů1

Q the approximation error of the Stochastic
Galerkin approximation to the exact solution can be estimated using (4.2) with z = ΠŮ1

Q,N,K,h
û

as
|û− ûN,K,p|U1 ≤ C

[
|û− ΠŮ1

Q,N,K
û|U1

Q
+ |ΠŮ1

Q,N,K
û− ΠŮ1

Q,N,K,p
û|U1

Q

]
. (4.3)

Hence this error has two components, namely an approximation error due to discretizing in the
stochastic dimension and an approximation error due to discretizing in the spatial dimension.

The spatial approximation error can be bounded using standard arguments from the theory of
Finite Element Methods (FEMs). Here, we have employed a p version of the FEM (see e.g. [2]).
Under the assumptions of Corollary 2.2 in [2] there holds the following.

Corollary 4.6 If κ2max
κ2min

∈ Lr(Ω,A,P) for some r > 1 and Assumption 4.4 is satisfied then for

û ∈ Uk
κ2max
κ3
min

∩ Ů1
Q with constant C̃ > 0 (independent of N , K, p and û) there holds

|ΠŮ1
Q,N,K

û− ΠŮ1
Q,N,K,p

û|U1
Q
≤ C̃p−(k−1)‖û‖Uk

κ2max
κ3
min

.

Proof.
From Corollary 2.2 in [2] it follows√

κmin(ω)
∣∣∣ΠŮ1

Q,N,K
û(ω)− ΠŮ1

Q,N,K,p
û(ω)

∣∣∣
H1(D)

≤ C̃p−(k−1)‖û(ω)‖Hk(D)
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with a constant C̃ independent of N , K, p, ω ∈ Ω and û. Squaring and taking the expectation EQ
with respect to Q leads to

EQ

∣∣∣ΠŮ1
Q,N,K

û− ΠŮ1
Q,N,K,p

û
∣∣∣2
H1(D)

≤ C̃2p−2(k−1)EQ
‖û‖2

Hk(D)

κmin
.

We note that analogous results to Corollary 4.6 can be obtained for h or h-p versions of the
FEM by using Theorem 2.1 in [2].

The first term on the right-hand side of inequality (4.3) can be estimated with the help of
generalized polynomial chaos expansions. In view of Assumption 4.4 the random variable ξ =
(ξi)i∈Iξ as a random variable on the probability space (Ω,A,Q) has the distribution FQ

ξ (dy) =
1
q
tκ2max
κ2
min

(y)F P
ξ (dy). Assuming EQ|ξi|n <∞ for all i ∈ Iξ and n ∈ N the multivariate orthonormal

polynomials {qα(ξ), α ∈ Λ} in L2(Ω,A,Q) exist. Hence, in order to expand any random variable
u ∈ L2(Ω, σ(ξ),Q; H̊1(D)) in this generalized polynomial chaos the polynomials {qα(ξ), α ∈ Λ}
have to be dense in L2(Ω, σ(ξ),Q). Some necessary conditions to establish this property are
discussed in [8]. If the polynomials lie dense and û ∈ L2(Ω, σ(ξ),Q; H̊1(D)) then the solution
possesses a generalized polynomial chaos expansion {qα(ξ), α ∈ Λ}, i.e.,

û(x, ω) =
∑
α∈Λ

ûα(x)qα(ξ(ω)), where ûα(x) = EQû(x)qα(ξ).

Furthermore, the projection ΠÛ1
Q,N,K

û is given by the truncated expansion

ΠŮ1
Q,N,K

û(x, ω) =
∑

α∈ΛN,K

ûα(x)qα(ξ(ω)).

Corollary 4.7 If the polynomials {qα(ξ), α ∈ Λ} are dense in L2(Ω, σ(ξ),Q) and û ∈ Ů1
Q then

the approximation error

|û− ΠŮ1
Q,N,K

û|U1
Q
→ 0 (K,N →∞).

Proof.
The multivariate polynomials {qα(ξ), α ∈ Λ} form an orthonormal basis of L2(Ω, σ(ξ),Q) be-
cause they are dense in L2(Ω, σ(ξ),P). Since the weak solution û is σ(ξ)-measurable (according
to Theorem 3.3) and ⋃

N≥0,K≥1

ΛN,K = Λ

there holds that ΠŮ1
Q,N,K

û→ û in Ů1
Q for K →∞, N →∞.

Hence in view of Corollary 4.6 and Corollary 4.7 the approximation error |û− ûN,K,p|U1

converges to zero if the solution û ∈ U2
κ2max
κ3
min

∩ Ů1
Q and the set of orthonormal polynomials

{qα(ξ), α ∈ Λ} is complete in L2(Ω, σ(ξ),Q).
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5 Numerical Example
Now, we turn to a specific application, namely the approximation of the solution of an one-
dimensional differential equation with random data. Consider the boundary value problem

−(κ(x, ω)u′(x, ω))′ = f(x), x ∈ (0, 1), ω ∈ Ω

u(0, ω) = 0, ω ∈ Ω

κ(1, ω)u′(1, ω) = F, ω ∈ Ω

where forcing f ∈ H−1(D) is a deterministic function, F a given constant and κ a strongly
measurable random variable in L∞(D) satisfying

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) <∞ a.e. and a.s.

for some real-valued random variables κmin and κmax. Then the exact solution is given by

u(x, ω) =

x∫
0

1

κ(y, ω)

F +

1∫
y

f(z) dz

 dy.

If the coefficient κ is modeled as an exponential function of the absolute value of one standard
Gaussian distributed random variable, that is,

κ(x, ω) := exp(|ζ(ω)|x) with ζ ∼ N (0, 1)

then κ is bounded by

0 < 1 ≤ κ(x, ω) ≤ exp(|ζ(ω)|) <∞ a.e. and a.s.

The random variable κ2
max/κ

2
min = exp(2|ζ|) is in Lr(Ω,A,P) for all r ≥ 1. As basic random

variable we choose the standard Gaussian distributed random variable ζ , i.e., ξ = ζ , and em-
ploy the Stochastic Galerkin Method using orthonormal polynomials, i.e. polynomial chaos, in
ξ. Figure 5.1 shows the relative errors of the mean and second-order moment of the Stochas-
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Figure 5.1: Relative errors of mean (left) and second moment (right) of the Stochastic Galerkin
approximation to the solution with f ≡ 1 and F = 1 using polynomials of different orders in ξ.

tic Galerkin approximation to the exact solution as a function of the spatial variable x. Thereby
we have chosen the forcing f ≡ 1 and the boundary value F = 1 and we use a p version of
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the Finite Element Method, precisely, a single Gauss-Lobatto-Legendre spectral finite element
of degree p = 20 for the spatial discretization. In the stochastic dimension we use orthonormal
polynomials in ξ up to degree 5, 10, 15 and 20. Obviously, the error decays, which agrees with
the theory developed in Section 4. On the other hand it is also possible to choose as basic random
variable η = |ζ|, a chi-distributed random variable with one degree of freedom. Thus, we can use
orthonormal polynomials, i.e. generalized polynomial chaos, in η within the Stochastic Galerkin
Method, in particular orthonormal polynomials in η up to degree 2 and 5. In the spatial dimension
we again use a single Gauss-Lobatto-Legendre spectral finite element of degree p = 20 . In Figure
5.2 we observe that the associated relative errors of the mean and second-order moment tend to
zero much faster than for the standard Gaussian basic random variable ξ.
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Figure 5.2: Relative errors of mean (left) and second moment (right) of the Stochastic Galerkin
approximation to the solution with f ≡ 1 and F = 1 using polynomials of different orders in η.

Notably, we obtain much better approximation results by using polynomials up to order 2 and
5 in η = |ζ| as compared to polynomials up to order 20 in ξ = ζ . Hence, the approximation error,
more precisely the rate of convergence, and thus the approximation quality depends on the set of
basic random variables. This relation is currently being investigated in ongoing research.

References
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[12] M. Döhler, S. Kunis, and D. Potts. Nonequispaced Hyperbolic Cross Fast Fourier
Transform. Preprint 12, DFG-SPP 1324, April 2009.

[13] C. Bender. Dual Pricing of Multi-Exercise Options under Volume Constraints.
Preprint 13, DFG-SPP 1324, April 2009.

[14] T. Müller-Gronbach and K. Ritter. Variable Subspace Sampling and Multi-level
Algorithms. Preprint 14, DFG-SPP 1324, May 2009.

[15] G. Plonka, S. Tenorth, and A. Iske. Optimally Sparse Image Representation by the
Easy Path Wavelet Transform. Preprint 15, DFG-SPP 1324, May 2009.

[16] S. Dahlke, E. Novak, and W. Sickel. Optimal Approximation of Elliptic Problems
by Linear and Nonlinear Mappings IV: Errors in L2 and Other Norms. Preprint 16,
DFG-SPP 1324, June 2009.

[17] B. Jin, T. Khan, P. Maass, and M. Pidcock. Function Spaces and Optimal Currents
in Impedance Tomography. Preprint 17, DFG-SPP 1324, June 2009.

[18] G. Plonka and J. Ma. Curvelet-Wavelet Regularized Split Bregman Iteration for
Compressed Sensing. Preprint 18, DFG-SPP 1324, June 2009.

[19] G. Teschke and C. Borries. Accelerated Projected Steepest Descent Method for
Nonlinear Inverse Problems with Sparsity Constraints. Preprint 19, DFG-SPP
1324, July 2009.

[20] L. Grasedyck. Hierarchical Singular Value Decomposition of Tensors. Preprint 20,
DFG-SPP 1324, July 2009.

[21] D. Rudolf. Error Bounds for Computing the Expectation by Markov Chain Monte
Carlo. Preprint 21, DFG-SPP 1324, July 2009.

[22] M. Hansen and W. Sickel. Best m-term Approximation and Lizorkin-Triebel Spaces.
Preprint 22, DFG-SPP 1324, August 2009.

[23] F.J. Hickernell, T. Müller-Gronbach, B. Niu, and K. Ritter. Multi-level Monte
Carlo Algorithms for Infinite-dimensional Integration on RN. Preprint 23, DFG-
SPP 1324, August 2009.

[24] S. Dereich and F. Heidenreich. A Multilevel Monte Carlo Algorithm for Lévy Driven
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