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Abstract

We believe that discontinuous linear information is never more powerful than con-
tinuous linear information for approximating continuous operators. We prove such a
result in the worst case setting. In the randomized setting we consider compact linear
operators defined between Hilbert spaces. In this case, the use of discontinuous linear
information in the randomized setting cannot be much more powerful than continuous
linear information in the worst case setting. These results can be applied when function
evaluations are used even if function values are defined only almost everywhere.

1 Introduction

We study the approximation of an operator S defined between normed spaces F and G. The
operator S does not have to be linear or continuous. We approximate S(f) by algorithms
that use information consisting of finitely many continuous or discontinuous linear functionals
Li : F → R. The error of such algorithms is defined either in the worst case or randomized
setting.

For continuous S, it is hard to imagine that one can learn about S(f) by using discon-
tinuous information. On the other hand, it is well known that the Monte Carlo algorithm
works nicely for multivariate integration defined for L2-functions. This algorithm uses linear
functionals given by function evaluations which are indeed discontinuous or even not always
well defined. Hence, discontinuous information is actually used in computational practice
and seems to be useful, at least in the randomized setting.
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This is the subject of this paper. We want to verify the power of discontinuous linear
information and compare it to the power of continuous linear approximation. We study the
worst case and randomized settings. This is done by comparing the nth minimal (worst case
and randomized) errors which we can achieve by using n discontinuous or continuous linear
functionals.

In the worst case setting, we prove that as long as S is a continuous operator (not

necessarily linear) then the nth minimal errors are exactly the same for the class Λ̃all of
all discontinuous or continuous linear functionals and the class Λall of all continuous linear
functionals, see Theorem 1. This means that the use of discontinuous linear functionals does
not help. The situation is quite different if S is discontinuous. We present an easy example
of a discontinuous linear functional S for which the nth minimal errors for the class Λ̃all are
zero for all n ≥ 1, whereas the nth minimal errors for the class Λall are infinity for all n ≥ 1.

In the randomized setting, we mostly consider compact linear operators S defined between
Hilbert spaces F and G. In this case, we know from [14] that the power of continuous linear
functionals in the randomized setting is roughly the same as in the worst case setting, see
Lemma 2. Here, the word “roughly” means that the nth minimal error in the randomized
setting is at least as large as a half of the (4n− 1)st minimal error in the worst case setting,
and obviously it is at most as large as the nth minimal error in the worst case setting.
By combining with the result from the worst case setting, we conclude that the power of
discontinuous linear functionals in the randomized setting is roughly the same as the power
of continuous linear functionals in the worst case setting. On the other hand, if we drop the
assumption that S is a compact linear operator between Hilbert spaces then we can construct
a problem S which is not solvable in the worst case setting and solvable and relatively easy
in the randomized setting. Here, not solvable means that the nth minimal errors in the worst
case setting do not converge to zero, and relatively easy means the nth minimal errors in
the randomized setting are of order n−1/2.

For many applications the class F consists of functions and we can only use function
evaluations for the approximation of S. The class of such evaluations is called standard and
denoted by Λstd. These evaluations are always linear but not always continuous. That is,
we always have Λstd ⊆ Λ̃all, and, depending on the space F , we sometimes have Λstd ⊆ Λall.
In either case, our results apply. In particular, if all function evaluations are discontinuous
then they may be useless in the worst case setting since the minimal worst case error of
any algorithm that uses n function values is as good as a constant algorithm that uses no

function values, see Remark 2.
For some applications the space F consists of equivalence classes of functions that are

equal almost everywhere. This is the case for F1 = L2(D) for some D ⊆ R
d. Then func-

tion evaluations are not even well defined. We extend our analysis also to such function
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evaluations and show that again the same results as before hold.

2 Worst Case Setting

For arbitrary normed spaces F and G, consider an arbitrary operator S : F → G that does
not have to be linear or continuous. We approximate S(f) for f from the unit ball of F

by algorithms that use finitely many linear functionals from Λall or from Λ̃all, respectively.
More precisely, we consider algorithms An : F → G given by

An(f) = ϕn(L1(f), L2(f), . . . , Ln(f)), (1)

where n is a nonnegative integer, ϕn : R
n → G is an arbitrary mapping, and Lj ∈ Λ, where

Λ ∈ {Λall, Λ̃all}. Hence, for Λ = Λall we only use continuous linear functionals, whereas for

Λ = Λ̃all we may also use discontinuous linear functionals.
The choice of Lj can be nonadaptive or adaptive. It is nonadaptive if the functionals Lj

are the same for all f ∈ F , and it is adaptive if Lj depends on the already computed values
L1(f), L2(f), . . . , Lj−1(f). That is,

N(f) = (L1(f), L2(f), . . . , Ln(f))

is the information used by the algorithm An and Lj = Lj( · ; L1(f), L2(f), . . . , Lj−1(f)) ∈ Λ.
If the choice of all Lj’s is independent of f ∈ F then N is nonadaptive information, otherwise
if at least one Lj varies with f ∈ F then N is adaptive information. For n = 0, the mapping
An is a constant element of the space G. More details can be found in e.g., [13, 16, 18]. We
define the error of such algorithms by taking the worst case setting, i.e.,

e(An) = sup
‖f‖F <1

∥∥S(f) − An(f)
∥∥

G
.

Observe that it is enough that the operator S is defined on the open unit ball in F , not
necessarily on the whole space F . We take the open unit ball instead of the more standard
case of the closed unit ball of F in the definition of the worst case error since this includes
also operators with singularities on the boundary of the unit ball. For linear continuous S,
or more generally for S uniformly continuous on the closed unit ball of F , this does not make
a difference.

We define the nth minimal errors of approximation of S in the worst case setting as
follows.
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Definition 1. For n = 0 and n ∈ N := {1, 2, . . . }, let

e all−wor
n (S) = inf

An with Lj∈Λall

e(An)

and
ẽ all−wor

n (S) = inf
An with Lj∈eΛall

e(An).

For n = 0, we obtain

e all−wor
0 (S) = ẽ all−wor

0 (S) = inf
g∈G

sup
‖f‖F <1

‖S(f) − g‖G.

It is easy to see that the best algorithm is A0 = 0 if we assume that S(f) = −S(−f) for all
‖f‖F < 1. Then

e all−wor
0 (S) = ẽ all−wor

0 (S) = sup
‖f‖F <1

‖S(f)‖G.

The error e all−wor
0 (S) is the initial error that can be achieved without computing any linear

functional on the elements f ∈ F . Clearly,

ẽ all−wor
n (S) ≤ e all−wor

n (S) for all n ∈ N.

The sequences
{
ẽ all−wor

n (S)
}

and
{
e all−wor

n (S)
}

are both non-increasing but not necessarily
convergent to zero.

We will use the following fact from functional analysis, see, e.g., [1, Ch. 3].

Lemma 1. Assume that F is a normed space and L ∈ Λ̃all is discontinuous. Then for all
real α the set {f ∈ F | L(f) = α} is dense in F .

We are ready to prove that discontinuous linear functionals do not help for the approxi-
mation of continuous operators in the worst case setting.

Theorem 1. Let F and G be normed spaces and let S : F → G be continuous. Then

e all−wor
n (S) = ẽ all−wor

n (S).

Proof. We may assume that dim(F ) = ∞ since otherwise Λ̃all = Λall and there is nothing to
prove. Consider arbitrary adaptive information N = (L1, L2, . . . , Ln) with

Lj = Lj(·; y1, y2, · · · , yj−1) ∈ Λ̃all and yi = Li(f ; y1, y2, . . . , yi−1) for f ∈ F.
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It is well known that the infimum of the worst case errors of algorithms An that use infor-
mation N is given by the radius of information N ,

r(N) = sup
y∈N(F )

rad({S(f) | N(f) = y, ‖f‖F < 1}), (2)

where rad(A) = infg∈G supa∈A ‖g − a‖ denotes the radius of a set A ⊆ G, see [18]. Without
loss of generality we may assume that the linear functionals L1, L2, . . . , Ln are linearly inde-
pendent since otherwise the choice of a linear functional, say, Lj that is linearly dependent
on L1, L2, . . . , Lj−1 does not increase our knowledge about the element f . This implies that
we may assume that N(F ) = R

n.
For y ∈ N(F ) = R

n and j = 1, 2, . . . , n, define

Bk = Bk(y) = {f ∈ F | Lj(f) = yj for j = 1, 2, . . . , k},

Then the Bk are affine subspaces of F .
For each affine subspace B of F , we associate the uniquely determined linear subspace

B̃ such that B = f + B̃ for any f ∈ B. It is easily seen that a linear functional on F is
continuous on B if and only if it is continuous on B̃. In particular,

B̃k = B̃k(y) = kerL1 ∩ kerL2 ∩ · · · ∩ kerLk,

and continuity of Lk+1 on Bk is equivalent to continuity of Lk+1 on B̃k.
We may now further assume for k = 1, . . . , n − 1 that the functional Lk+1 satisfies the

following condition:

either Lk+1 is continuous on F or Lk+1 is discontinuous on Bk.

Indeed, assume that Lk+1 is continuous on Bk. Then it is also continuous on B̃k. Let L be a
continuous linear extension of Lk+1 on B̃k to the whole space F . Then Lk+1 − L is a linear
functional which is 0 on B̃k, so that ker(Lk+1 − L) ⊃ B̃k. This implies that Lk+1 − L is in
the span of L1, L2, . . . , Lk, and for some numbers aj we have L(f) = Lk+1(f)+

∑k
j=1 ajLj(f)

for all f . Hence knowing Lj(f) for j = 1, 2, . . . , k, we know L(f) iff we know Lk+1(f). This
means that we can replace the functional Lk+1 in the information N with the continuous
functional L without essentially changing the information and without changing its radius.

We now define the information N∗ = (L∗
1, L

∗
2, . . . , L

∗
n) with adaptively chosen

L∗
j = L∗

j(·; y∗
1, y

∗
2, . . . , y

∗
j−1) ∈ Λall and y∗

i = L∗
i (f ; y∗

1, y
∗
2, . . . , y

∗
i−1) for f ∈ F

such that r(N∗) ≤ r(N). Since N is arbitrary and N∗ consists of continuous linear function-
als, this will prove the theorem.
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The functionals L∗
j are defined inductively. We define L∗

1 = 0 if L1 is discontinuous
on F , and otherwise we take L∗

1 = L1. Observe that in the case L∗
1 = 0 the next functional

L∗
2 cannot be chosen adaptively since L∗

1(f) = 0 for all f ∈ F . Therefore, in general,
L∗

2 = L∗
2(·, 0) will be different from L2 = L2(·; y1), with y1 = L1(f), even if L2 is continuous.

Assume now inductively that for all j = 1, 2, . . . , k < n, we have already defined

L∗
j = L∗

j(·; y∗
1, y

∗
2, . . . , y

∗
j−1) ∈ Λall with y∗

j = L∗
j(f ; y∗

1, y
∗
2, . . . , y

∗
j−1) for all f ∈ F.

Let Lk+1 = Lk+1(·; y∗
1, y

∗
2, . . . , y

∗
k) ∈ Λ̃all be the next linear functional for the original

information N . Let Bk = Bk(y
∗) be defined as above for y = y∗. Define also

Ak = Ak(y
∗) = {f ∈ F | L∗

j(f) = y∗
j for j = 1, 2, . . . , k}.

If Lk+1 is continuous, we set L∗
k+1 = Lk+1, if Lk+1 is discontinuous on Bk, we define L∗

k+1 =
0. In the latter case only y∗

k+1 = 0 needs to be further considered. As shown above,
this completes the definition of N∗ = (L∗

1, L
∗
2, . . . , L

∗
n) that consists of n continuous linear

functionals L∗
j .

We now show inductively that Bj ⊆ Aj and Bj is dense in Aj for all j = 1, 2, . . . , n.
Indeed, for j = 1 we have B1 = A1 if L1 is continuous on F , and

B1 = {f ∈ F | L1(f) = 0} ⊆ A1 = F

if L1 is discontinuous on F . From Lemma 1 we know that B1 is dense in A1.
Assume now that Bj ⊆ Aj and Bj is dense in Aj for j = 1, 2, . . . , k < n with k ≥ 1.

Consider first the case when Lk+1 is continuous. Then we have L∗
k+1 = Lk+1 and

Ak+1 = {f ∈ Ak | L∗
k+1(f) = y∗

k+1}
Bk+1 = {f ∈ Bk | Lk+1(f) = y∗

k+1} = {f ∈ Bk | L∗
k+1(f) = y∗

k+1}.

Hence

Ak+1 = Ak ∩ Ck and Bk+1 = Bk ∩ Ck with Ck = {f ∈ F | L∗
k+1(f) = y∗

k+1}.

Clearly, Bk ⊆ Ak implies that Bk+1 ⊆ Ak+1. We need to show that if Bk is dense in Ak

then Bk ∩ Ck is dense in Ak ∩ Ck. This is obvious if L∗
k+1 = 0. Assume then that L∗

k+1 6= 0.
Take f ∈ Ak ∩Ck. Then for any positive ε there exists fε ∈ Bk such that ‖f − fε‖ ≤ ε. For
gk+1 ∈ F with Lj(gk+1) = 0 for j = 1, 2, . . . , k and L∗

k+1(gk+1) = 1, define

f̃ε = fε +
(
y∗

k+1 − L∗
k+1(fε)

)
gk+1.
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Then f̃ε ∈ Bk ∩ Ck and since L∗
k+1(f) = y∗

k+1 we have

‖f − f̃ε‖ ≤ ‖f − fε‖ + |L∗
k+1(f) − L∗

k+1(fε)| ‖gk+1‖ ≤ ‖f − fε‖
(
1 + ‖L∗

k+1‖ ‖gk+1‖
)
.

Hence Bk ∩ Ck is dense in Ak ∩ Ck, as needed.
Consider now the case when Lk+1 is discontinuous on Bk. Then L∗

k+1 = 0 and y∗
k+1 = 0.

We now have

Ak+1 = Ak and Bk+1 = Bk ∩ Ck with Ck = {f ∈ F | Lk+1(f) = 0}.

Clearly Bk+1 ⊆ Bk ⊆ Ak = Ak+1. Since Lk+1 is discontinuous on Bk it is also discontinuous
on F . Then Lemma 1 says that Ck is a linear subspace which is dense in F . We want to
show that Bk ∩ Ck is dense in Ak = Ak+1. Similarly as before, we take f ∈ Ak. For any
positive ε we can find fε ∈ Bk such that ‖f − fε‖ ≤ ε. If Lk+1(fε) = 0 then fε ∈ Bk ∩ Ck

and we are done. Assume then that Lk+1(fε) 6= 0. We now choose

gk+1 ∈ B̃k = kerL1 ∩ kerL2 · · · ∩ kerLk with Lk+1(gk+1) = 1.

Since Lk+1 is discontinuous on Bk, it is also discontinuous on B̃k, so the element gk+1 can
be of an arbitrary small norm. We choose a nonzero gk+1 such that ‖gk+1‖ ≤ ε/|Lk+1(fε)|.
Then

f̃ε = fε − Lk+1(fε) gk+1

belongs to Bk ∩ Ck and

‖f − f̃ε‖ ≤ ‖f − fε‖ + |Lk+1(fε)| ‖gk+1‖ ≤ 2ε.

Hence, Bk ∩ Ck is dense in Ak, as needed. This completes the proof that Bn = N−1(y∗) is
dense in An = (N∗)−1(y∗).

Due to continuity of S, the set B(y∗) := {S(f) ∈ G | N(f) = y∗, ‖f‖F < 1} is dense in
A(y∗) := {S(f) ∈ G | N∗(f) = y∗, ‖f‖F < 1} and therefore rad(A(y∗)) = rad(B(y∗)). This
holds for all y∗ ∈ N∗(F ) and therefore r(N∗) ≤ r(N), as needed.

The assumption on continuity of S in Theorem 1 is needed. Indeed, assume that
dim(F ) = ∞. Then there are discontinuous linear functionals L : F → R. Define S = L.
Note that now e all−wor

0 (S) = ẽ all−wor
0 (S) = ∞.

Clearly, the worst case error A1(f) = L(f) = S(f) is zero. Therefore ẽ all−wor
n (S) = 0 for

all n ≥ 1. On the other hand, we know that adaption does not help for linear functionals as
proved by Bakhvalov. Furthermore, if we use n linear continuous nonadaptive functionals
Lj then Smolyak’s theorem tells us that the best ϕ in (1) is linear, i.e., there are some real
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numbers aj for which the algorithm An(f) =
∑n

j=1 ajLj(f) minimizes the worst case error
among all algorithms that use N = (L1, L2, . . . , Ln). The results of Bakhvalov and Smolyak
can be found in [13, 16, 17, 18]. However, S(f) − An(f) is still a discontinuous linear
functional and therefore its worst case error is infinite. Since this holds for all continuous
N , we have e all−wor

n (S) = ∞. Hence,

ẽ all−wor
n (S) = 0 < e all−wor

n (S) = ∞ for all n ∈ N.

Although Theorem 1 deals with adaptive information, it is known that adaptive information
does not help for many problems. This holds for linear operators S defined over Hilbert
spaces F or if S is a linear functional, whereas for linear operators defined over arbitrary
normed spaces adaption may help at most by a factor of two. The reader may find a survey
of such results in Chapter 4 of [16].

Remark 1. Seeing the proof of Theorem 1, we may think that the use of discontinuous
linear functionals is useless for approximating continuous S. More precisely, assume that we
use nonadaptive N = (L1, L2, . . . , Ln) for which all Lj’s are discontinuous linear functionals.
What is the radius of N? Is it the same as the radius of zero information? This is not true.
We now show that we can achieve the radius of nonadaptive information consisting of n− 1
continuous linear functionals. Indeed, let N∗ = (L∗

2, L
∗
3, . . . , L

∗
n) be nonadaptive continuous

information, L∗
j ∈ Λall. Take N = (L1, L1 + L∗

2, . . . , L1 + L∗
n) with a discontinuous linear

functional L1. Then all L1 +L∗
j ’s are discontinuous. However, if we compute y1 = L1(f) and

yj = L1(f) + L∗
j(f) then we also know L∗

j(f) = yj − y1 for j = 2, 3, . . . , n. Hence, we know
N∗(f) and therefore r(N) ≤ r(N∗), as claimed.

It is interesting to see what happens if we apply the proof of Theorem 1 to N . Since
L1 is discontinuous we obtain L∗

1 = 0. However, L1 + L∗
2 on B1 = {f ∈ F | L1(f) = y1}

is y1 + L∗
1 and therefore it is continuous. Then we replace L2 by L∗

2. Similarly, all Lj with
j ≥ 2 will be replaced by L∗

j . The proof of Theorem 1 shows that r(N) = r(N∗).

Remark 2. Assume now that F is a space of functions f : D → R. We consider the class
Λstd of all function evaluations given by the linear functionals Lx(f) = f(x) for f ∈ F . Let
estd−wor

n (S) denote the nth minimal worst case errors of algorithm An with Lj ∈ Λstd, i.e.,
algorithms that use at most n function evaluations.

Assume that Lx is discontinuous on

F ∩ ker Lx1
∩ ker Lx2

∩ . . . ∩ ker Lxn

for all x ∈ D \ {x1, x2, . . . , xn}. For instance F = L2(D) ∩ C(D) equipped with the L2(D)
norm is such an example.
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Then it is easy to check that the proof of Theorem 1 yields L∗
j = 0 for all j. That is,

estd−wor
n (S) = estd−wor

0 (S) = eall−wor
0 (S).

Hence, in this case the use of function evaluations is completely useless.
However, similarly as in Remark 1, one can construct examples where all function evalua-

tions are discontinuous on F but may be continuous on F ∩ kerLx1
∩ kerLx2

∩ . . . ∩ kerLxn
,

and still they are useful. Indeed, consider

F = C([0, 1]) ∩
{

f

∣∣∣∣
∫ 1

0

f(x) dx =
f(0) + f(1)

2

}

equipped with the L2 norm. Then the integration problem S(f) =
∫ 1

0
f(x) dx is continuous

and all function evaluations are discontinuous on F . Nevertheless, L1(f) = f(1) = S(f)/2
on F ∩ ker L0 is continuous, and we can compute S(f) exactly using two function values
of f .

Remark 3. For a continuous linear S and a Banach space F , Theorem 1 can be proved
modulo a factor of 1

2
by using the known relations between the Gelfand numbers cn(S) and

the minimal errors eall−wor
n (S), see [16] for a survey of related results. In particular, we use

that
cn(S) ≤ e all−wor

n (S) ≤ 2cn(S),

for any linear and continuous operator S, see [18, Section 5.4 of Chapter 4].
It is known, see [2, Prop. 2.7.5], that the Gelfand numbers cn(S) are local in the sense

that
cn(S) = sup

M
cn(S|M)

where the supremum is taken over all finite dimensional subspaces M and S|M is the restric-
tion of S to M .

Altogether, we obtain the following inequality:

e all−wor
n (S) ≤ 2cn(S) = 2 sup

M
cn(S|M) ≤ 2 sup

M
e all−wor

n (S|M) = 2 sup
M

ẽ all−wor
n (S|M)

≤ 2ẽ all−wor
n (S),

i.e.
e all−wor

n (S) ≤ 2 · ẽ all−wor
n (S).
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We return to general continuous not necessarily linear operators S. We conjecture that
the worst case error e all−wor

n (S) is itself a local quantity at least for compact operators S,
i.e.,

e all−wor
n (S) = sup

M
e all−wor

n (S|M), (3)

where again the supremum is taken over all finite dimensional subspaces M of F , and S|M is
the restriction of S to M . This would give another and a much shorter proof of Theorem 1.
Indeed, (3) implies

e all−wor
n (S) = sup

M
e all−wor

n (S|M) = sup
M

ẽ all−wor
n (S|M) ≤ ẽ all−wor

n (S),

as claimed.
Although we do not know if (3) holds, we easily conclude from the local property of the

Gelfand numbers that at least the weak local property holds for a continuous linear S and
a Banach space F , namely

e all−wor
n (S) ≤ cn(S) = sup

M
cN(S|M) ≤ 2 sup

M
e all−wor

n (S|M).

It is also known that the approximation numbers an(S) are local as long as S is a compact
operator or G is a dual space, see [2, Prop. 2.7.1 and 2.7.3]. That translates into the fact
that for linear nonadaptive algorithms in the worst case setting, the use of discontinuous
functionals does not help. A weak form (with a factor 5) is true for arbitrary G and S, see
[2, Prop. 2.7.4].

Remark 4. Heinrich [3] proves relations between linear n-widths and approximation num-
bers and shows that they coincide for compact and absolutely convex subsets of a normed
space. There is also an example showing that, in general, for relatively compact absolutely
convex sets equality does not hold. The spirit of these results is similar, but there is a dif-
ference as can be seen from Proposition 1.3 of that paper: The aim is to compare general
or continuous linear information applied to g = S(f) ∈ G, while we compare general or
continuous linear information applied to f ∈ F .

3 Randomized Setting

We now deal with randomized algorithms. We consider, as in [16, Theorem 4.42], only
measurable algorithms. Hence we use the following definitions.

A randomized algorithm A is a pair consisting of a probability space (Ω, Σ, µ) and a
family (Nω, ϕω)ω∈Ω of mappings such that the following holds:
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1. For each fixed ω ∈ Ω, the mapping Aω = ϕω ◦ Nω is a deterministic algorithm defined
as before, based on adaptive information Nω consisting of linear functionals from a
class Λ.

2. Let n(f, ω) be the cardinality of the information Nω for f ∈ F . We assume that the
function n is measurable.

3. The mapping (f, ω) 7→ ϕω(Nω(f)) ∈ G is measurable.

Let A be a randomized algorithm. Then the cardinality of A is defined as

n(A) = sup
‖f‖F <1

∫

Ω

n(f, ω) dµ(ω),

whereas the error of A in the randomized setting is

eran(A) = sup
‖f‖F <1

(∫

Ω

‖S(f) − ϕω(Nω(f))‖2 dµ(ω)

)1/2

.

For n ∈ N, we define the nth minimal error of S in the randomized setting by

eall−ran
n (S) = inf{eran(A) : n(A) ≤ n},

if A uses linear functionals from Λ = Λall. Similarly we define ẽ all−ran
n (S) with Λ = Λ̃all.

Obviously, we can interpret deterministic algorithms as randomized with a singleton Ω.
That is why the nth minimal errors in the randomized setting cannot be larger than the nth
minima errors in the worst case setting,

ẽ all−ran
n (S) ≤ ẽ all−wor

n (S) and eall−ran
n (S) ≤ eall−wor

n (S).

Basically, there exists only one proof technique to obtain lower bounds for randomized
algorithms, and this technique goes back to Bakhvalov, see Section 4.3.3 of [16]. The main
point is to observe that the errors in the randomized setting cannot be smaller than the
errors in the average case setting for an arbitrary probability measure on F .

If we restrict ourselves to measurable randomized algorithms, then

eall−ran
n (S) ≥

√
2

2
eavg(2n, ̺), (4)

where eavg(2n, ̺) denotes the 2n-th minimal average case error of deterministic algorithms
that use at most 2n linear functionals from Λall and ̺ is an arbitrary (Borel) probability
measure on F , for more details see Lemma 4.37 and Remark 4.41 of [16]. The next result is
identical with Theorem 4.42 from [16], see also [14]. It is stated here with a proof since we
need a small modification of this result.

11



Lemma 2. Assume that S : F → G is a compact linear operator between Hilbert spaces F
and G. Then

1
2
eall−wor
4n−1 (S) ≤ eall−ran

n (S).

Proof. We know that S(ei) = σiẽi with orthonormal {ei} in F and {ẽi} in G. Here, {σi}
is a sequence of non-increasing singular values σi of S and limi σi = 0. We also know
that e all−wor

n (S) = σn+1. For m > n, consider the normed (m − 1)-dimensional Lebesgue
measure ̺m on the unit sphere Em = {

∑m
i=1 αiei : αi ∈ R,

∑m
i=1 α2

i = 1}. Then

A∗
n

( ∞∑

i=1

αiei

)
=

n∑

i=1

σiαiẽi

is the optimal algorithm using continuous linear information of cardinality n. This is true for
the worst case setting, with error σn+1, as well as for the average case setting with respect
to ̺m. Hence

eavg(n, ̺m)2 =

∫

Em

m∑

i=n+1

σ2
i α

2
i d̺m(α).

Since
∫

Em
α2

i d̺m(α) = 1/m we obtain

eavg(n, ̺m)2 =
1

m

m∑

i=n+1

σ2
i .

If we put m = 2n then we obtain

eavg(n, ̺2n) ≥ 1
2

√
2 σ2n.

Together with (4), we obtain

e all−ran
n (S) ≥ 1

2

√
2 eavg(2n, ̺4n) ≥ 1

2
σ4n = 1

2
eall−wor
4n−1 (S).

We stress that in the proof we only use finite dimensional subspaces of F and linear
functionals on such subspaces. Of course, for finite dimensional spaces, we have Λ̃all = Λall

and therefore we obtain the following result.

Theorem 2. Assume that S : F → G is a compact operator between Hilbert spaces. Then

1
2
e all−wor
4n−1 (S) ≤ ẽ all−ran

n (S) ≤ e all−wor
n (S).

12



In this sense, randomization as well as allowing discontinuous linear functionals from Λ̃all does
not (essentially) help for the approximation of compact operators between Hilbert spaces.

Remark 5. Assume that S : F → G is linear and F and G are normed spaces. We do not
know whether

lim
n→∞

e all−ran
n (S) = 0

implies that S is compact. It is shown in [10] that the embedding I : ℓ1 → ℓ∞ is a universal
non-compact operator in the sense that it factors through any non-compact linear bounded
operator S : F → G between Banach spaces F and G:

F
S−−−→ G

V

x
yU

ℓ1
I−−−→ ℓ∞ .

Here, I = USV for some linear bounded operators U and V . It follows that

e all−ran
n (I) = e all−ran

n (USV ) ≤ ‖U‖ e all−ran
n (S) ‖V ‖.

Thus it is sufficient to decide whether

lim
n→∞

e all−ran
n (I) > 0 or lim

n→∞
e all−ran

n (I) = 0.

Remark 6. Also in the randomized setting it would be very interesting to know whether
the error e all−ran

n (S) is a local quantity, i.e. whether

e all−ran
n (S) = sup

M
e all−ran

n (S|M),

or at least
e all−ran

n (S) ≤ c sup
M

e all−ran
n (S|M)

for some constant c independent of n. This would lead to an analogue of Theorem 1 in the
randomized setting.

Remark 7. It is interesting to mention that there is a continuous nonlinear operator S :
F → G for normed spaces F and G which is solvable in the randomized setting but not in
the worst case setting, i.e.,

lim
n

ẽ all−wor
n (S) = lim

n
e all−wor

n (S) > 0 and lim
n

eall−ran
n (S) = 0.

13



Obviously, the first equality above follows from Theorem 1. Indeed, let

S : F := ℓ1 → G := R, S(x) = ‖x‖2
2 for all x ∈ F.

Clearly, S is a continuous nonlinear functional. Note that the constant algorithm 1
2

has the
worst case error 1

2
since we have S(x) ∈ [0, 1] for x from the unit ball of ℓ1. Let

c := lim
n→∞

e all−wor
n (S).

Then c ≤ 1
2
. We now show that c > 0. We will use the known result of Kashin about the

Gelfand width cn(Bm
1 , ℓm

2 ) for the unit ball B m
1 of x ∈ R

m with ‖x‖1 ≤ 1, and with the error
measured in the ℓ2 norm. Namely, there are two positive numbers c1,2 and C1,2 such that for
all n < m we have

c1,2 min

(
1,

ln(m/n) + 1

n

)1/2

≤ cn(B m
1 , ℓm

2 ) ≤ C1,2 min

(
1,

ln(m/n) + 1

n

)1/2

.

This means that limm→∞ cn(B m
1 , ℓ2) ≥ c1,2. Using the definition of the Gelfand width, we

conclude that

lim
n→∞

inf
L1,L2,...,Ln∈eΛall

sup
x∈ℓ1, Lj(x)=0, j=1,2,...,n, ‖x‖1≤1

‖x‖2 ≥ c1,2.

Take now arbitrary adaptive N = (L1, L2, . . . , Ln) with linear functionals Li. Then there
exists x in the unit ball of ℓ1 such that Lj(x) = 0 for j = 1, 2, . . . , n and ‖x‖2 ≥ c1,2/2.
Let α ∈ [0, 1]. Then α x belongs to the unit ball of ℓ1 and N(α x) = 0. For an arbitrary
algorithm A = ϕn(N(·)) we have An(α x) = ϕn(0) and S(α x) − ϕn(0) = α‖x‖2

2 − ϕn(0).
Therefore

e(An) ≥ max
α∈[0,1]

|α‖x‖2
2 − ϕn(0)| ≥ 1

2
‖x‖2

2 ≥ 1
4
c1,2.

Hence eall−wor
n (S) ≥ 1

4
c1,2 for all n. This proves that c > 0, as claimed.

In the randomized setting, consider the (random) linear functional

L(x) =
∞∑

k=1

(±) xk

with random and independent signs of probability 1
2
. The variance of the random variable

L(x) is σ2(L(x)) = ‖x‖2
2 and it can be easily estimated with independent copies Li of L. It

is well known that the “empirical variance”

An(x) =
1

n − 1

n∑

i=1

(
Li −

n∑

k=1

Lk

)2

14



with independent copies Li of L has expectation S(x) = ‖x‖2
2 and variance

σ2(An(x)) ≤ 1

n
· ‖x‖4

4 ≤
1

n
· ‖x‖4

1.

Therefore

eran(An) = sup
‖x‖ℓ1

<1

σ(An(x)) ≤ 1√
n

,

and limn eall−ran
n (S) = 0, as claimed.

4 Function Values

So far we did not assume that F is a space of functions and we only compared continuous
linear information with arbitrary linear information. Now we assume that F is a normed
space of functions f : D → R for some nonempty set D.

Let Lx(f) = f(x) for all f ∈ F and x ∈ D. Since f(x) is well defined for all f ∈ F
and x ∈ D, the functionals Lx’s are linear but not necessarily continuous. This class of
information is called standard and denoted by Λstd. Obviously Λstd ⊆ Λ̃all, however, Λstd ⊆
Λall only if all Lx’s are continuous. Still Theorems 1 and 2 apply in this case.

We now consider a more general case when F is a space of equivalence classes of functions
f : D → R. A major example is F = L2(D). Then Lx is not even well defined for f ∈ F .
On the other hand, we know that for F = L2(D) the functional Lx(f̃) = f̃(x) is well defined
for each f̃ ∈ f and all x from D. Here f̃ ∈ f means that the well defined function f̃ is in the
equivalence class f . This type of information is successfully used for multivariate integration
by the standard Monte Carlo algorithm Mn in the randomized setting. Here for D = [0, 1]d,
we have Mn(f) = n−1

∑n
j=1 f(xj) for independent and uniformly distributed points xj. Then

Mn(f̃1) = Mn(f̃2) a.s.

if f̃1, f̃2 ∈ f and one usually uses only algorithms with this property. We would like to extend
the analysis presented in the previous section also for the case when the elements of F are
equivalence classes of functions.

We argue as follows. As in Section 3, we assume that S : F → G is a compact linear
operator between the Hilbert spaces F and G. We know that then

S(ei) = σie
′
i

15



with a non-increasing sequence of singular values σi of S, limi σi = 0, with orthonormal {ei}
in F and orthonormal {e′i} in G. We also know that eall−wor

n (S) = σn+1. Then

A∗
n

( ∞∑

i=1

αiei

)
=

n∑

i=1

σiαie
′
i

is an optimal algorithm using continuous linear information of cardinality n. This is also
true if we replace F by the n + k dimensional space Vn+k = span(e1, e2, . . . en+k). Hence

ẽ all−wor
n (Vn+k) = eall−wor

n (Vn+k) = σn+1 = eall−wor
n (S) for all k ≥ 1.

Suppose that the functions ẽi are elements of the equivalence classes ei, for all i = 1, 2, . . . , n+
k. Then we have functions in Ṽn+k = span(ẽ1, ẽ2, . . . ẽn+k) that are well defined everywhere.
With this assumption we only make the oracle more powerful, i.e., the lower bound is even
stronger. In this sense we can think of Λstd as a subset of Λ̃all. By e std−wor

n (S) we denote the n
minimal worst case errors of algorithms that use at most n function values for approximating
S over Ṽn+k. We obtain the following corollary.

Corollary 1. Assume that S : F → G is a compact linear operator between Hilbert spaces
F and G. Then

e std−wor
n (S) ≥ e all−wor

n (S) for all n ∈ N.

The same can be said for randomized algorithms. In this case we take k ≥ 3n, update
the definition of e std−ran

n (S) and obtain the following corollary.

Corollary 2. Assume that S : F → G is a compact linear operator between Hilbert spaces
F and G. Then

estd−ran
n (S) ≥ 1

2
eall−wor
4n−1 (S).

Remark 8. Note that we did not compare estd−ran
n (S) with estd−wor

n (S). We stress that
randomization may help a lot for the class Λstd. This holds if function evaluations are
continuous and also if function evaluations are not continuous. Examples for both cases can
be found in Chapter 17 of [17].

A major example is the embedding of a function space into another (larger) function
space. The literature is very rich, see, e.g., [4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 20]. One can

study the classes Λall, Λ̃all as well as Λstd in the worst case setting and in the randomized
setting. In the randomized setting we do not know whether Λall and Λ̃all always lead to the
same results since in Theorem 2 we assume that both F and G are Hilbert spaces. It is open
what happens for general normed spaces F and G and if an analogue of Theorem 1 for the
worst case setting also holds in the randomized setting.
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We also add that the lower bounds in the randomized setting of Heinrich and Mathé for
specific spaces F and G are valid not only for Λall but also for Λ̃all, see [6, 7, 8, 11]. The
reason is similar as above in the proof of Theorem 2. Namely, finite dimensional subspaces
of F can be used for the lower bounds and here all linear functionals are continuous.

Added in proof: Stefan Heinrich [9] recently proved that (3) is true for compact operators, but

not in general.

Acknowledgement: We thank Stefan Heinrich for valuable remarks.
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[3] E. Novak and H. Woźniakowski. Optimal Order of Convergence and (In-)
Tractability of Multivariate Approximation of Smooth Functions. Preprint 3,
DFG-SPP 1324, October 2008.

[4] M. Espig, L. Grasedyck, and W. Hackbusch. Black Box Low Tensor Rank Ap-
proximation Using Fibre-Crosses. Preprint 4, DFG-SPP 1324, October 2008.

[5] T. Bonesky, S. Dahlke, P. Maass, and T. Raasch. Adaptive Wavelet Methods
and Sparsity Reconstruction for Inverse Heat Conduction Problems. Preprint 5,
DFG-SPP 1324, January 2009.
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