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DYNAMICAL APPROXIMATION OF HIERARCHICAL TUCKER
AND TENSOR-TRAIN TENSORS

CHRISTIAN LUBICH†, THORSTEN ROHWEDDER‡,

REINHOLD SCHNEIDER‡, AND BART VANDEREYCKEN§

Abstract. We extend results on the dynamical low-rank approximation for the treatment of
time-dependent matrices and tensors (Koch & Lubich, 2007 and 2010) to the recently proposed
Hierarchical Tucker tensor format (HT, Hackbusch & Kühn, 2009) and the Tensor Train format
(TT, Oseledets, 2011), which are closely related to tensor decomposition methods used in quantum
physics and chemistry. In this dynamical approximation approach, the time derivative of the tensor to
be approximated is projected onto the time-dependent tangent space of the approximation manifold
along the approximate trajectory. This approach can be used to approximate the solutions to tensor
differential equations in the HT or TT format and to compute updates in optimization algorithms
within these reduced tensor formats. By deriving and analyzing the tangent space projector for the
manifold of HT/TT tensors of fixed rank, we obtain curvature estimates, which allow us to obtain
quasi-best approximation properties for the dynamical approximation, showing that the prospects
and limitations of the ansatz are similar to those of the dynamical low rank approximation for
matrices. Our results are exemplified by numerical experiments.

Key words. Low-rank approximation, time-varying tensors, Hierarchical Tucker format, Tensor
Train format, tensor differential equations, tensor updates.

AMS subject classifications. 15A69, 90C06, 65F99, 65L05

1. Introduction. In this work, we employ the recent Hierarchical Tucker (HT)
format of [7, 9] and Tensor Train (TT) format of [25] for the data-sparse approximate
computation of a time-varying family of tensors in a d-dimensional tensor space V,
namely,

A(t) ∈ V := Rn1×n2×···×nd , t ∈ [ 0, t ]. (1.1)

The tensor A(t) need not be known explicitly but it may instead be given implicitly
as the solution of a tensor differential equation Ȧ(t) = F (A), in combination with
a known initial value A(0) ∈ V. Applications where this problem arises are (spatial
discretizations of) time-dependent PDEs or ODEs formulated on a high-dimensional
space, such as the Fokker-Planck equation, instationary Schrödinger-type equations or
master equation approaches to stochastic systems. Another less obvious application
is in efficiently computing updates to a given tensor in the HT or TT format, as they
are required in optimization algorithms using these formats.

The storage of explicit representations of the solution A(t) scales exponentially
with the dimension d and is therefore infeasible in most cases. Instead, given an
embedded manifold M ⊆ V typically depending on much fewer parameters than the
linear parametrization of V, the dynamical tensor approximation may be utilized: As-
suming Y (0) ∈M, an approximation Y (t) ∈M is determined such that its derivative
at every time t is the element of the tangent space TY (t)M closest to Ȧ(t):

Ẏ (t) ∈ TY (t)M with �Ẏ (t)− Ȧ(t)� = min . (1.2)
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In terms of the orthogonal projection PX onto the tangent space TXM at X ∈ M,
the solution to (1.2) is equivalently characterized by projecting

Ẏ (t) = PY (t)Ȧ(t), Y (0) ∈M, (1.3)

which results in a differential equation on the approximation manifold M.
After an explicit parametrization of the manifold M under consideration, one

obtains from (1.3) a set of nonlinear differential equations for the parameters of this
parametrization, suitable for numerical integration. The above ansatz has been stud-
ied for manifolds of matrices of fixed rank k and tensors of fixed (multi-linear) Tucker
rank (k1, . . . , kd) in [15, 24] and [16], respectively. In the case of a tensor differen-
tial equation, Ȧ(t) = F (A(t)) is replaced by the approximate value F (Y (t)) on the
right-hand side of 1.2. In the context of the time-dependent Schrödinger equation,
the approach is known as the Dirac-Frenkel time-dependent variational principle [20].

Classical tensor formats stemming from data analysis, that is, the canonical de-
composition and the Tucker format [8, 17], exhibit certain structural weaknesses that
make them unsuitable for the treatment of problems of the kind (1.1) and (1.2) when
the dimension d is large; see, e.g., the introduction in [11]. This motivated the develop-
ment of recent tensor formats such as the HT format, in which a recursive, hierarchical
construction of Tucker type is employed for tensor representation, and the TT format,
which can be interpreted as a special case of HT in which the recursive formulation
can be avoided (see Section 2). The usefulness of these formats is currently being
investigated for a variety of high-dimensional problems; see, e.g., [3, 11, 14, 18]. For-
mats of this type have been used successfully in the quantum physics and chemistry
communities in the last decade [21, 23, 27, 32].

Analogous to the Tucker format, both HT and TT allow the definition of a rank
vector k (to be specified in Section 2), and the manifold of tensors of fixed HT or
TT rank can be shown to be an embedded manifold [12, 30], to which then the
above dynamical tensor approximation approach may be applied. In addition to
approximating time-varying tensors and the solutions of tensor ODEs, it may also be
used if, given a HT tensor A and a search direction ΔA, one wants to compute an
approximation to A+ΔA in the HT format. Approximately computing the dynamical
approximation to A + tΔA with one or few Euler steps provides an alternative to
truncation steps by Higher Order SVD [7], or by local optimization methods like
alternating least squares methods [11]. The dynamical approximation may thus be
used as a retraction as required in optimization methods on low-rank manifolds like
CG and Newton; see [1, 31].

In this paper, we generalize the approximation results from [15, 16] to the case
where a HT manifold is used in the ansatz (1.2), with the TT format included as a
special case. Our motivations for this are twofold:

(i) While the general procedure in this work is essentially analogous to that of
[15, 16], extending the central ingredient of the proof—obtaining curvature estimates
for M via the projector onto the tangent space—is not straightforward due to the
more involved, hierarchical construction in the HT setting.

(ii) Although the HT/TT formats were only recently introduced in the numerical
analysis community, they have—similar to the parallels between the Tucker format
and the formulation of the multi-configuration time-dependent Hartree (MCTDH)
method in quantum chemistry [5, 4, 22]—a considerable significance in various fields
concerned with quantum computations. In particular, TT tensors correspond to ma-
trix product states (MPS) used to describe many-body quantum physics systems,



Dynamical approximation by tensors in the HT and TT formats 3

and are the central quantity in the successful density matrix renormalisation group
(DMRG) algorithm. MPS and DMRG have seen a boost of interest in the last years,
and the treatment of time-dependent equations by use of MPS is a recent field of
interest (see the recent review [27] and the references therein). In particular, the geo-
metric approach underlying this work has lately been used for the simulation of real-
and imaginary-time dynamics for infinite one-dimensional quantum lattices by MPS
[10]. In parallel to the advances with the HT format, developments using tensor trees
and networks have recently been made independently in the quantum physics com-
munity, e.g. [21, 23]. Moreover, the multilayer formulation of the multiconfiguration
time-dependent Hartree method [32] can be interpreted as an instance of the dynam-
ical tensor approximation approach for HT. Aside from quantum physics and chem-
istry, applications of the approach may also enable the numerical treatment of other
high-dimensional problems; see, e.g., [6, 13] for approaches to other time-dependent
equations using TT. With this work, we complement these practically motivated ap-
proaches with theoretical results to hopefully foster a unified understanding of the
method and to point to the prospects and limitations of the ansatz from a mathemat-
ical perspective.

The rest of the paper is organized as follows: We recall some facts on the HT
representation for tensors and on the manifold of tensors of fixed HT rank in Section
2 and 3, respectively. The central technical work is performed in Section 4, where to
enable and analyze the ansatz (1.3), the orthogonal projection PX onto the tangent
space TXM at given X ∈M is analyzed and curvature estimates for the fixed-rank HT
manifold are obtained. Section 5 then states approximation results for the approach
(1.2–1.3) as well as for the ODE case where Ȧ is given as a function F (A). Section 6
briefly discusses the use of dynamical approximation for computing updates in the
HT format in optimization algorithms. Section 7 describes the implementation of the
tangent space projection, which is the key ingredient in the dynamical approximation
approach, and features some numerical examples that are designed to display the
properties of the approach as derived in the theoretical analysis.

2. The HT and TT tensor formats. In this section, we review some basic
concepts related to tensors that are needed for the treatment of dynamical approxi-
mations on V. In particular, we give a short introduction into the construction of the
HT format (which includes the TT format as a special case).

2.1. Prerequisites. We regard a tensor X ∈ V as a d-dimensional array where
the entries are indexed as

X(x1, x2, . . . , xd), xi = 1, 2, . . . , ni, i = 1, 2, . . . , d.

Denote any splitting of the set τr := {1, . . . , d} into two disjoint subsets by

τ = {i1, i2, . . . , is} ⊆ τr, τ c := τr \ τ = {j1, j2, . . . , jd−s}. (2.1)

Matrices will always be denoted in bold-face, for example, X ∈ Rn1×n2 . The mode τ -
unfolding X(τ) of X is the matrix obtained by grouping the indices xi1 , xi2 , . . . , xis of
X(x1, x2, . . . , xd) into row indices and the remaining indices into column indices, each
in reverse lexicographical ordering (this is the same ordering as [17, 19] but different
from [30]). In other words,

X(τ) ∈ R(ni1ni2 ···nis )×(nj1nj2 ···njd−s
), such that

X
(τ)
(xi1

,xi2
,...,xis ),(xj1

,xj2
,··· ,xjd−s

) := X(x1, x2, . . . , xd). (2.2)
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These unfoldings can also be used to define the mode-τ rank of X as

kτ = rank(X(τ)). (2.3)

For splittings where τ = {i} is a singleton, one obtains the special case of the mode-
i-unfolding X(i) ∈ Rni×(n1···ni−1ni+1···nd) of X. Throughout the paper, sets that are
singletons will often just be indexed by i instead of by {i} like in X(i) = X({i}) and
ki = k{i}. Collecting the corresponding mode-i-separation ranks ki for i ∈ {1, . . . , d}
in the vector

rankML(X) := (k1, k2, . . . , kd)

gives the multi-linear rank of X, common in the context of Tucker decomposition
[17]. Taking all indices τr := {1, . . . , d} of the tensor X as column indices yields the
vectorization

vec(X) ∈ Rn1n2···nd

of X, a column vector containing all the entries of X in reverse lexicographical order-
ing.

We equip the tensor space V with the inner product

�X,Y � :=

n1�

x1=1

· · ·
nd�

xd=1

X(x1, x2, . . . , xd) · Y (x1, x2, . . . , xd) = tr((X(τ))TY(τ))

and corresponding norm

�X� :=
� n1�

x1=1

· · ·
nd�

xd=1

|X(x1, x2, . . . , xd)|2
� 1

2 = �X(τ)�Frob.

We will also come across the spectral norm �A�2 of matrices A; in particular, we will
make use of the inequality

�ABC� ≤ �A�2 �B� �C�2 (2.4)

which holds for any matrices A,B,C of suitable size.
Given two matrices A1 ∈ Rp1×m1 ,A2 ∈ Rp2×m2 , recall that their Kronecker

product may be defined point-wise by

A1 ⊗A2 ∈ R(p1p2)×(n1n2), (A1 ⊗A2)(x1,x2),(y1,y2) := (A1)(x1,y1) · (A2)(x2,y2),

where (x1, y1) is a multi-index, enumerated lexicographically.
To denote the HT decomposition to be introduced below in a succinct fashion,

we will follow the notation chosen in [19]: For an order-3 tensor B ∈ Rm1×m2×m3 ,
its index-wise multiplication by matrices A1 ∈ Rp1×m1 ,A2 ∈ Rp2×m2 ,A3 ∈ Rp3×m3 ,
that is, the three-way product C = (A1,A2,A3)◦B ∈ Rp1×p2×p3 , defined elementwise
as

C(y1, y2, y3) :=

m1�

x1=1

m2�

x2=1

m3�

x3=1

A1(x1, y1)A1(x2, y2)A3(x3, y3)B(x1, x2, x3)

can be expressed succinctly as

(C(3))T = (A2 ⊗A1)(B
(3))TAT

3 , (2.5)

returning (C(3))T instead of the tensor C itself. Also, we have that (see, e.g., [17])

C(1) = A1B
(1)(A3 ⊗A2)

T , C(2) = A2B
(2)(A3 ⊗A1)

T . (2.6)
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2.2. The HT and TT formats. We recall the definition of the hierarchical
Tucker (HT) format and the set of tensors of fixed hierarchical rank as introduced in
[7, 9]. Aside from some necessary concepts from [7, 9], we also introduce a notation
similar to the one used in [19, 18, 30] that is better suited to our analysis.

The basic idea of the hierarchical Tucker decomposition is that a tensor X ∈ V
can be represented in the HT format if it allows for a recursive construction out of
lower-dimensional subspaces. This recursion is completely defined by a dimension
tree.

Definition 2.1. For fixed dimension d, a non-trivial binary tree is called a
dimension tree T if the following holds.

(i) The node τr = {1, 2, . . . , d} is the root of T .
(ii) All nodes of T are non-empty subsets of the root.
(iii) Every node τ ∈ T that is not a singleton has two sons τ1 and τ2 such that

τ = τ1 ∪ τ2, µ < ν for all µ ∈ τ1, ν ∈ τ2.

The leaves of T are the singletons {i} with i ∈ {1, 2, . . . , d}.
The set of leaves is denoted by L; the collection of all inner nodes by I := T \ L.

For convenience, we require the splittings to be ordered in condition (iii). This
is however not a restriction since one can always permute the indices of X such that
the indices of the new tensor X̃ satisfy this condition. During the evaluation of X̃,
this permutation can be trivially undone to recover X. Also note that although the
HT decomposition is introduced based on a binary tree, the results in this paper also
hold via straightforward modifications for decomposition trees with more than two
sons in each node. Therefore, the present work includes the matrix case and also the
Tucker tensor case as special cases.

The problem of determining the “best” dimension tree for a given tensor—and
the related question of the “best” permutation of its indices—is highly non-trivial.
In the present context, we assume that the permutation and the dimension tree have
been chosen. Typical choices for such dimension trees are those obtained by a balanced
splitting of the index set, as used, e.g., by Grasedyck [7], or a front-to-back splitting
which (with minor adaptations, see Remark 1 below) leads to the TT format due to
Oseledets and Tyrtyshnikov [25, 26]. The corresponding dimension trees are visualized
for d = 5 in Fig. 2.1.

Note that irrespective of the particular tree, we have

|I| = d− 1, |L| = d. (2.7)

Let

nτ :=
�

µ∈τ

nµ,

then we can introduce the set of HT tensors of a given hierarchical rank as follows.

Definition 2.2. Let T be a dimension tree and k = (kτ )τ∈T positive integers
with kτr = 1. Then, X ∈ V is an HT tensor of T -rank k—or, a (T,k)-tensor—if it
can be constructed in the following way.

(i) To each leaf node τ ∈ L, assign a leaf matrix Uτ ∈ Rnτ×kτ of full rank,

rank(Uτ ) = kτ .

The collection of all leaf matrices is denoted by UL := (Uτ )τ∈L.
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{1,2,3,4,5}

{1,2,3} {4,5}

{4} {5}{1,2}

{1}     {2}

{3}

{1,2,3,4,5}

{1} {2,3,4,5}

{2} {3,4,5}

{4,5}

{5}

{3}

{4}

Fig. 2.1. The balanced and front-to-back dimension trees for the HT and TT formats, respectively.

(ii) To each inner node τ ∈ I, assign a transfer tensor Bτ ∈ Rkτ1
×kτ2

×kτ of full
multi-linear rank

rank(B(1)
τ ) = kτ1 , rank(B(2)

τ ) = kτ2 , rank(B(3)
τ ) = kτ .

For notational simplicity, we define the corresponding transfer matrix as

Bτ := (B(3)
τ )T .

The collection of all transfer matrices is denoted by BI := (Bτ )τ∈I .
(iii) To each inner node τ ∈ I, recursively construct the inner frame matrices

Uτ = (Uτ2 ⊗Uτ1)Bτ ∈ Rnτ×kτ for τ ∈ I, (2.8)

such that X is recovered as X(τr) = Uτr .

The relation (2.8) can equivalently be expressed element-wise as

(Uτ )(l1,l2),i =

kτ1�

j1=1

kτ2�

j2=1

Bτ (j1, j2, i)(Uτ1)l1,j1(Uτ2)l2,j2 ,

with (l1, l2) a multi-index for the rows of Uτ . We prefer the more succinct version (2.8).
In Fig. 2.2, we depicted the leaf and transfer matrices UL and BI associated

to the balanced dimension tree from Fig. 2.1. Observe that τ1 corresponds to the
left child of τ , while τ2 is the right one. In addition, we also indicated with arrows
the inner frame matrices from (2.8); for example, U{1,2,3} is constructed from the
matrices U{1,2},U3 and the transfer tensor B{1,2,3}. Although we will not use this
feature much, note that the lines in Fig. 2.2 have actual interpretations from Tensor
Networks: lines interconnecting tensors are summations over mutual indices, while
open lines represent the free indices of the resulting tensor.

Given a dimension tree T , every tensor X ∈ V can be represented as a (T,k)-
tensor for some k = (kτ )τ∈T when kτ ≤ nτ for all τ ∈ T . An exact HT decomposition
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{1,2,3,4,5}B

{4,5}

U4 5 U

BB{1,2,3}

B U

UU

3 

2 1

{1,2}

U{1,2}

{1,2,3}R

{1,2,3}
U

Fig. 2.2. Graphical representation of the leaf matrices UL and the transfer matrices BI as-
sociated to the balanced dimension tree from Fig. 2.1. The inner matrices {Uτ : τ ∈ I} can be
constructed recursively from (2.8), as for instance the matrix U{1,2,3} from the matrices U{1,2},
U3, and B{1,2,3}.

with minimal k can be computed by Algorithms 1 or 2 in [7], which amounts to
the hierarchical application of several SVDs. Due to the full rank requirements on
the matrices UL and BI in our definition, this minimal rank vector k is unique and
coincides element-wise with the mode-τ ranks of X from (2.3). Hence, there exists a
unique hierarchical Tucker rank of X, defined as

rankHT(X) := k = (kτ )τ∈T where kτ = rank(X(τ)). (2.9)

The benefit of representing tensors in the HT format is that only the leaf matrices
UL and transfer matrices BI need to be stored. The total number of entries is
therefore

D =
�

τ∈L

nτkτ +
�

τ∈I

kτkτ1kτ2 ≤ dNK + (d− 2)K3 + K2,

where N := max{nτ : τ ∈ L} and K := max{kτ : τ ∈ T}. This is a considerable
reduction compared to the full tensor case with Nd entries provided K � N .

The representation of an HT tensor by UL and BI is not unique; more precisely,
two sets of matrices (UL,BI) and (�UL, �BI) are both representations of the same
tensor X ∈ V (with the construction from Def. 2.2) if and only if there is a sequence
(Aτ )τ∈T of invertible matrices Aτ ∈ Rkτ×kτ and Aτr = 1 such that

�Uτ = UτA
−1
τ for all τ ∈ L, (2.10)

�Bτ = (Aτ2 ⊗Aτ1)BτA
−1
τ for all τ ∈ I; (2.11)

see [30, Prop. 3.9] for a proof.
Remark 1. (TT format) The above definition of the HT format includes the TT

format of [25] in the following way: Given the dimension d and n1, . . . , nd, choose
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the corresponding “front-to-back splitting” dimension tree TTT introduced above (see
Fig. 2.1) and define k by letting ki = ni for i = 1, . . . , d − 1 and fixing the com-
plementary ranks ri−1 := kτi , τi = {i, . . . , d}. The set of TT tensors of TT-rank
(r1, . . . , rd−1) then corresponds to all (TTT ,k)-HT tensors. Because the correspond-
ing leaf matrices Ui of size ni × ni are invertible, it is then a priori possible to avoid
the redundancy (2.10) at the leaves i = 1, . . . , d− 1 by fixing Ui = Ini

. With this con-
vention, (TTT ,k)-HT tensors can be characterized using only d − 1 transfer tensors
Bτi ∈ Rni×ri×ri−1 and the leaf matrix Ud ∈ Rni×ri−1 resulting in the canonical TT
format as introduced by [25].

For numerical reasons, it is usually advisable to work with orthonormal matrices.
Definition 2.3. An HT decomposition is called an orthogonal HT decomposition

if all leaf and inner frame matrices are orthonormal except at the root,

UT
τ Uτ = Ikτ

for all t ∈ T \ {τr}.

Equivalently, all leaf and transfer matrices are orthonormal except at the root,

UT
τ Uτ = Ikτ for all t ∈ L, and BT

τ Bτ = Ikτ for all t ∈ I \ {τr}.

By a recursive orthogonalization starting at the leaves, any given HT tensor can
be represented by an orthogonal HT decomposition with the same hierarchical T -
rank. Note that for TT, with the left-to-right splitting from above, this yields a
right-orthogonal decomposition as used for instance in [12, 11].

3. The manifold of HT tensors of fixed rank. We will now restrict our
attention to tensors with fixed dimension tree T and fixed HT rank k = (kτ )τ∈T ,

M :=M(T,k) = {X ∈ V : X is an HT tensor of hierarchical T -rank k}.

The setM is a smooth, embedded submanifold in V. These and other properties
of M have recently been investigated quite exhaustively in [30]. We therefore refer
to this work and only collect the main facts needed for our treatment of dynamical
equations on M.

3.1. Parametrization of M and its tangent space TXM. The elements in
M can be parameterized by matrices from the following coefficient space:

C :=×
τ∈T

Cτ

with

Cτ := {Uτ ∈ Rnτ×kτ : rank(Uτ ) = kτ} for τ ∈ L,

Cτ :=
�
Bτ ∈ R(kτ1

kτ2
)×kτ : rank(B(1)

τ ) = kτ1 , rank(B(2)
τ ) = kτ2 ,

rank(B(3)
τ ) = kτ

�
for τ ∈ I.

As in (ii) of Def. 2.2, we conveniently abbreviated the mode-3 unfolding of a transfer

tensor Bτ ∈ Rkτ1
×kτ2

×kτ by BT
τ = B

(3)
τ .

Throughout the paper, we denote elements of C in a short-hand way as

(UL,BI) ∈ C with UL := (Uτ )τ∈L and BI := (Bτ )τ∈I .
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Given these coefficients (UL,BI), we can construct a unique HT tensor inM, denoted
as X(UL,BI). According to Def. 2.2, this reconstruction mapping

ϕ : C →M ⊂ V , (UL,BI) �→ X(UL,BI) (3.1)

is multilinear—linear in each Uτ and each Bτ—and onto M.
Note that by (2.10–2.11), the mapping ϕ is not invertible but fortunately this

will never pose any problems. For the tangent space TXM, however, we follow the
approach of [15, 16, 20, 12, 30] and work with unique representations for tangent
vectors, given a specific (UL,BI) ∈ C.

Theorem 3.1. Let (UL,BI) ∈ C be an orthogonal HT decomposition of X =
X(UL,BI) ∈M. Then the gauge space

G(UL,BI) :=×
τ∈T

Gτ , (3.2)

with

Gτ =
�
δBτ ∈ R(kτ1kτ2 )×kτ

�
for τ = τr, (3.3)

Gτ =
�
δBτ ∈ R(kτ1

kτ2
)×kτ : δBT

τ Bτ = 0
�

for all τ ∈ I \ {τr}, (3.4)

Gτ =
�
δUτ ∈ Rnτ×kτ : δUT

τ Uτ = 0
�

for all τ ∈ L, (3.5)

is isomorphic to the tangent space TXM.

Although a formal proof of this result was probably given for the first time in [30],
let us mention that the gauge conditions (3.3–3.5) were already used in the quantum
chemists community [32]; see also [20, p. 45] for a mathematical formulation. Note
also that in the case of non-orthogonal HT decompositions, the gauge condition (3.4)
has to be adapted accordingly; see [30, (4.8)].

Elements of TXM can be computed by differentiating ϕ of (3.1). By virtue of
Theorem 3.1, the restriction of the domain of the differential Dϕ to the gauge space,

Dϕ(X)|G(UL,BI )
: G(UL,BI) → TXM,

is a bijection at X(UL,BI) for fixed (UL,BI). In the above, we have again used a
similar short-hand notation

(δUL, δBI) ∈ G(UL,BI) with δUL := (δUτ )τ∈L and δBI := (δBτ )τ∈I .

Since ϕ is multilinear, its differential is conceptually straightforward to compute.
Recursively differentiating (2.8) from leaves to root, one obtains matrices

(Uτ2 ⊗Uτ1) δBτ + (δUτ2 ⊗Uτ1)Bτ + (Uτ2 ⊗ δUτ1)Bτ =: δUτ ∈ Rnτ×kτ , (3.6)

such that δX ∈ TXM ⊂ V is recovered as δX(τr) = δUτr . The relation (3.6) shows
that tangent tensors are highly structured and can be parameterized by the matrices
(δUL, δBI). Similar to the notation of an HT decomposition X(UL,BI), we denote
this as δX(δUL, δBI ;UL,BI).

In case (δUL, δBI) ∈ G(UL,BI), the matrices δUτ from (3.6) additionally satisfy

δUT
τ Uτ = 0 for all τ ∈ T \ {τr}; (3.7)

see [30, Cor. 4.13]. Observe that this extends the gauge condition (3.5) to the inner
nodes, except the root.

In order not to overload notation, we will abbreviate G(UL,BI) by G and the
tangent tensor δX(δUL, δBI ;UL,BI) by δX(δUL, δBI) from now on, dropping the
notational dependence on (UL,BI) ∈ C.
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3.2. Dynamical HT approximation as projection. We now turn to the
main problem of this paper: the dynamical approximation Y (t) ∈ M of a time-
varying tensor A(t) ∈ V.

The minimization condition in (1.2) can be formulated in terms of the orthogonal
projector onto the tangent space, that is, for X ∈M, the operator

PX : V → TXM, Z �→ PX(Z) (3.8)

satisfying

�PX(Z)− Z, δX � = 0 for all δX ∈ TXM. (3.9)

With this operator, we can state the differential equations for Y (t) as

Ẏ (t) = PY (t)Ȧ(t). (3.10)

The next proposition shows how PX can be computed. Although this result was
already shown by construction in [30, Section 6.2.2], our proof—which is the direct
analog of that in [15, 16]—is simpler. We postpone the discussion how to actually
implement PX to Section 7.

Proposition 3.2. Suppose X = X(UL,BI) ∈ M and let Z ∈ V be given. For
all τ = {i1, i2, . . . , is} ∈ T , define recursively tensors Zτ ∈ Rni1

×ni2
×···×nis×kτ via

Zτr = Z, (3.11)

Z(τ1)
τ1 = Z(τ1)

τ (Ikτ
⊗Uτ2)(B

(1)
τ )+ for all τ ∈ I, (3.12)

Z(τ2)
τ2 = Z(τ2)

τ (Ikτ ⊗Uτ1)(B
(2)
τ )+ for all τ ∈ I. (3.13)

where (B
(i)
τ )+ := (B

(i)
τ )T (B

(i)
τ (B

(i)
τ )T )−1 denotes the right inverse of B

(i)
τ . Then, the

projection PX(Z) = δX(δUL, δBI) with (δUL, δBI) ∈ G satisfies

δBτ = (UT
τ2 ⊗UT

τ1)Z
(τ)
τ for τ = τr, (3.14)

δBτ = (I−BτB
T
τ )(UT

τ2 ⊗UT
τ1)Z

(τ)
τ for all τ ∈ I \ {τr}, (3.15)

δUτ = (I−UτU
T
τ )Z(τ)

τ for all τ ∈ T \ {τr}. (3.16)

In addition, given (δUL, δBI), the δUτ for the inner nodes correspond to the results
of the recursive evaluation of (3.6).

Proof. We recursively show from root to leaves that the equations (3.11)–(3.16)
hold.

Let τ = τr. Since δX ∈ TXM, the matrix δUτ := δX(τ) has the form (3.6) with

UT
τ δUτ = 0 and UT

τ Uτ = I for τ ∈ {τ1, τ2}. (3.17)

Choosing δV ∈ TXM such that δV(τ) = (Uτ2 ⊗Uτ1) δCτ with arbitrary δCτ ∈ Gτ ,
we have

� δX, δV � = � δBτ , δCτ �,
�Zτ , δV � = �Z(τ)

τ , (Uτ2 ⊗Uτ1) δCτ � = � (UT
τ2 ⊗UT

τ2)Z
(τ)
τ , δCτ �.

Since this holds for every δCτ , condition (3.9) gives (3.14).
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Now, choose δV ∈ TXM such that δV(τ) = (δVτ1 ⊗ Uτ2)Bτ with arbitrary

δVτ1 ∈ Gτ1 and observe that (δV(τ))T = ((δVτ1 ,Uτ2 , Ikτ
) ◦Bτ )

(3)
by (2.5). Then,

after unfolding in the third mode, we get

� δX, δV � = � δUτ1B
(1)
τ (Ikτ ⊗Uτ2)

T , δVτ1B
(1)
τ (Ikτ ⊗Uτ2)

T �
= � δUτ1B

(1)
τ (B(1)

τ )T , δVτ1 �,
�Zτ , δV � = �Z(τ1)

τ , δVτ1B
(1)
τ (Ikτ ⊗Uτ2)

T �
= �Z(τ1)

τ (Ikτ
⊗Uτ2)(B

(1)
τ )T , δVτ1 �.

Observe that by definition, Z
(τ1)
τ (Ikτ ⊗Uτ2)(B

(1)
τ )T (B

(1)
τ (B

(1)
τ )T )−1 = Z

(τ1)
τ1 of (3.12).

Hence (3.9) implies a Galerkin condition for the node τ1:

� δUτ1 − Z(τ1)
τ1 , δVτ1 � = 0 for all δVτ1 ∈ Gτ1 . (3.18)

After imposing the orthogonality condition (3.17), we recover (3.16).
A similar argument using δV(τ) = (Uτ1 ⊗ δVτ2)Bτ with arbitrary δVτ2 ∈ Gτ2

yields a Galerkin condition for τ2 as

� δUτ2 − Z(τ2)
τ2 , δVτ2 � = 0 for all δVτ2 ∈ Gτ2 , (3.19)

where we used Z
(τ2)
τ2 of (3.13). In addition, we obtain (3.16) for τ2.

To prove the result for the other nodes in the tree, the construction above can
now be repeated recursively starting with the children of the root and, for each node
τ ∈ I, imposing the additional condition

BT
τ δBτ = 0 and BT

τ Bτ = I for τ ∈ {τ1, τ2}. (3.20)

For example, let τ = (τr)1. Then, (3.18) holds for τ instead of τ1 and choosing
δVτ = (Uτ2 ⊗Uτ1) δCτ with δCτ ∈ Gτ arbitrary, we get using (3.6) that

� (Uτ2 ⊗Uτ1)δBτ − Z(τ)
τ , (Uτ2 ⊗Uτ1)δCτ � = � δBτ − (UT

τ2 ⊗UT
τ1)Z

(τ)
τ , δCτ � = 0.

Hence after imposing (3.20), we obtain (3.15). Similarly, one obtains the Galerkin
conditions (3.18)–(3.19) and thus (3.16) for the children of τ .

We note that Proposition 3.2 turns the differential equation (3.10) on M into
an equivalent set of differential equations for the coefficients in C: with tensors Zτ

defined as above with Ȧ in the role of Z, we solve the system of differential equations
in C,

Ḃτ = (UT
τ2 ⊗UT

τ1)Z
(τ)
τ for τ = τr, (3.21)

Ḃτ = (I−BτB
T
τ )(UT

τ2 ⊗UT
τ1)Z

(τ)
τ for all τ ∈ I \ {τr}, (3.22)

U̇τ = (I−UτU
T
τ )Z(τ)

τ for all τ ∈ L, (3.23)

to obtain Y (t) = X(UL(t),BI(t)). This is the system of differential equations that is
actually solved numerically.

4. Tangent space projection and curvature. In this section, we estimate
the curvature of the manifold by investigating how the orthogonal projection behaves
along the manifold. This will be a key tool for the approximation results in the next
section.
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4.1. A nonrecursive formulation of the orthogonal projector. The recur-
sive nature of Prop. 3.2 complicates our analysis involving the orthogonal projector
PX . We therefore introduce an equivalent but “global” expression that will facilitate
the estimates by making the isomorphism between G and TXM explicit. To this end,
we first need the following lemma which describes the node-τ unfoldings of an HT
tensor.

Lemma 4.1. Let X(UL,BI) ∈ V be a (T,k)-tensor. Then

span(X(τ)) = span(Uτ ) for all τ ∈ T , (4.1)

where the inner frame matrices (Uτ )τ∈I are given by (2.8). In addition, there are
unique matrices Rτ ∈ Rkτ×nτc of full column rank kτ (with Rτr = 1) such that

X(τ) = UτRτ . (4.2)

Proof. Equality (4.1) follows from [30, Prop. 3.4, Prop. 3.6], while (4.2) is a
straightforward consequence of (4.1).

The previous lemma allows us to define the following embedding operators.

Definition 4.2. Let X(UL,BI) ∈ M be an orthogonal (T,k)-tensor with the
decomposition X(τ) = UτRτ as in Lemma 4.1. The node-τ embedding operators

Eτ : Rnτ×kτ → V, Vτ �→ Eτ (Vτ ) for τ ∈ L,

Eτ : R(kτ1kτ2 )×kτ → V, Cτ �→ Eτ (Cτ ) for τ ∈ I,

are the linear operators defined via the unfoldings

(Eτ (Vτ ))
(τ) = (I−UτU

T
τ )VτRτ for τ ∈ L, (4.3)

(Eτ (Cτ ))
(τ) = (Uτ2 ⊗Uτ1)(I−BτB

T
τ )CτRτ for τ ∈ I \ {τr}, (4.4)

(Eτ (Cτ ))
(τ) = (Uτ2 ⊗Uτ1)Cτ for τ = τr. (4.5)

The definition above uses the matrices Rτ for convenience of notation only. Con-
ceptually the action of Eτ is very straightforward to compute. First, observe that the
image of Eτ (·) is an HT tensor with the same dimension tree as X and with hierar-
chical rank bounded by that of X. This is easily seen from the form of the matrices
in (4.2) together with the identity

X(τ) = (Uτ2 ⊗Uτ1)BτRτ for all τ ∈ I. (4.6)

This shows that Eτ (Vτ ) is obtained by first applying the projector I−UτU
T
τ to the

component Vτ and then substituting the resulting matrix for Uτ in the HT decompo-
sition X(UL,BI). The case Eτ (Cτ ) is analogous except that one applies the projector
I−BτB

T
τ first (except for the root); see Fig. 4.1 for a graphical representation.

Let F+ : B → A denote the Moore-Penrose pseudoinverse of a linear operator
F : A → B. Then, we immediately have from Lemma 4.1, equations (4.6) and (3.3–
3.5) that

range(Eτ ) ⊥ range(Eν), and range(E+
τ ) ⊥ range(E+

ν ) (4.7)
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{1,2,3,4,5}B

{4,5}

U4 5 U

B{1,2,3}P C{1,2,3}{1,2,3}P C{1,2,3}
C

{1,2,3}

B U

UU

3 

2 1

{1,2}

U{1,2}

{1,2,3}R

Fig. 4.1. Graphical representation of application of the embedding operator E{1,2,3} to some

tensor C{1,2,3} ∈ R(k1k2)×k3 : First, the projector P⊥
{1,2,3} := I−B{1,2,3}BT

{1,2,3} is applied, then

the result is embedded in the HT decomposition of X(UL,BI) of X in place of B{1,2,3} to obtain
E{1,2,3}(C{1,2,3}) ∈ V.

for all τ �= ν ∈ T . We are now ready to give the alternative representation of the
projector PX of Prop. 3.2.

Proposition 4.3. Let X(UL,BI) ∈M be an orthogonal HT tensor and denote
the according gauge space G := G(UL,BI). Then, the following holds.

(i) The linear operator

E : G → V, (δUL, δBI) �→
�

τ∈L

Eτ (δUτ ) +
�

τ∈I

Eτ (δBτ ) (4.8)

is an isomorphism between G and the tangent space TXM.
(ii) The Moore–Penrose inverses

E+ : V → G and E+
τ : V → Gτ (4.9)

are left inverses of E and Eτ for each τ ∈ T , respectively.
(iii) The orthogonal projector PX : V → TXM satisfies

PX = EE+ =
�

τ∈T

EτE
+
τ .

For any Z ∈ V, this becomes

PX(Z) =
�

τ∈T

P τ
X(Z)

with

(P τ
X(Z))(τ) = (Uτ2 ⊗Uτ1)(U

T
τ2 ⊗UT

τ1)Z
(τ)R+

τ Rτ for τ = τr,

(P τ
X(Z))(τ) = (Uτ2 ⊗Uτ1)(I−UτU

T
τ )(UT

τ2 ⊗UT
τ1)Z

(τ)R+
τ Rτ for τ ∈ I \ τr,

(P τ
X(Z))(τ) = (I−UτU

T
τ )Z(τ)R+

τ Rτ for τ ∈ L.
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Proof. (i) Observe that the range of E lies in TXM, as follows for example by
taking in the representations (4.2) and (4.6) for X(τ) the directional derivatives with
respect to the components Uτ ,Bτ . Second, E is injective, which using (4.7) can
be shown by proving that every Eτ is injective as mapping from Gτ to V: Indeed,
using the definitions (4.3–4.5), this follows from the (pseudo-)invertibility of Rτ and
(Uτ2 ⊗Uτ1) by R+

τ respectively (Uτ2 ⊗Uτ1)
T and the fact that projectors I−UτU

T
τ

and I−BτB
T
τ have no effect on elements from Gτ . By the isometry in Theorem 3.1,

we have dim TXM = dim G, which altogether proves the claim.
(ii) From (i) we have that E and Eτ are of full rank dim(G) and dim(Gτ ), respec-

tively.
(iii) For every matrix A, AA+ projects onto the image of A; see, e.g., [29]. The

second representation follows from (4.7). The formulas for P τ
X(Z) follow from basic

manipulation of (4.3–4.5).

4.2. Curvature bounds. We first need a preparatory lemma.

Lemma 4.4. Let Y : [a, b]→M be a smooth curve onM, and let (UL(a),BI(a))
be an orthogonal HT decomposition of Y (a). Then, there exists a unique smooth
curve γ : [a, b]→ C, t �→ (UL(t),BI(t)) such that (UL(t),BI(t)) is an orthogonal HT
decomposition of Y (t) and t �→ γ̇(t) = (U̇L(t), ḂI(t)) ∈ G(UL(t),BI(t)) is a smooth

gauged parameterization of Ẏ (t).

Proof. Suppose that for some t ≥ a, (UL(t),BI(t)) is an orthogonal HT decom-
position of Y (t). Proposition 3.2 then gives us a gauged parameterization

Ẏ (t) = PY (t)Ẏ (t) = δX(U̇L(t), ḂI(t);UL(t),BI(t)), (4.10)

where (U̇L(t), ḂI(t)) ∈ G(UL(t),BI(t)) are constructed in a smooth way fromUL(t),BI(t)

and the given Ẏ (t). We thus have a differential equation

(U̇L(t), ḂI(t)) = F (UL(t),BI(t), t) (4.11)

with a smooth function F . Since the HT-rank of Y (t) is assumed constant on [a, b], the
pseudo-inverses in the construction of F by Proposition 3.2 are uniformly bounded,
and therefore F is Lipschitz-continuous in a neighbourhood of the solution curve as far
as it exists. Standard ODE theory (the Picard–Lindelöf theorem) therefore yields that
a unique solution (UL(t),BI(t)) of (4.11) with the given initial value (UL(a),BI(a))
exists over the whole interval [a, b]. By construction we then have (4.10) for all
t ∈ [a, b], so that Y (t) and X(UL(t),BI(t)) have the same derivative. They also have
the same initial value, and hence they are equal: Y (t) = X(UL(t),BI(t)).

Now we can estimate the curvature of M.

Lemma 4.5. Let X ∈ M be such that the smallest singular value of each τ -
unfolding is uniformly bounded below by some constant ρ > 0,

σmin(X(τ)) ≥ ρ > 0 for all τ ∈ T .

Then, there exists constants c and C, depending only on the dimension d and satisfying
cC ≤ 1

2 , such that

�PX̃(Z)− PX(Z)� ≤ C ρ−1�X̃ −X� · �Z�, (4.12)

�(I − PX)(X̃ −X)� ≤ 2C ρ−1�X̃ −X�2, (4.13)
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for all X̃ ∈M with �X̃ −X� ≤ cρ and all Z ∈ V. In particular, C ≤ 48d.

Proof. (a) By Lemma 4.1, we have X(τ) = UτRτ for all τ ∈ T since X ∈ M.
Hence, the assumption that σmin(X

(τ)) = σmin(Rτ ) ≥ ρ implies

�R+
τ �2 = σ−1

min(Rτ ) ≤ ρ−1 for all τ ∈ T .

By [28, Cor. I.4.31] we also have that for any X̂ ∈M with X̂(τ) = Ûτ R̂τ it holds

|σmin(X̂
(τ))− σmin(X

(τ))| ≤ �X̂(τ) −X(τ)�2 ≤ �X̂ −X�.

When �X̂ −X� ≤ 1
2ρ, this results in σmin(X̂

(τ)) ≥ 1
2ρ which implies

�R̂+
τ �2 ≤ 2ρ−1 for all τ ∈ T .

(b) We decompose tensors in V on a straight line connecting X and X̃ as

X + t(X̃ −X) = Y (t) + Y⊥(t) with Y (t) ∈M and Y⊥(t) ⊥ TXM. (4.14)

It will be shown in (e) below that this decomposition exists for 0 ≤ t ≤ 1 under the
given assumptions. We denote

Δ = PX(X̃ −X) ∈ TXM with �Δ� ≤ δ := �X̃ −X�.

We then have PX(Y (t)−X) = tΔ, which yields

PX(Ẏ (t)) = Δ. (4.15)

Since Ẏ ∈ TYM, we have PY Ẏ = Ẏ and therefore

Ẏ (t) = PY (t)

�
Δ + (PY (t) − PX)(Ẏ (t))

�
. (4.16)

As long as

�PY (t) − PX�op := max
Z∈V, �Z�=1

�(PY (t) − PX)(Z)� ≤ 1
2 , (4.17)

we then get

�Ẏ � ≤ 2δ and hence �Y (t)−X� ≤ 2δ t.

(c) Let Y (t) = ϕ(UL(t),BI(t)) be the smooth curve on 0 ≤ t ≤ 1 of Lemma 4.4.
Then the curves Uτ (t) and Rτ (t) satisfying Y(τ)(t) = Uτ (t)Rτ (t) are smooth too for
all τ ∈ T . From (iii) in Prop. 4.3, we have an explicit expression for PY (t)(Z). Hence,

a bound on ṖY (t)(Z) = d
dtPY (t)(Z) may be obtained by bounding U̇τ and d

dt (R
+
τ Rτ )

first. If 2δ ≤ 1
2ρ, then the argument in (a) applied to Y (t) instead of X̂ shows that

�R+
τ (t)�2 ≤ 2ρ−1.

Next, by Lemma 4.4, it holds

Ẏ(τ) = U̇τRτ +Uτ Ṙτ such that U̇T
τ Uτ = 0.

Hence, we get with (2.4) that

�Ṙτ� = �UT
τ Ẏ

(τ)� ≤ 2δ and �U̇τRτ� = �(I−UτU
T
τ )Ẏ(τ)� ≤ 2δ



16 LUBICH, ROHWEDDER, SCHNEIDER AND VANDEREYCKEN

and further

�U̇τ� ≤ �U̇τRτ� · �R+
τ �2 ≤ 4ρ−1δ.

Working out d
dt (R

T
τ (RτR

T
τ )−1Rτ ) using the identity d

dtA
−1 = −A−1ȦA−1, we

further obtain

� d
dt (R

+
τ Rτ )� ≤ 2�R+

τ Ṙτ (I−R+
τ Rτ )� ≤ 2�R+

τ �2 · �Ṙτ� ≤ ρ−1δ,

where we used that I−R+
τ Rτ is an orthogonal projector. Now differentiating P τ

Y (t)(Z)

and using the above estimates, we obtain with (2.7) that

�Ṗ τ
Y (Z)� ≤ 32ρ−1δ �Z� for all τ ∈ I and �Ṗ τ

Y (Z)� ≤ 16ρ−1δ �Z� for all τ ∈ L.
(4.18)

Using (2.7), this results in

�ṖY (t)(Z)� ≤
�

τ∈T

�Ṗ τ
Y (t)(Z)� ≤ 48ρ−1δd �Z�.

Expressing PY (t)(Z)− PY (0)(Z) =
� t

0
ṖY (s)(Z) ds then yields

�PY (t)(Z)− PX(Z)� ≤ 48ρ−1δdt �Z�.

The operator norm in (4.17) thus does not exceed 1
2 for 0 ≤ t ≤ 1 when

δ ≤ c ρ with c =
1

96d
,

and at t = 1 we obtain the bound (4.12) with C = 48d.
(d) Observe that

(I − PX)(X̃ −X) = (I − PX)

� 1

0

Ẏ (s)ds =

� 1

0

(PY (s) − PX)Ẏ (s)ds.

By the above estimates, we have �Ẏ � ≤ 2δ, �Y (s)−X� ≤ 2δs; thus,

�
� 1

0

(PY (s) − PX)Ẏ (s)ds� ≤
� 1

0

�(PY (s) − PX)��Ẏ (s)�ds ≤ 2Cρ−1δ2,

which yields (4.13).
(e) It remains to show that the decomposition (4.14) indeed exists up to t = 1. For

this we consider (4.16) as an implicit ordinary differential equation on the manifold
M, which under condition (4.17) can be turned into an explicit differential equation
Ẏ = F (Y ) with a smooth vector field F . The solution Y (t) ∈M with initial value X
exists as long as (4.17) remains satisfied, hence for 0 ≤ t ≤ 1 by the above estimates.
By construction, Y (t) lies on M and satisfies (4.15), which upon integration implies
(4.14).

Remark 2. For the TT format, the estimate for the constant C in Lemma 4.5
can be improved to C ≤ 32d: According to Remark 1, the projector PY (t) for t ∈ [0, 1]
can be written in terms of a TT-decomposition with Ui = Ini

for all i = 1, . . . , d− 1;
thus, we have in (4.18) that Ṗ τ

Y (t) = 0 for the leaves τ = {i}, i = 1, . . . , d− 1.
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5. Approximation properties. We give approximation results that are anal-
ogous to those of [15] and [16] for the matrix case and full Tucker tensor format case,
respectively. We refer the reader to these papers for a detailed discussion of these
approximation results. The proofs are the same as for the corresponding results in
[15] and [16], using Lemma 4.5.

Theorem 5.1. Suppose that

�Ȧ(t)� ≤ µ for 0 ≤ t ≤ t (5.1)

and that a continuously differentiable best approximation X(t) ∈ M to A(t) exists
for 0 ≤ t ≤ t. Let ρ > 0 be such that the smallest nonzero singular value of every
unfolding of X(t) satisfies σmin(X

(τ)(t)) ≥ ρ for all τ ∈ T , and assume that the
best-approximation error is bounded by �X(t) − A(t)� ≤ cρ for 0 ≤ t ≤ t, with c of
Lemma 4.5. Then, the approximation error of the dynamical low-rank approximation
(1.2) with initial value Y (0) = X(0) is bounded by

�Y (t)−X(t)� ≤ 2β eβt
� t

0

�X(s)−A(s)� ds with β = Cµρ−1

for t ≤ t and as long as the right-hand side remains bounded by cρ. Here, c and C
are the constants of Lemma 4.5.

Smaller errors over longer time intervals are obtained if not only X −A, but also
its derivative is small. We assume that A(t) is of the form

A(t) = X(t) + E(t), 0 ≤ t ≤ t, (5.2)

where X(t) ∈M (now this need not necessarily be the best approximation) with

�Ẋ(t)� ≤ µ (5.3)

and the derivative of the remainder term is bounded by

�Ė(t)� ≤ ε (5.4)

with a small ε > 0.
Theorem 5.2. In addition to the above assumptions, suppose that the smallest

singular values of the τ -unfoldings of X(t) are bounded from below by ρ > 0. Then,
the approximation error of (1.2) with initial value Y (0) = X(0) is bounded by

�Y (t)−X(t)� ≤ 2tε for t ≤ ρ

C
√
µε

,

provided that t ≤ cρ
2ε and t ≤ t. The constants c and C are those of Lemma 4.5.

For the hierarchical Tucker approximation to a solution of the tensor differential
equation

Ȧ = F (A), (5.5)

condition (1.2) is replaced, at every time t, by

Ẏ ∈ TYM such that �Ẏ − F (Y )� = min . (5.6)

This is equivalent to the Galerkin condition

� Ẏ − F (Y ), δY � = 0 for all δY ∈ TYM. (5.7)
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We formulate an extension of Theorem 5.1 to the low-rank approximation of
tensor differential equations (5.5). We assume that F has a moderate bound along
the approximations,

�F (X(t))� ≤ µ, �F (Y (t))� ≤ µ for 0 ≤ t ≤ t, (5.8)

and satisfies a one-sided Lipschitz condition: there is a real λ (positive or negative or
zero) such that

� F (Y )− F (X), Y −X � ≤ λ �Y −X�2 (5.9)

for all tensors X,Y ∈M. We further assume that for the best approximation X(t) ∈
M,

�F (X(t))− F (A(t))� ≤ L �X(t)−A(t)� for 0 ≤ t ≤ t. (5.10)

We then have the following extension of the quasi-optimality result of Theorem 5.1.
Theorem 5.3. Suppose that a continuously differentiable best approximation

X(t) ∈ M to a solution A(t) of (5.5) exists for 0 ≤ t ≤ t, and assume the bounds
(5.8–5.10). Let X(t) be such that the smallest singular value of each τ -unfolding is
uniformly bounded below by ρ > 0, and assume that the best-approximation error is
bounded by �X(t) − A(t)� ≤ cρ with c of Lemma 4.5, for 0 ≤ t ≤ t. Then, the
approximation error of (5.7) with initial value Y (0) = X(0) is bounded by

�Y (t)−X(t)� ≤ (2β + L) e(5β+λ)t

� t

0

�X(s)−A(s)� ds with β = Cµρ−1

for t ≤ t and as long as the right-hand side is bounded by cρ. The constants c and C
are those of Lemma 4.5.

6. Use of the dynamical approximation in iterative methods. In iterative
methods for optimization (e.g., nonlinear CG and Newton’s method) one faces in
every iteration the task of updating the iterate from A ∈ M to an approximation
�A to A + ΔA that should again lie in M. This problem is usually referred to as a
truncation of A + ΔA or, if ΔA is a tangent tensor, as a retraction [1]. A popular

approach to obtain �A is to first compute A+ΔA, which is typically not inM, and then
to project this sum ontoM . This is a nonlinear process that can be computationally
expensive since the manifold M is left in the intermediate result A + ΔA. Here we
propose instead to use the dynamical approximation for A+tΔA. This works entirely
on M. Here we solve numerically the differential equation

Ẏ = PY (ΔA), Y (0) = A, (6.1)

or rather the equivalent differential equations (3.21)-(3.23) for the HT parameters
(UL(t),B(t)), and set

�A = Y (1) ∈M.

An accurate computation of (3.21)-(3.23) over the whole interval [0, 1] may turn out
costly when the increment ΔA is not small in norm, but for small �ΔA� (near the
optimum) it can be approximated accurately by just a few explicit Euler steps applied
to the differential equations (3.21)-(3.23) for the parametrization (UL(t),B(t)), fol-
lowed by reorthogonalization of the (small) coefficient matrices. This approach does
not require any decompositions of large matrices.
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Consider now the situation where ΔA ∈ TAM is a descent direction for a cost
function. In a line search algorithm one would search for an (approximate) minimum
of the cost function along the numerical trajectory Y (t). A simplification to solving
(6.1) consists of taking just one (or a few) explicit Euler steps with a step size h applied
to the differential equations (3.21)-(3.23) for the parametrization (UL(t),B(t)) with
subsequent reorthogonalization. The step size h > 0 can be chosen adaptively such
that descent is still guaranteed, since asymptotically for h→ 0 the Euler step follows
the descent direction ΔA.

7. Implementation and numerical results. In this section, we detail numer-
ical aspects of the dynamical approach, in particular, we focus on the implementation
of the projector PX(Z) and how to exploit structure in Z. Then, we report on some
numerical experiments showing that the dynamical approach confirms the derived
theoretical properties. Throughout this section, we define n := maxt∈L{nτ} and de-
note the maximal hierarchical rank of X by kX and when Z is in HTD format the
analogue by kZ

In the implementation, we make have heavy use of the Tensor Toolbox [2] and
the htucker toolbox [19]. Our code is available at http://sma.epfl.ch/~vanderey/.
All experiments were done with Matlab version R2012a on an Intel Core i7 2.2 GHz
CPU. In all examples, the integration of (1.2) was done by ode45 in Matlab using
odeset(’RelTol’, 1e-9, ’AbsTol’, 1e-9, ’NormControl’, ’on’) as options.

7.1. Implementation of PX(Z) for unstructured Z. The implementation of
PX follows directly from Prop. 3.2 and consists of two phases: The computation of the
Zτ is based on recursion (3.11–3.13), after which the δUL and δBI can be projected
out based on (3.14–3.16). We emphasize that the actual computations are performed
without working out the tensor products explicitly. Instead, each expression can
be formulated in terms of tensor-times-matrix products, implemented as ttm in the
htucker toolbox.

The following code, for example, constructs matrices Z_matrix{t} representing

Z
(τ)
τ for τ not a leaf.

Z_t_tensor = dematricize(Z_matrix{t}, [n_t1, n_t2, k_t], [1 2], 3);

Z_t1_matrix = ttm(Z_t_tensor, U_matrix{t2}, 2, ’t’);

Z_t2_matrix = ttm(Z_t_tensor, U_matrix{t1}, 1, ’t’);

Z_matrix{t1} = matricize(Z_t1_matrix, 1)*pinv(matricize(X.B{t},1));

Z_matrix{t2} = matricize(Z_t2_matrix, 2)*pinv(matricize(X.B{t},2));

Here, X is an htensor object representing the HT tensor X with a dimension tree
indexed by τ = t. In addition, U_matrix{t} represents the inner frame matrix Uτ of
X which can be recursively evaluated from the leaves up by the following commands.

BUU = ttm(X.B{t}, {U_matrix{t1}, U_matrix{t2}}, [1 2]);

U_matrix{t} = matricize(BUU, [1 2], 3);

The other computations are analogous and we refer to the provided source code
for details.

The tensors Zτ are reducing in size from root to leaves. Hence, the total com-
putational cost of applying PX(Z) is O(nd). This exponential growth in d severely
limits the use of PX(Z) which makes its application only viable for small values of d.
Nevertheless, it is an order of magnitude cheaper than applying the truncation oper-
ator based on successive SVDs which is O(dnd+1); see [7]. For numerical verification,
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Fig. 7.1. Graphical representation of the recursion (3.12) of Prop. 3.2 in case Z is an HT

tensor. Tensor �Zτ1 is the result of the first contraction �Z(τ1)
τ1 = Z

(τ1)
τ (Ikτ ⊗ Uτ2 ). The second

contraction gives the desired result Z
(τ1)
τ1 = �Z(τ1)

τ1 (B
(1)
τ )+.

we refer to [30, Section 6.2.3] where the dynamical approach is indeed shown to be
faster than pointwise SVDs in case of unstructured Z.

7.2. Implementation of PX(Z) for structured Z. The exponential depen-
dence on d in the unstructured case from above can be overcome by assuming that
Z is an HT tensor. This is a reasonable assumption exploited in many tensor-based
methods like [3, 11, 14, 18]. In order to facilitate computations, we assume that Z
has the same dimension tree as X, but it may have different hierarchical ranks.

The key to scalability is formulating the multiplications by Uτ in the recursions
of Prop. 3.2 as tensor contractions of certain subtrees of X and Zτ . We refrain from
giving a complete derivation and instead only explain the implementation of (3.12)
that computes Zτ1 .

By construction, we impose that each Zτ has a dimension tree which is in a specific
way compatible to that of X; see Fig. 7.1. In the first step, the subtree at τ2 of Zτ

is contracted with Uτ2 so to replace the transfer tensor Bτ2 with a (kZ)τ2 × (kX)τ2
dimensional matrix Mτ2 . (It turns out that all these matrices Mτ are computed
when evaluating the inner product � X,Z � which is a standard operation for tensor
networks.) Then, this resulting tensor is contracted again with the small tensor Cτ

that represents an unfolding of (B
(1)
τ )+.

The remaining computations follow a similar pattern; counting operations we
obtain that the work for

PX(Z) is O(dn(k2
X + kXkZ) + d(k4

X + kXk3
Z)).

For comparison, the work for

hierarchical SVD of X + Z is O(dn(k2
X + kXkZ + k2

Z) + d(k4
X + k4

Z).
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Fig. 7.2. Computational cost in seconds of PX(Z) and truncation by SVD for random tensors
with various values of d, n, kX , and kZ . The full lines are the indicated polynomial scalings.

Clearly, the projection is faster when kZ � kX .
In Figure 7.2, we have supplied timing results of the application of PX(Z) for

random tensors X and Z which verify the computational cost estimates from above.
In all cases the ranks were taken equal along the tree. In addition, we have also
supplied the results for the hierarchical SVD of the sum X + Z as implemented by
htensor.truncate_sum in the htucker toolbox. As is evident from the figures, the
projection is always faster than the SVD-based truncation, but usually only by a
constant factor of about 2 to 5. However, in case of fixed kX and varying kZ , the
projection PX(Z) indeed improves the order of complexity. We will see later an
application where this difference can be exploited.

7.3. Example 1: Approximating a periodic tensor. Theory predicts that
the dynamical approach gives exact reconstruction of tensors which have fixed hierar-
chical rank, in other words, when the constant c in the Theorems of Section 5 is zero.
We investigate this by integrating the HT tensor A(t) = A(UL(t),BI(t)) such that

Bτr (t) = esin(2πt)Bτr (0) for τ = τr,

Bτ (t) = Bτ (0) for all τ ∈ I \ {τr},
Uτ (t) = Uτ (0)Q(t) for all τ ∈ L,
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Fig. 7.3. Approximation X(t) of an HT tensor A(t) which is periodic in t.

with A(0) a random HT tensor, and Q(t) a Givens rotation in the first two coordinates
with Q1,1(t) = cos(t). The case for n = 25, d = 3, and kτ = 3 is displayed in Figure 7.3
and it is evident that X(t) indeed approximates A(t) to the order of the integration
tolerance 10−9.

When A(t) leaves M, the approximation will deteriorate as t increases. In the
right panel of Figure 7.3, we have repeated the same integration but now for

Â(t) = A(t) + 10−10 e0.3tC

with C a random full tensor such that there is growing noise. One can clearly observe
that as expected, the approximation error is completely dominated by this noise.

7.4. Example 2: Interpolating two tensors. As next illustration, we inter-
polate two HT tensors A0 and A1 with the same dimension tree but different ranks:
A0 has rank k0 whereas the rank of A1 is 2k0. The dynamical approach will then
integrate

A(t) = t A0 + (1− t)A1

from t = 0 with A(0) = A0 ∈ M up to t = 1. Since generically A(t) does not lie in
M for t �= 0, we cannot expect that X(t) will approximate A(t) well on the whole
interval [0, 1]. As long as the singular values have a sufficiently big gap however, X(t)
should be a reasonable approximation to A(t).

In Figure 7.4 we have verified this for n = 1000, d = 5 and k0 = 3. On the left
panel, one clearly observes that the error to A(t) quickly deteriorates but the error
to the quasi-best approximation by the SVD-based truncation behaves much better
up to t � 0.2. On the right panel, the singular values of the (τr)1 unfolding explain
this behavior: Around t � 0.2, the singular values cross and the dynamical approach
tracks the smooth, but wrong branch of the singular values. The result is a large
increase of the error which cannot be undone except by restarting.
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