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Multilevel Monte Carlo Quadrature of Discontinuous Payoffs in the Generalized

Heston Model using Malliavin Integration by Parts

Martin Altmayer∗, Andreas Neuenkirch†

Abstract. In this manuscript, we establish an integration by parts formula for the quadrature of discontinuous
payoffs in a multidimensional Heston model. For its derivation we use Malliavin calculus techniques
and work under mild integrability conditions on the payoff and under the assumption of a strictly
positive volatility. Since the integration by parts procedure smoothes the original functional, our
formula in combination with a payoff-splitting allows to construct efficient multilevel Monte Carlo
estimators, which is illustrated by several numerical examples.
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AMS subject classifications. 60H07; 60H35; 65C05; 91G60

1. Introduction. The Heston Model is a popular stochastic volatility model in mathe-
matical finance. It was introduced in [18] and further developed since then, see e.g. the recent
work [16] on the Heston model with stochastic interest rates or [15] on time-dependent co-
efficients. In its classical form the Heston model uses a Cox-Ingersoll-Ross process (CIR) as
volatility and is given by the SDEs

dSt = bStdt+
√
vtSt(ρdW

1
t +

√
1− ρ2dW 2

t ), t ∈ [0, T ]

dvt = κ(λ− vt)dt+ θ
√
vtdW

1
t , t ∈ [0, T ]

with S0, v0, κ, λ, θ > 0, b ∈ R, ρ ∈ [−1, 1] and independent Brownian motions W 1,W 2. In
this article we will also consider a generalized Heston model (introduced in [5]) that uses a
mean-reverting constant elasticity of variance process (CEV) as volatility, i.e.

dvt = κ(λ− vt)dt+ θvγt dW
1
t

with γ ∈ (1/2, 1).

An efficient method to compute expectations of (smooth) functionals of SDEs is the mul-
tilevel Monte Carlo method, see [17] and [13]. Combining approximations using different
step-sizes in a way that reduces the overall variance this method usually is significantly more
efficient than standard Monte Carlo. However, the method requires a good L2-convergence
rate for the approximations which is often not easy to achieve for discontinuous functionals,
see [6, 14].

In this article we are interested to compute

Ef(ST )
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for general, e.g. discontinuous, payoff functionals f : [0,∞) → R by means of multilevel Monte
Carlo methods. For this, we will prove that under certain assumptions such an expected payoff
can be written as

Ef(ST ) = E

(
F (ST )

ST
·Π
)

(1.1)

where F : [0,∞) → R is an antiderivative of f and

Π = 1 +
1√

1− ρ2T
·
∫ T

0

1√
vr

dW 2
r (1.2)

Thus even for discontinuous f the expectation on right hand side of (1.1) contains a continuous
functional of the price as well as a weight term independent of the functional. The proof of
this representation formula relies on a Malliavin integration by parts technique. Moreover, we
will show that this approach can be easily extended to multidimensional Heston models.

Based on the representation formula (1.1), which smoothes the original payoff functional,
we will then construct a multilevel estimator for p = Ef(ST ) that uses a log-Euler method
for the Heston price, an Euler method for the Malliavin weight, and a drift-implicit Lamperti-
Euler method for the volatility (see e.g. [2, 9]). The latter method preserves the strict
positivity for the volatility, which is crucial for the discretization of the Malliavin weight
(1.2). Combined with a payoff-splitting to reduce the variance of the Malliavin weight, this
estimator outperforms the direct multilevel Monte Carlo estimator for Ef(ST ) in our numer-
ical experiments. We strongly suppose that this a general feature of the presented Malliavin
integration by parts multilevel estimator and a complete error analysis will be carried out in
a forthcoming project to justify this conjecture.

The remainder of this manuscript is structured as follows: In the following three sections
we derive the required Malliavin regularity of the CIR- and CEV-processes and also of the
Heston price. Note that we could treat the CIR- and CEV-process simultaneously (using the
notation γ ∈ [1/2, 1)), but in our opinion this would be less accessible to the reader. The
proofs for the CEV-process follow the same ideas as for the CIR-process, so in the analysis
of the CEV-process (which is a bit more technical) we only outline the differences. Formula
(1.1) is estalished in Section 5, while Section 6 studies the multidimensional case. Finally, in
Section 7 we present the used multilevel Monte Carlo method, while Section 8 contains our
numerical results. The appendix lists some required results from Malliavin calculus and other
stochastic analysis tools.

2. The CIR-process. The first volatility process considered in this paper is the well known
Cox-Ingersoll-Ross (CIR) process defined by the SDE

dvt = κ(λ− vt)dt+ θ
√
vtdWt, v0 > 0 (2.1)

for κ, λ, θ > 0. A theorem of Yamada and Watanabe (see [22, Prop. 5.2.13]) implies that
this SDE possesses a unique strong solution. We will always work under the so called Feller
condition for the CIR-process:

Assumption 2.1.
2κλ > θ2
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It turns out that this assumption is necessary for our mathematical analysis and often met
in stock markets, see e.g. [10, 27, 1]. This condition in particular guarantees that

P (vt > 0 ∀t ∈ [0, T ]) = 1

for all T > 0, see e.g. [21, Lemma 2.2], and the existence of inverse moments up to a certain
order:

Lemma 2.2. Assume that 2κλ > pθ2 for some p ∈ R. Then

sup
t∈[0,T ]

E(v−pt ) <∞

Proof. This follows from [19, Thm. 3.1]. See also [9].

Moreover, all moments of the maximum of the CIR-process exist:

Lemma 2.3. We have E supt∈[0,T ] v
p
t <∞ for all p ≥ 1.

Proof. See Lemma 3.2 in [9].

For a major part of this article we will consider the square root of the volatility, which we
denote σt :=

√
vt, instead of the volatility itself. The Itō formula shows that σt follows the

SDE

dσt =

((
κλ

2
− θ2

8

)
1

σt
− κ

2
σt

)
dt+

θ

2
dWt (2.2)

The constant diffusion term is no surprise because the square root is up to the factor 2/θ
the Lamperti transformation of the CIR-process. In the following we set Cσ := κλ/2− θ2/8,
which is positive by (2.1).

2.1. Approximation of the square root CIR-process. To prove that σt and vt are Malli-
avin differentiable, we will follow an article of Alòs and Ewald [4] and approximate σt by a
process whose SDE has Lipschitz coefficients. This allows us to use standard results from
Malliavin calculus. Because we later want to show the differentiability of 1/σt and St we
cannot use the results of [4] directly and have to choose a different function fε than Alòs and
Ewald.

For each ε > 0 let fε be a function that satisfies:

(i) fε ∈ C∞(R;R>0) with bounded derivative,
(ii) fε(x) =

1
x for all x ≥ ε,

(iii) fε is monotonically decreasing,
(iv) fε(x) ≤ 1

x for all x ∈ R>0,

(v) |f ′ε(x)| ≤ 1
x2

=
∣∣( 1
x

)′∣∣ for all x ∈ R>0.

Now define a process σεt by the SDE

dσεt =
(
Cσfε(σ

ε
t )−

κ

2
σεt

)
dt+

θ

2
dWt, σε0 =

√
v0 (2.3)

Because the coefficients satisfy the usual Lipschitz and linear growth conditions this SDE has
a unique strong solution.
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Proposition 2.4. For almost all ω ∈ Ω we have σεt (ω) = σt(ω) for all t ∈ [0, T ] and all
0 < ε < ε0(ω) := inft∈[0,T ] σt(ω). In particular

sup
t∈[0,T ]

|σεt − σt| → 0

holds almost surely for ε→ 0.

Proof. Comparing the SDEs in integral form yields for all ε > 0 and almost all ω ∈ Ω that

|σεt (ω)− σt(ω)| ≤
∫ t

0
Cσ

∣∣∣∣fε(σ
ε
τ (ω))−

1

στ (ω)

∣∣∣∣ dτ +
∫ t

0

κ

2
|σετ (ω)− στ (ω)| dτ, t ∈ [0, T ]

Fix an ω such that the path σ·(ω) is positive. Then for 0 < ε < ε0(ω) the functions fε and
g : R>0 → R>0, g(x) = 1/x coincide on the path σ·(ω), i.e. fε(σt(ω)) = g(σt(ω)) for all
t ∈ [0, T ]. Thus we have

|σεt (ω)− σt(ω)| ≤
∫ t

0

(
CσLε +

κ

2

)
|σετ (ω)− στ (ω)| dτ, t ∈ [0, T ],

where Lε is a Lipschitz constant for fε. By Gronwall’s lemma it follows that σt(ω) = σεt (ω)
for all t ∈ [0, T ].

Note that the last proposition does not imply that σε has almost surely positive paths. In
fact, when σ falls below ε, the approximation σε might fall below 0, too.

Lemma 2.5. Let ut be an Ornstein-Uhlenbeck process given by the SDE

dut = −κ
2
utdt+

θ

2
dWt, u0 = σ0 (2.4)

Then P (ut ≤ σεt ≤ σt ∀t ∈ [0, T ]) = 1.

Proof. (This follows the proof of [4, Prop. 2.1], but with fε instead of Λε.)

(1) We first show ut(ω) ≤ σεt (ω) uniformly in t and for almost all ω. The diffusion
coefficients of (2.3) and (2.4) are the same while the drift coefficient of ut is smaller than the
one of σεt . By the Yamada-Watanabe comparison lemma (see Theorem 9.1 in the Appendix)
we have P (ut ≤ σεt ∀ t ∈ [0, T ]) = 1.

(2) The comparison lemma cannot be used to prove the second inequality since the drift
term in the SDE for σt is not continuous on R. But because σt > 0 it suffices to show the
inequality vεt := (σεt )

2 ≤ σ2t = vt. The SDE for vεt is

dvεt =

(
2Cσ

√
vεt fε(

√
vεt )− κvεt +

θ2

4

)
dt+ θ

√
vεtdWt, vε0 = v0 (2.5)

Now the drift and diffusion terms are continuous on R (set
√
x = 0 for x ≤ 0 to define

the drift and diffusion coefficients on R≤0) and we can apply the comparison lemma after we
have verified its remaining conditions. Condition (ii) of the comparison lemma can be fulfilled
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choosing h(x) = θ
√
x because of

√
|x− y| ≥ |√x − √

y| for all x, y ≥ 0. Since we assumed
fε(x) ≤ 1/x for all x > 0 and thus fε(

√
x)
√
x ≤ 1, condition (iv) follows from

κλ ≥ θ2

4
⇒
(
κλ− θ2

4

)(√
x · fε(

√
x)
)
≤ κλ− θ2

4

⇒ Cσ
(√
x · fε(

√
x)
)
− κx+

θ2

4
≤ κ(λ− x)

For the final condition (v) it suffices if only one of the drift coefficients is Lipschitz-continuous,
which R ∋ x 7→ κ(λ− x) ∈ R clearly is.

Proposition 2.6. For each p ≥ 1 we have supt∈[0,T ] |σεt − σt| → 0 in Lp.

Proof. From the previous lemma we obtain

sup
t∈[0,T ]

|σεt − σt| ≤ sup
t∈[0,T ]

|σt − ut| ≤ sup
t∈[0,T ]

|σt|+ sup
t∈[0,T ]

|ut|

We have supt∈[0,T ] σt ∈ Lp by Lemma 2.3 and it is a standard application of Doob’s martingale
inequality that an Ornstein-Uhlenbeck process ut satisfies supt∈[0,T ] |ut| ∈ Lp. Thus the claim
follows from Proposition 2.4 using dominated convergence.

2.2. Malliavin differentiability of the CIR-process. Because the volatility depends on
only one Brownian motion, we will use one-dimensional Malliavin calculus in this section.
The underlying Hilbert space is thus given by H = L2([0, T ]).

Proposition 2.7. We have σεt ∈ D
1,∞ and

Drσ
ε
t =

θ

2
· exp

(∫ t

r

(
−κ
2
+ Cσf

′
ε(σ

ε
s)
)
ds

)
· 1[0,t](r) ≤

θ

2
(2.6)

Proof. The claim σεt ∈ D
1,∞ and the form of the derivative follow from Theorem 9.4. Note

that we can only apply this result because the coefficients of the SDE for σε are differentiable
with bounded derivatives on the whole of R. The θ/2-bound is clear because f ′ε(x) ≤ 0 (this is
not true for the corresponding function Λε in [4]).

Proposition 2.8. We have σt ∈ D
1,∞ and the derivative is given by

Drσt =
θ

2
· exp

(∫ t

r

(
−κ
2
− Cσ
σ2s

)
ds

)
· 1[0,t](r) ≤

θ

2
(2.7)

Additionally the following uniform convergence holds true almost surely and in Lp for all
p ≥ 1:

sup
r,t∈[0,T ]

|Drσ
ε
t −Drσt| → 0

as ε→ 0.

Proof. Set

vr,t =
θ

2
· exp

(∫ t

r

(
−κ
2
− Cσ
σ2s

)
ds

)
· 1[0,t](r)
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From Proposition 2.4 we know that for almost all ω ∈ Ω we have ε0(ω) := infs∈[0,T ] σs(ω) > 0
and σεs(ω) = σs(ω) for all 0 < ε < ε0(ω) and s ∈ [0, T ]. Hence comparing the integrals in
(2.6) and (2.7) and using the definition of fε we have

Drσ
ε
t (ω) = vr,t(ω)

for r, t ∈ [0, T ] and all 0 < ε < ε0(ω). Since ε does not depend on r, t ∈ [0, T ] this shows

sup
r,t∈[0,T ]

|Drσ
ε
t − vr,t| → 0 a.s.

as ε→ 0 and the Lp(Ω)-convergence follows by dominated convergence. Hence D·σεt → v·,t in
Lp(Ω;H) and this implies D·σt = v·,t due to the closedness of the Malliavin derivative.

Theorem 2.9. The Heston volatility vt is in D
1,∞ and has the derivative

Drvt = 2σt ·Dr(σt) = θ · exp
(∫ t

r

(
−κ
2
− Cσ

vt

)
ds

)
· √vt · 1[0,t](r) (2.8)

Proof. This follows from the Malliavin chain rule Theorem 9.2.

Our quadrature rule will contain the inverse of the square root volatility. As a preparation
we prove now its differentiability.

Proposition 2.10. The inverse square root volatility σ−1
t is in D

1,2 with derivative Drσ
−1
t =

−σ−2
t ·Drσt.
Proof. Fix t ∈ [0, T ]. By the chain rule Theorem 9.2 we have fε(σt) ∈ D

1,2 with derivative
f ′ε(σt) ·Drσt. This converges almost surely to −1/σ2t ·Drσt and its absolute value is bounded
by θ

2 · 1/σ2t (see (2.7)) which is in Lp(Ω) due to Lemma 2.2. This implies 1/σt ∈ D
1,2 and the

given form of the derivative.

3. The CEV-process. In this section we will prove the same results as in the previous
one for a new volatility process which differs from the CIR-process only in the exponent of

the diffusion term. For γ ∈ (1/2, 1) and κ, λ, θ > 0 define v
(γ)
t by the SDE

dv
(γ)
t = κ(λ− v

(γ)
t )dt+ θ

(
v
(γ)
t

)γ
dWt (3.1)

Again [22, Prop. 5.2.13] guarantees the existence of a strong solution. In the literature this
process is denoted as mean-reverting constant elasticity of variance process (CEV), see e.g.
[21, 24]. In the following, we will usually omit the index γ on each process.

In contrast to the CIR-process we do not need further restrictions on the parameters to
ensure that vt remains positive, i.e. we have

P
(
vt > 0 ∀t ∈ [0, T ]

)
= 1

for all T > 0, see [5, Prop. 2.1]. Also its moments of any order exist:

Lemma 3.1. Let p ≥ 0. Then

E sup
t∈[0,T ]

vpt <∞



7

and

sup
t∈[0,T ]

E(v−pt ) <∞

Proof. See Lemma 2.1 in [7].

As for the CIR-process we will use a scaled Lamperti’s transformation to replace the SDE
by one with a constant diffusion coefficient. In this case the transformation takes the form
σt := v1−γt and leads to the SDE

dσt = (1− γ)

(
κλσ

− γ
1−γ

t − κσt −
γθ2

2
σ−1
t

)
dt+ θ(1− γ)dWt (3.2)

Now set

f(x) := κλx
− γ

1−γ − γθ2

2
x−1

so that

dσt = (1− γ) (f(σt)− κσt) dt+ θ(1− γ)dWt

Note that

sup
xց0

f(x) = ∞ and sup
x→∞

f(x) = 0,

so there exists a Cf ≥ 0 with

f(x) ≥ −Cfx ∀x ∈ R>0

Finally, since

f ′(x) = − κλγ

1− γ
x
− 1

1−γ +
γθ2

2
x−2

we have

sup
x∈R>0

f ′(x) <∞

3.1. Approximation of the CEV-volatility. Again we will modify (3.2), replace f by a
C∞-function and approximate σ by the solution of this modified SDE. For each ε > 0 choose
a function fε with

(i) fε ∈ C∞(R;R) with bounded derivative,
(ii) fε = f on [ε,∞),
(iii) fε is monotonically decreasing on (−∞, 0],
(iv) fε(x) ≤ f(x) for x ∈ R>0,
(v) f ′ε(x) ≤ f ′(x) for all x ∈ R>0,
(vi) fε(x) ≥ −Cfx for all x ∈ R>0.

Now define σεt by the modified SDE

dσεt = (1− γ)(fε(σ
ε
t )− κσεt )dt+ θ(1− γ)dWt, σε0 = σ0 (3.3)
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Proposition 3.2. For almost all ω ∈ Ω we have σεt (ω) = σt(ω) for all t ∈ [0, T ] and 0 < ε <
ε0(ω) := inft∈[0,T ] σt(ω). In particular we have

sup
t∈[0,T ]

|σεt − σt| → 0

almost surely for ε→ 0.

Proof. This can be shown completely analogously to Proposition 2.4.

Lemma 3.3. Let ut be the solution of the SDE

dut = −(1− γ)(Cf + κ)utdt+ θ(1− γ)dWt, u0 = σ0 (3.4)

Then P (ut ≤ σεt ≤ σt ∀t ∈ [0, T ]) = 1 for all ε > 0.

Proof. (1) We first show ut ≤ σεt . The diffusion coefficients of (3.3) and (3.4) are the
same while the drift coefficient of ut is smaller than that of σεt . So Theorem 9.1 gives P (ut ≤
σεt ∀ t ∈ [0, T ]) = 1.

(2) The comparison lemma cannot be used to prove σεt ≤ σt directly because the drift
term in the SDE for σt is not continuous on R. But because σt > 0 it suffices to show the

corresponding inequality after the back transformation vεt := (σεt )
1/(1−γ) ≤ σ

1/(1−γ)
t = vt. The

SDE for vεt is

dvεt =

[
(vεt )

γfε((v
ε
t )

1−γ)− κvεt +
γθ2

2
(vεt )

2γ−1

]
dt+ θ(vεt )

γdWt vε0 = v0 (3.5)

Now the drift and diffusion terms are continuous on R, if we set xα = 0 for α ∈ (0, 1) and x <
0, and it remains to verify the conditions (ii)-(v) of the comparison lemma. Condition (ii) can
be fulfilled choosing h(x) = θ · xγ since this function is concave and satisfies

∫ ε
0 x

−2γdx = ∞.
For condition (iv) note that the drift coefficient of vεt is

x 7→ xγfε(x
1−γ)− κx+

θ2γ

2
x2γ−1

for x > 0, while for x < 0 it is

x 7→ −κx

Due to assumption (iv) for fε we have

xγfε(x
1−γ) +

θ2γ

2
x2γ−1 ≤ xγf(x1−γ) +

θ2γ

2
x2γ−1 = κλ

for x > 0, while for x < 0 we clearly have −κx ≤ κ(λ − x). For the final condition (v) it
suffices that the drift coefficient of vt is Lipschitz-continuous.

The following Proposition can be shown again identically as its analogon for the square
root CIR-process.

Proposition 3.4. For each p ≥ 1 we have supt∈[0,T ] |σεt − σt| → 0 in Lp as ε→ 0.
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3.2. Differentiability of the CEV-volatility. As in Proposition 2.7 we use Theorem 9.4 to
obtain σεt ∈ D

1,∞ and to compute the derivative as

Drσ
ε
t = θ(1− γ) · exp

(∫ t

r
(1− γ)

(
f ′ε(σ

ε
s)− κ

)
ds

)
· 1[0,t](r)

Note that this derivative is not necessarily bounded by θ(1−γ) as it was with the CIR-process.
However, it is bounded by θ(1− γ) · exp

(
T (1− γ) · supx∈R>0

f ′(x)
)
because f ′ε(x) ≤ f ′(x) for

x > 0 and f ′ε(x) ≤ 0 for x ≤ 0. Using this bound and the previous approximation results one
can prove the following proposition exactly as Proposition 2.8.

Proposition 3.5. We have σt ∈ D
1,∞ and the derivative is given by

Drσt = θ(1− γ) · exp
(∫ t

r
(1− γ)(f ′(σs)− κ)ds

)
· 1[0,t](r) (3.6)

Additionally the following uniform convergence holds true almost surely and in Lp for all
p ≥ 1:

sup
r,t∈[0,T ]

|Drσ
ε
t −Drσt| → 0

as ε→ 0.

The chain rule Theorem 9.2 shows:

Theorem 3.6. The volatility process vt is in D
1,∞ and has the derivative

Drvt =
1

1− γ
(σt)

γ
1−γ ·Drσt (3.7)

= θvγt · exp
(∫ t

r

(
−κλγ

vs
+
θ2

2

γ(1− γ)

v
2(1−γ)
s

− κ(1− γ)

)
ds

)
· 1[0,t](r)

Later on we need:

Proposition 3.7. The inverse square root volatility 1/
√
vt is in D

1,2 with derivative

Dr

(
1√
vt

)
= − 1

2(1− γ)
v
− 3

2
+γ

t ·Drσt

Proof. By the chain rule Theorem 9.2 we have
√
fε(vt) ∈ D

1,2 with

Dr(
√
fε(vt)) =

1

2
· f ′ε(vt)√

fε(vt)
·Drvt =

1

2(1− γ)
· f ′ε(vt)√

fε(vt)
· σ

γ
1−γ

t ·Drσt

where fε is the approximation of R>0 ∋ x 7→ 1/x ∈ R>0 from Section 2. By dominated
convergence

√
fε(vt) → 1/

√
vt in L

p(Ω) and

Dr(
√
fε(vt)) → − 1

2(1− γ)
v
−3/2
t · σ

γ
1−γ

t ·Drσt

in Lp(Ω;H). Because the Malliavin derivative is a closed operator, the last term must be the
derivative Dr(1/

√
vt).
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4. The Price Process. This section deals with the price process St given by

dSt = bStdt+
√
vtStdBt (4.1)

Here vt is either the CIR- or the CEV-process and Bt = ρ ·W 1
t +

√
1− ρ2 ·W 2

t is a Brownian
motion composed of two indepedent Brownian motions, with W 1 being the Brownian motion
driving vt. To calculate the derivative of the price we will concentrate on the log-price Xt :=
lnSt. Itō’s formula shows that Xt can be given explicitly in terms of the volatility:

dXt =

(
b− 1

2
vt

)
dt+

√
vtdBt (4.2)

We will again use an approximation by an SDE with Lipschitz coefficients. For ε > 0 let ψε
be a function such that

(i) ψε : R → R is bounded and continuously differentiable,
(ii) |ψε(x)| ≤ |x| for all x ∈ R,
(iii) ψε(x) = x on [0, 1/ε],
(iv) |ψ′

ε(x)| ≤ 1 for all x ∈ R.

Denote by σε the approximation to the transformed volatility σt = v1−γt of Section 2 (with
γ = 1/2) or Section 3. To obtain the derivative we define Xε

t by

Xε
t = X0 +

∫ t

0

(
b− 1

2
ψ

1
1−γ
ε (σεs)

)
ds+

∫ t

0
ψ

1
2(1−γ) (σεs)dBs

Lemma 4.1. For each p, q ≥ 1 we have

E sup
t∈[0,T ]

|σqt − ψqε(σ
ε
t )|

p → 0

as well as
E sup
t∈[0,T ]

∣∣σqt − ψqε(σ
ε
t ) · ψ′

ε(σ
ε
t )
∣∣p → 0

Proof. By Propositions 2.4 and 3.2 for almost all ω there exists an ε0(ω) > 0 such that
ε < σt(ω) = σεt (ω) < 1/ε for all t ∈ [0, T ] and 0 < ε < ε0(ω). For such ω and ε we have

sup
t∈[0,T ]

|σqt (ω)− ψqε(σ
ε
t (ω))| = sup

t∈[0,T ]

∣∣σqt (ω)− ψqε(σ
ε
t (ω)) · ψ′

ε(σ
ε
t (ω))

∣∣ = 0

Also, both suprema are bounded by 2 supt∈[0,T ] |σt|q. Since this is Lp-integrable, the assertion
follows by dominated convergence.

Proposition 4.2.We have supt∈[0,T ] |Xε
t −Xt| → 0 in Lp for all p ≥ 1.

Proof. From the SDEs we obtain the following inequality for some constant c > 0:

E sup
t∈[0,T ]

|Xε
t −Xt|p ≤ c · E sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(
σ

1
1−γ
s − ψ

1
1−γ
ε (σεs)

)
ds

∣∣∣∣
p

+ c · E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
σ

1
2(1−γ)
s − ψ

1
2(1−γ)
ε (σεs)

)
dBs

∣∣∣∣
p
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The first term converges to zero by the previous lemma. For the second iterm we use the
Burkholder-Davis-Gundy inequality as well as |x − y|2 ≤ |x2 − y2| for x, y ≥ 0: There is a
constant c such that

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
σ

1
2(1−γ)
s − ψ

1
2(1−γ)
ε (σεs)

)
dBs

∣∣∣∣
p

≤ c · E
(∫ T

0

∣∣∣σ
1

1−γ
s − ψ

1
1−γ
ε (σεs)

∣∣∣ds
)p/2

which converges to zero again by the previous lemma.

Theorem 4.3. The log-price Xt is in D
1,p for all p ≥ 1 and its derivative is given by

D1
rXt = ρ

√
vr −

1

2(1− γ)
·
∫ t

0
σ

γ
1−γ
s Drσsds+

1

2(1− γ)
·
∫ t

0
σ

1
2(1−γ)

−1
s DrσsdBs

D2
rXt =

√
1− ρ2

√
vr

for r ≤ t and D1
rXt = D2

rXt = 0 else. Moreover for each r ∈ [0, T ] and i ∈ {1, 2} the uniform
convergence

sup
t∈[0,T ]

|Di
rXt −Di

rX
ε
t | → 0

holds in Lp(Ω).

Proof. Because the system of SDEs for Xε
t and σεt has globally Lipschitz coefficients, we

can use Theorem 9.4 to calculate the derivatives: For r ≤ t we have

D1
rX

ε
t = ρψ

1
2(1−γ)
ε (σεr)−

1

2(1− γ)
·
∫ t

r
ψ

γ
1−γ
ε (σεs)tψ

′
ε(σ

ε
s)D

1
rσ

ε
sds

+
1

2(1− γ)
·
∫ t

r
ψ

1
2(1−γ)

−1
ε (σεs)ψ

′
ε(σ

ε
s)D

1
rσ

ε
sdBs

D2
rX

ε
t =

√
1− ρ2ψ

1
2(1−γ)
ε (σεr)

The second derivative and the first term of the first one converge to ρ
√
vr and

√
1− ρ2

√
vr,

respectively, using Lemma 4.1. Now consider the second term of the first derivative:

sup
t∈[0,T ]

∣∣∣∣
∫ t

r

(
ψ

γ
1−γ
ε (σεs)ψ

′
ε(σ

ε
s)D

1
rσ

ε
s − σ

γ
1−γ
s D1

rσs

)
ds

∣∣∣∣

≤ T · sup
s∈[0,T ]

∣∣∣∣ψ
γ

1−γ
ε (σεs)ψ

′
ε(σ

ε
s)− σ

γ
1−γ
s

∣∣∣∣ · sup
s∈[0,T ]

|D1
rσ

ε
s|

+ T · sup
s∈[0,T ]

∣∣∣σ
γ

1−γ
s

∣∣∣ · sup
s∈[0,T ]

∣∣∣D1
rσ

ε
s −D1

rσs
∣∣

This converges to 0 in Lp(Ω) using Lemma 4.1, Lemma 2.2/3.1 and Proposition 2.8/3.5. Con-
vergence of the third term of the first derivative can be shown analogously, using additionally
the Burkholder-Davis-Gundy inequality.

It is well known that in the generalized Heston model moment explosions may appear, see
e.g. [5]. For the existence of the moments for all T > 0, one has the following result (see [12]):
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Theorem 4.4. Let u ∈ [1,∞) and define

T ∗(u) = inf{t ≥ 0 : ESut = ∞}

(1) For the Heston model with the CIR-process (γ = 1
2) as volatility process we have

T ∗(u) = ∞ ⇔ ρ ≤ −
√
u− 1

u
+

κ

θu

(2) For the Heston model with the CEV-process (γ ∈ (12 , 1)) as volatility process we have

T ∗(u) =





∞ for ρ < −
√

u−1
u

0 for ρ > −
√

u−1
u

Based on the following result one can check the Malliavin smoothness of St:

Theorem 4.5. Assume St ∈ Lp+ε(Ω) for some p ≥ 1 and ε > 0. Then the Heston price St
is in D

1,p and its derivative is DSt = St ·DXt.

Proof. Because Xt ∈ D
1,∞ we have St ·DXt ∈ Lp(Ω;H). Now the claim follows directly

from the chain rule Theorem 9.2.

5. Quadrature. Now we can turn to the derivation of our quadrature formula. We will
make the following assumption on the payoff function f :

Assumption 5.1. Assume that f : R≥0 → R is a measurable function bounded by a polyno-
mial p and that F : R≥0 → R is an antiderivative of f given by F (x) =

∫ x
0 f(z)dz. Furthermore

assume that there is an ε > 0 such that ST ∈ Lmax{2, deg p}+ε.

The following Lemma is a final technical preparation.

Lemma 5.2. For all p ≥ 0 we have

E

(∫ T

0

1√
vs

ds

)p
<∞

Proof. If v is the CIR-process this is [9, Lemma 3.1]. In the CEV-case the claim follows
from Lemma 3.1.

Theorem 5.3. If Assumption 5.1 holds true and if in the case γ = 1/2 Assumption 2.1 is
satisfied, then we have

E(f(ST )) = E

(
F (ST )

ST
·
(
1 +

1√
1− ρ2T

·
∫ T

0

1√
vs

dW 2
r

))

Proof. (1) First assume that f is bounded and that there exists an ε > 0 such that f(x) = 0
for all x < 3ε. Moreover, let ψ = ψε be a function such that

(i) ψ : R>0 → R≥0 is continuously differentiable,
(ii) ψ(x) = 1 for x > 2ε,
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(ii) ψ(x) = 0 for x < ε.

Under our assumptions Theorem 9.2 together with Theorem 9.3 prove that F (ST ) belongs
to D

1,2 with derivative DF (ST ) = f(ST ) ·DST . Thus

E(f(ST )) =
1

T
· E
(∫ T

0
f(ST ) ·D2

rST · 1

D2
rST

dr

)

=
1

T
· E
(∫ T

0
f(ST )D

2
rST · 1

D2
rST

ψ(ST )dr

)

=
1

T
· E
(∫ T

0
D2
r(F (ST )) ·

1

D2
rST

ψ(ST )dr

)

Now we can use the integration by parts rule of Malliavin calculus and Theorems 4.3 and 4.5
to obtain

E(f(ST )) =
1

T
· E
(
F (ST ) · δ

(
ψ(ST )

D2
rST

))

=
1

T
· E
(
F (ST ) ·

1√
1− ρ2

· δ
(
ψ(ST )

ST
· 1√

vr

))

where the Skorohod integral integrates over r and with respect to W 2. In order to calculate
this integral, we use Proposition 1.3.3 from [26], whose prerequisites we will check now (see
Lemma 9.5 in the appendix of this manuscript):

(i) Due to our assumptions we have ST ∈ D
1,2. Since R≥0 ∋ x 7→ ψ(x)

x ∈ R is bounded

with bounded first derivative, the chain rule implies that ψ(ST )
ST

∈ D
1,2.

(ii) Proposition 2.10 or 3.7 and the discussion of L1,2 in [26, p. 42] imply that 1/
√
v· ∈

dom δ.
(iii) ψ(ST )/(ST

√
v·) ∈ L2(Ω;H): Here we have

E

∫ T

0

(
ψ(ST )

ST
√
vr

)2

dr ≤ ε−2 · E
(∫ T

0

1

vr
dr

)
<∞

by Lemma 5.2.
(iv) ψ(ST )/ST · δ(1/√v) ∈ L2(Ω) follows similarly using the Itō-isometry because the Sko-

rohod integral equals
∫ T
0 1/

√
vr dW

2
r .

Since moreover
〈
D2·
(
ψ(ST )

ST

)
,

1√
v·

〉

H

=

〈(
ψ′(ST )

ST
− ψ(ST )

S2
T

)
D2· ST ,

1√
v·

〉

H

=
√

1− ρ2
〈
ψ′(ST )

√
v·,

1√
v·

〉
−
√

1− ρ2
〈
ψ(ST )

ST

√
v·,

1√
v·

〉

=
√

1− ρ2T ·
(
ψ′(ST )−

ψ(ST )

ST

)
,
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which is square-integrable by our assumptions, we have

δ

(
ψ(ST )

ST
· 1√

v·

)
=
ψ(ST )

ST
·
∫ T

0

1√
vr

dW 2
r −

√
1− ρ2T ·

(
ψ′(ST )−

ψ(ST )

ST

)

Hence we have shown that

E(f(ST )) = E

(
F (ST ) ·

1√
1− ρ2T

· ψ(ST )
ST

·
∫ T

0

1√
vr

dW 2
r

)

− E

(
F (ST ) ·

(
ψ′(ST )−

ψ(ST )

ST

))

But since F (x) = 0 for x ≤ 3ε and ψ(x) = 1 for x > 2ε we have

F (ST )
ψ(ST )

ST
=
F (ST )

ST
= F (ST ) ·

(
ψ(ST )

ST
− ψ′(ST )

)

and the assertion follows.
(2) Now let f be bounded. Then there exists functions fn such that |fn(x)| ≤ |f(x)| for

x ∈ R≥0, fn(x) = 0 for x < 1/n and fn → f Lebesque-almost everywhere. From (1) we have

E(fn(ST )) = E

(
Fn(ST )

ST
·Π
)

where Fn(x) :=
∫ x
0 fn(z)dz and the weight

Π := 1 + (
√

1− ρ2T )−1

∫ T

0

√
vs

−1dW 2
s

is in Lq(Ω) for all q ≥ 0 by the Burkholder-Davis-Gundy inequality and Lemma 5.2. Since
fn → f almost everywhere and |fn| ≤ |f |, we have Fn → F almost everywhere due to domi-
nated convergence. Moreover, supx∈R≥0

|Fn(x)/x| is uniformly bounded in n ∈ N.
Using that ST is absolute continuous with respect to the Lebesgue measure by Theorem 9.3

we have by dominated convergence

E(f(ST )) = lim
n→∞

E(fn(ST )) = lim
n→∞

E

(
Fn(ST )

ST
·Π
)

= E

(
F (ST )

ST
·Π
)

(3) Now consider the general case. Choose bounded functions fn such that |fn| ≤ |f |
and fn → f almost everywhere. Define Fn(x) :=

∫ x
0 fn(z)dz and P (x) :=

∫ x
0 p(z)dz. Then

Fn → F almost everywhere due to dominated convergence. By our assumptions we have
|fn(ST )| ≤ |f(ST )| ≤ |p(ST )| ∈ L1(Ω) and, because P (x)/x is a polynomial of degree deg p,

∣∣∣∣
Fn(ST )

ST

∣∣∣∣ ≤
∣∣∣∣
F (ST )

ST

∣∣∣∣ ≤
∣∣∣∣
P (ST )

ST

∣∣∣∣ ∈ L1+ε/ deg p(Ω)

Since the weight Π is in Lq(Ω) for all q ≥ 0 we obtain

F (ST )

ST
·Π ∈ L1(Ω)

Again the assertion follows by dominated convergence.
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6. Multidimensional Heston Models. In this section we will extend our quadrature for-
mula of Theorem 5.3 to functionals in the multidimensional Heston model, i.e. to (Si, vi),
i = 1, . . . , d, given by the SDEs

(
dSit
dvit

)
=

(
bi Sit
0 κi(λi − vit)

)
dt+

(√
vitS

i
t 0

0 θi(v
i
t)
γi

)(
dBi

t

dW i
t

)
(6.1)

with bi ∈ R, κi, λi, θi > 0 and γi ∈ [1/2, 1) for i = 1, . . . , d. Here Bi,W i, i = 1, . . . , d, are
(possibly) correlated Brownian motions.

It remains to specify the covariance matrix of (B,W ), i.e.

Σ(B,W ) =

(
(EBi

1B
j
1)i,j=1,...,d (EBi

1W
j
1 )i,j=1,...,d

(EW i
1B

j
1)i,j=1,...,d (EW i

1W
j
1 )i,j=1,...,d

)

Assumption 6.1.

(a) Assume 2κiλi
θ2i

> 1 or γi > 1/2 for all i = 1, . . . , d.

(b) Assume that Σ(B,W ) is positive definite.

Under assumption (b), we can find an upper 2d × 2d-triangular matrix R with positive
values on the diagonal such that

Z := R−1

(
B
W

)

is a standard 2d-dimensional Brownian motion, i.e. the components of Z are independent
Brownian motions. For this define the linear transformation

g : R2d,2d → R
2d,2d, g(A)ij := A2d+1−i, 2d+1−j , i, j = 1, . . . , 2d

Then g(Σ) := g(Σ(B,W )) is the covariance matrix of (Wn, . . . , W1, Bn, . . . , B1), and let LLT =
g(Σ) be its Cholesky decomposition. Then R = g(L) is an upper triangular matrix and fulfills
RRT = Σ(B,W ).

Lemma 6.2. Let Z be defined as above and Sit ∈ L2+ε, i = 1, . . . , d. The Brownian motion
Z1 is independent of (Sjt )t∈[0,T ] if and only if j 6= 1. Using the partial Malliavin derivative

DZ1
defined in the appendix we have in particular

DZ1

r Xj
t =

{
R11 ·

√
v1r · 1[0,t](r) j = 1

0 j 6= 1
(6.2)

and

DZ1

r Sjt =

{
S1
t ·R11 ·

√
v1r · 1[0,t](r) j = 1

0 j 6= 1
(6.3)

Proof. By construction we have that Z1 and Bj ,W i, j = 2, . . . , d, i = 1, . . . , d, are inde-
pendent, which implies the first claim.
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These independence relations allow us to easily calculate Malliavin derivatives with respect
to Z1 (see the appendix for this type of derivative).

DZ1

r B1
t =

2d∑

k=1

R1,k ·DZ1

r Zkt = R11 · 1[0,t](r)

Similarly we obtain

DZ1
(Bj

t ) = 0 for j 6= 1

DZ1
(W i

t ) = 0 for i = 1, . . . , d

Now we can easiliy calculate the derivatives of the price processes.

An application of Theorem 4.5 and Theorem 9.3 shows that for fixed i = 1, . . . , d the
Heston price Sit is absolute continuous with respect to the Lebesgue measure if Sit ∈ L2+ε(Ω).
For our multidimensional quadrature formula we also need the existence of a joint density.

Theorem 6.3. Let t ∈ [0, T [ and Sit ∈ L2+ε(Ω), i = 1, . . . , d. Then the law of the random
vector St is absolutely continuous with respect to the Lebesgue measure on R

d.
Proof. It suffices to prove that the law of Xt is absolutely continuous. This assertion

follows from [26, Lemma 2.1.1], if we can show that

|E(∂iϕ(Xt))| ≤ c · 1
t
· ‖ϕ‖∞

for all ϕ ∈ C∞
b (Rd;R) and each i = 1, . . . , d for some constant c > 0.

Case 1: i = 1. Applying the standard chain rule (ϕ is differentiable) and writing D1 for DZ1

and δ1 for δZ
1
, we have

|E(∂1ϕ(Xt))| =
1

t
·
∣∣∣∣E
(∫ t

0
∂1ϕ(Xt) ·D1

rX
1
t ·

1

D1
rX

1
t

dr

)∣∣∣∣

=
1

t
·
∣∣∣∣E
(∫ t

0
D1
rϕ(Xt) ·

1

D1
rX

1
t

dr

)∣∣∣∣

By (6.2) we have (D1·X1
t )

−1 = (R11σ
1· )−1. As seen in the proof of Theorem 5.3, this

is in the domain of δ1 and thus we can apply the integration by parts rule.

=
1

t
·
∣∣∣∣E
(
ϕ(Xt) · δi

(
1

D1X1
t

))∣∣∣∣

≤ 1

t
· ‖ϕ‖∞ · E

∣∣∣∣δ
1

(
1

D1X1
t

)∣∣∣∣

Case 2: i 6= 1. This can be shown analogously to the first case by using a reordering of the
Brownian motions so that Bi is the first one.

Now we will extend the quadrature formula to the multidimensional setting. For notational
convenience we restrict ourselves to the smoothing of the first component.



17

Assumption 6.4. Assume that f : (R≥0)
n → R is a measurable function, which is almost

everywhere continuous and is bounded by a polynomial p. Furthermore let F : (R≥0)
n → R be

given by F (x) =
∫ x1
0 f(ξ, x2, . . . , xn)dξ for all x ∈ (R≥0)

n. Finally assume that there is an

ε > 0 such that SiT ∈ Lmax{2, deg p}+ε for all i = 1, . . . , d.

Theorem 6.5. If Assumptions 6.1 and 6.4 hold true, we have

E(f(ST )) = E

(
F (ST )

S1
T

·
(
1 +

1

R11T
·
∫ T

0

1√
v1s

dZ1
r

))

Proof. First assume again that f is bounded and that there exists an ε > 0 such that
f(x) = 0 for all |x| < 3ε. Moreover, let ψ = ψε be again the smooth localizing function with
ψ(x) = 0 for x < ε and ψ(x) = 0 for x > 2ε from the proof of Theorem 5.3. By Lemma 6.2
the first Brownian motion Z1 is independent of all price processes but the first. To simplify
notation we will write D for the partial derivative DZ1

and δ for δZ
1
. The previous theorem

allows us to apply the chain rule Proposition 9.6 to F (ST ). Using the integration by parts rule
of Malliavin calculus and formula (6.3) we obtain

E(f(ST )) =
1

T
· E
(∫ T

0
f(ST ) ·DrS

1
T · 1

DrS1
T

dr

)

=
1

T
· E
(∫ T

0
Dr(F (ST )) ·

ψ(S1
T )

DrS1
T

dr

)

=
1

T
· E
(
F (ST ) · δ

(
ψ(S1

T )

DrS1
T

))

=
1

T
· E
(
F (ST ) ·

1

R11
· δ
(
ψ(S1

T )

S1
T

· 1√
v1r

))

where the Skorohod integral integrates over r. To compute the Skorohod integral we can use
the same proof as in Theorem 5.3 but using DZ1

instead of D2 and

D

(
ψ(S1

T )

S1
T

)
=

(
ψ′(S1

T )

S1
T

− ψ(S1
T )

(S1
T )

2

)
·DS1

T

The extension to general f is exactly the same as in Theorem 5.3.

In the case of a so called basket option

f(ST ) = g

(
d∑

i=1

aiS
i
T

)

with g : R≥0 → R and ai ≥ 0, i = 1, . . . , d, the function F : (R≥0)
d → R is given by

F (x) =
1

a1

(
G

(
d∑

i=1

aixi

)
−G

(
d∑

i=2

aixi

))
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with an arbitrary antiderivative G of g. For options of the form

f(ST ) = g(S1
T )h(S

2
T , . . . , S

d
T )

with h : (R≥0)
d−1 → R we get

F (x) = G(x1)h(x
2, . . . , xd)

for G(x) =
∫ x
0 g(ξ)dξ. Turning to log-coordinates again, i.e. Xi

T = log(SiT ), we have the
following smoothness result:

Proposition 6.6. If f : (R≥0)
d → R is bounded by C ≥ 0, then

G̃ : R → R G̃(x) :=
1

ex1
·
∫ ex1

0
f(ξ, x2, . . . , xd)dξ

is bounded by C and globally Lipschitz-continuous.
Proof. Clearly G̃(x) ≤ e−x1Cex1 = C. For x, y ∈ (R≥0)

d with x1 < y1 we have

|G̃(ey1)− G̃(ex1)| =
∣∣∣∣
1

ey1
·
∫ ey1

ex1
f(ξ, x2, . . . , xd)dξ +

(
1

ey1
− 1

ex1

)
·
∫ ex1

0
f(ξ, x2, . . . , xd)dξ

∣∣∣∣

≤
∣∣∣∣
C

ey1
(ey1 − ex1)

∣∣∣∣+
∣∣∣∣

C

ex1ey1
(ey1 − ex1)ex1

∣∣∣∣
= 2C(1− ex1−y1)

≤ 2C(1− (1 + x1 − y1))

= 2C(y1 − x1)

7. Multilevel Monte Carlo. Multilevel Monte Carlo is a powerful method for variance
reduction introduced by S. Heinrich [17] for parametric integration and by M. Giles [13] for
the quadrature of SDEs.

Assume we want to compute

p = Ef(ST ),

where f : (R≥0)
d → R and ST is given by the d-dimensional generalized Heston model (6.1).

While in the one-dimensional case PDE methods, see e.g. [20], or FFT methods [8] can be
applied, one has to rely on Monte Carlo methods in higherdimensional settings. The standard

Monte Carlo approach uses a simulatable approximation S
(h)
T of ST based on a discretization

of the driving Brownian motions with stepsize h and an average of N independent copies of

S
(h)
T to estimate p, i.e.

p ≈ 1

N

N∑

i=1

f
(
S
(h),(i)
T

)

The multilevel Monte Carlo method instead relies on approximations S
(hl)
T to ST with

different stepsizes hl = M−lT , l = 0, . . . , L, with M ∈ N,M ≥ 2. Its idea is to use the
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telescoping sum

Ef
(
S
(hL)
T

)
= Ef

(
S
(h0)
T

)
+

L∑

l=1

E
(
f
(
S
(hl)
T

)
− f

(
S
(hl−1)
T

))

to estimate the expectations on the right hand side using independent standard Monte Carlo
estimators

Ef
(
S
(h0)
T

)
≈ P̂0 =

1

N0

N0∑

i=1

f
(
S
(h0),(i)
T

)
,

Ef
(
S
(hl)
T

)
≈ P̂l =

1

Nl

Nl∑

i=1

(
f
(
S
(hl),(i)
T

)
− f

(
S
(hl−1),(i)
T

))
, l = 1, . . . , L,

and to balance the variance and the computational cost of the summands, i.e. the number of
random variables, arithmetic operations and function evaluations, in an optimal way. Here

the S
(h0),(i)
T are independent copies of S

(h0)
T and the (S

(hl),(i)
T , S

(hl−1),(i)
T ) are independent copies

of (S
(hl)
T , S

(hl−1)
T ), which use the same sample paths of the Brownian motion. The multilevel

Monte Carlo estimator of the quantity p is then given by

P̂ =
L∑

l=0

P̂l,

where the estimators P̂l, l = 0, . . . , L, of the different levels have to be independent.
Based on estimates for the weak error

∣∣Ef(S(h)
T )− p

∣∣ ≤ cα · hα

and the strong error

E
∣∣f(S(h)

T )− f(ST )
∣∣2 ≤ cβ · h2β

with cα, cβ , α, β > 0, the number of levels L and the number of repetitions Nl, l = 1, . . . , L,
can be chosen such that the mean square error satisfies

E|p− P̂ |2 ≤ ε2

with

computational cost ≤ cα,β





ε−2 if β > 1
(log(ε))2ε−2 if β = 1

ε−2− 1−β
α if β < 1

for a given accuracy ε > 0. Here the constant cα,β depends only on α, β, cα, cβ . In particular,
the multilevel Monte Carlo estimator outperforms the standard estimator for moderate and
high accuracies ε > 0.

The above multilevel estimator has two drawbacks if applied to the generalized Heston
model with general payoffs. It relies on good strong convergence properties, i.e. β ≥ 1,
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and also on the knowledge of cα, cβ , α and β. However for discontinuous functionals f the
strong convergence rates of approximations schemes deteriorate: In [6, 14] it is shown that a
discontinuity leads to a halving of the strong convergence rate of the approximation scheme.
Also, sharp weak convergence rates for the generalized Heston model have not been established
so far up to the best of our knowledge.

Our integration by parts result, i.e. Theorem 6.5, circumvents one of theses problem. Here
we have shown that

E(f(ST )) = E

(
F (ST )

S1
T

·
(
1 +

1

R11T
·
∫ T

0

1√
v1s

dZ1
r

))
(7.1)

and for several types of functionals f , the arising functional

(Rd>0) ∋ x 7→ F (x)

x1
∈ R

is locally or globally Lipschitz, see Section 6. Clearly, in the globally Lipschitz case the strong
convergence rate of the approximation scheme for ST is retained when applied to F (ST )/S

1
T .

Concerning the problem of knowing cα, cβ , α and β, M. Giles presented in [13] a heuristic
algorithm, which chooses the Nl’s adaptively and can be used without knowledge of cα, cβ , α
and β, see Algorithm 1.

Input: error tolerance ε, initial samples Nini

Output: estimation for E(f(ST ))
1 L := 0
2 Generate NL = Nini samples for level L
3 Estimate the variance VL from these samples

4 Compute Nl for l = 0, . . . , L using the formula Nl :=

⌈
2 · ε−2

√
Vlhl

(
L∑

l=0

√
Vl/hl

)⌉

5 If an Nl surpasses the number of samples generated on level l so far, generate
additional samples

6 For l = 0, . . . , L set P̂l to the mean of the samples on level l

7 if L ≥ 2 and the convergence condition max
{
M−1|P̂L−1|, |P̂L|

}
<

1√
2
(M − 1)ε holds

8 then return

L∑

l=0

P̂

9 else L := L+ 1 and goto step 2

Algorithm 1: Adaptive Multilevel Monte Carlo

We will use this algorithm with M = 2 and Nini = 500.
Before we can finally apply this adaptive multilevel estimator together with a suitable

approximation scheme for

E

(
F (ST )

S1
T

·
(
1 +

1

R11T
·
∫ T

0

1√
v1s

dZ1
r

))
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we need to take care of the fact that the variance of the weight

Π = 1 +
1

R11T
·
∫ T

0

1√
v1s

dZ1
r

is typically very high, because it contains the inverse of the typically low volatility. When
applied directly, our multilevel estimator would benefit from the smoothing of the func-
tional only for very small error tolerances ε. To solve this problem we split the payoff in
a Lipschitz continuous part g and a discontinuous part h with small support and apply the
quadrature formula only to the latter part. To be precise, given f = g + h and H with
H(x) =

∫ x1
0 h(ξ, x2, . . . , xd)dξ, where f, g, h,H : (R≥0)

d → R, we apply the multilevel estima-
tor to the functional

g(ST ) +
H(ST )

S1
T

·Π (7.2)

8. Numerical Results. It remains to specify the numerical methods for the approximation
of the Heston prices and the weight Π. As pointed out the diffusion coefficients of the volatility
processes do not satisfy the usual global Lipschitz assumption, so the standard theory for the
approximation of SDEs (see e.g. [23]) cannot be applied. However, recently ([2, 9, 3, 25]) it
has been shown that the discretization of the Lamperti-transformed volatility process with a
backward Euler-scheme leads to a positivity preserving scheme that also attains the standard
convergence rates from the global Lipschitz case.

So we consider the transformed volatility processes σit = (vit)
1−γi and price processes

Xi
t = log(Sit), i.e.

(
dXi

t

dσit

)
=

(
bi − 1

2(σ
i
t)

2

(1− γi)
(
fi(σ

i
t)− κiσ

i
t

)
)
dt+

(
σit 0
0 θi(1− γi)

)(
dBi

t

dW i
t

)

with

fi(x) := κiλix
−

γi
1−γi − γiθ

2
i

2
x−1

Recall that the Brownian motions Bi,W i are given as

(
B
W

)
= R · Z where Z is a 2d-

dimensional Brownian motion and R ∈ R
2n×2n is an invertible upper triangular matrix. Using

these notations we finally set

P = g(eX
1
T , . . . , eX

d
T ) +

H(eX
1
T , . . . , eX

d
T )

eX
1
T

·Π (8.1)

with

Π = 1 +
1

R11T
·
∫ T

0

1

σ1s
dZ1

s (8.2)

As already mentioned, we discretize the transformed volatility processes with the backward
Euler scheme with step size ∆ > 0, i.e.

σ̂ik+1 = σ̂ik + (1− γi)
(
fi(σ̂

i
k+1)− κiσ̂

i
k+1

)
∆

+ (1− γi)θi(W
i
(k+1)∆ −W i

k∆), k = 0, 1 . . .
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where σ̂i0 = σi0. Under Assumption 6.1(a) this scheme is positivity-preserving, i.e.

P
(
σ̂ik > 0, k = 0, 1, . . .

)
= 1 (8.3)

Moreover, in the case γ = 1/2 the above implicit equation has the explicit solution

σ̂ik+1 =
σ̂ik +

θi
2 (W

i
(k+1)∆ −W i

k∆)

2 + κi∆
+

√√√√
(
σ̂ik +

θi
2 (W

i
(k+1)∆ −W i

k∆)
)2

(2 + κi∆)2
+

(κiλi − θ2i
4 )∆

2 + κi∆
,

while in the general case it can be solved using standard zero-finding methods. We discretize
then the log-price XT and the weight Π using the Euler scheme, which yields

X̂i
N = log(Si0) + bT − 1

2

N−1∑

k=0

(σ̂ik)
2∆+

N−1∑

k=0

σ̂ik
(
Bi

(k+1)∆ −Bi
k∆

)

and

Π̂ = 1 +
1

R11T

N−1∑

k=0

1

σ̂ik∆
(Z1

(k+1)∆ − Z1
k∆)

where N ∈ N with N∆ = T . Note that our approximation of Π is well defined due to (8.3)
and that the results of [9, 3] imply the strong error estimate

(
E
∣∣Xi

T − X̂i
N

∣∣p)1/p ≤ Kp,i ·
√
∆ for

{
1 ≤ p < 2κiλi

θ2i
if γi =

1
2

1 ≤ p <∞ else

with Kp,i > 0. Furthermore set ŜiT := exp(X̂i
T ), ŶT =

∑d
i=1 Ŝ

i
T and YT =

∑d
i=1 S

i
T .

As prototype examples for options with discontinuous payoffs we will consider digital op-
tions in the one-dimension (extended) Heston model as well as digital basket options in a
three-dimensional model. More precisely, we will consider the functional 1[0,d·S0] and approx-
imate p = E(1[0,d·S0](YT )) in the following models:

(a) One-dimensional Heston model. Here the parameters are taken from [1]:

T = 2, b = 0, κ = 5.07, λ = 0.0457, θ = 0.48, ρ = −0.767, v0 = λ, S0 = 100

Note that this choice of parameters ensures that ST ∈ L2+ε for some ε > 0 due to
Theorem 4.4.

(b) One-dimensional extended Heston model. We use T = 2, b = 0, and again parameters
from [1]:

κ = 4.1031, λ = 0.0451, θ = 0.8583, γ = 0.6545, ρ = −0.760, v0 = λ, S0 = 100

The correlation is again sufficiently negative to ensure that ST ∈ L2+ε.
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(c) Three-dimensional Heston model. Again we set T = 2, b1 = b2 = b3 = 0. Here
the parameters are taken from [10]. However, we modified ρ1, ρ2 to avoid negative
correlations close to −1.

κ1 = 1.0121, λ1 = 0.2874, θ1 = 0.7627, ρ1 = −0.7137, v10 = 0.2723, S1
0 = 100,

κ2 = 0.5217, λ2 = 0.2038, θ2 = 0.4611, ρ2 = −0.8322, v20 = 0.2536, S2
0 = 100,

κ3 = 0.5764, λ3 = 0.1211, θ3 = 0.3736, ρ3 = −0.4835, v30 = 0.1539, S3
0 = 100

The different volatility processes are independent while the different price processes
are correlated according to the following correlation matrix

ΣS =




1 0.0246 0.0598
0.0246 1 0.6465
0.0598 0.6465 1




Again all prices belong to L2+ε.
(d) Three-dimensional extended Heston model. Because we did not find parameters for

this model in the literature, we took the same as in (c), but with γ1 = 0.63, γ2 = 0.68,
γ3 = 0.71.

Figures 1 show a comparison of the following three algorithms at different error tolerances
ε in these models.

(i) Standard Monte Carlo (using ⌈ε−2⌉ iterations and a stepsize of ⌈T/ε⌉)
(ii) Adaptive Multilevel Monte Carlo using the discontinuous payoff directly, i.e. simulating

1[0,d·S0](ŶT )
(iii) Adaptive Multilevel Monte Carlo using the quadrature formula and payoff splitting.

For a δ ∈ (0, 1) we use the splitting

g(x) =





1 x < (1− δ)K

− 1
2δ (x−K) + 0.5 x ∈ [(1− δ)K, (1 + δ)K]

0 x > (1 + δ)K

and h = 1[0,K]−g, H(x) =
∫ x
0 h(z)dz. As discussed before the algorithm then simulates

g(ŶT ) +
H(ŶT )

Ŝ1
T

· Π̂

For each algorithm a series of error tolerances was chosen and the algorithm was executed 500
times for each tolerance. The figures plot the the mean cost against the relative mean-square
error, both on logarithmic scale (base 2). Since we the exact value of p is unknown, the
reference value pref has been computed using algorithm (iii) with a very small error tolerance.
For each algorithm the figures contain a least squares line that has been fitted to the data
points to estimate the convergence rates.

The (random) cost of the multilevel algorithms was measured by the total number of
discretization steps, i.e.

cost := d ·
(
N0 +

L∑

l=1

Nl · (M l +M l−1)

)
(8.4)
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where d is the dimension of the model. Note that we account for the additional cost of
computing two approximations for each level l ≥ 1. The mean cost is then given by the
average over 500 repetitions of the algorithm. Analogously, the cost of the standard Monte
Carlo is also measured by the total number of discretization steps, i.e. ⌈ε−2⌉ · ⌈T/ε⌉. Finally,
the empirical relative root mean-square error is given by

rmsq error =

√√√√ 1

500

500∑

j=1

|P̂ (j) − pref |2
p2ref

Figure 8.1 shows that algorithm (iii) is between 2 and 4 times faster than algorithm (ii),
i.e. acchieves the same accuracy with between one half and one fourth of the computational
cost, and both are much faster than the standard Monte Carlo algorithm (i). However, further
numerical tests have shown that it is important to choose a good splitting parameter: For the
figures the parameter δ which governs the payoff-splitting was set to values between 0.1 and
0.4. Higher values of δ lead in fact to an algorithm worse than algorithm (ii).

Table 8.1 contains the estimated convergence rates. As already mentioned, a detailed error
analysis will be carried out in a forthcoming project.

Algorithm Model (a) Model (b) Model (c) Model (d)

(i) Monte Carlo 0.333 0.327 0.335 0.334
(ii) Adaptive MLMC 0.379 0.370 0.353 0.355

(iii) Ad. MLMC+Malliavin Quadrature 0.392 0.385 0.381 0.388

Table 8.1: Estimated convergence rates

Table 8.2 contains the measured running times for a single run (averaged over 100 runs)
using error tolerance ε = 2−8 for algorithms (ii) and (iii) and ε = 2−7.5 for algorithm (i).
Using these tolerances all three algorithms given an empirical relative mean-square error of
approximately 2−7.5 and the running times are thus comparable.

Algorithm Model (a) Model (b) Model (c) Model (d)

(i) Monte Carlo 0.91 5.27 7.84 28.85
(ii) Adaptive MLMC 0.32 1.20 1.47 5.68

(iii) Ad. MLMC+Malliavin Quadrature 0.11 0.62 0.96 2.03

Table 8.2: Measured running times in seconds
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Figure 8.1

(a) d = 1, γ = 0.5, δ = 0.3 (b) d = 3, γ = 0.5, δ = 0.1

(c) d = 1, γ = 0.6545, δ = 0.2 (d) d = 3, γ = (0.63, 0.68, 0.7), δ = 0.15

9. Appendix.

9.1. Comparison Theorem. The following theorem from [22] allows to compare two diffu-
sions with the same diffusion coefficient but different drifts. In Lemma 2.5 and 3.4 we applied
it with h(x) = xγ with γ ∈ [1/2, 1).

Theorem 9.1 (Prop. 5.2.18 in [22]). For j ∈ {1, 2} let Xj be a continuous adapted process
such that

Xj
t = Xj

0 +

∫ t

0
bj(s,X

j
s )ds+

∫ t

0
σ(s,Xj

s )dWs, t ∈ R≥0

Assume that the following conditions hold:

(i) the coefficients σ(t, x) and bj(t, x) are continuous functions on R≥0 × R,
(ii) σ(t, x) satisfies |σ(t, x) − σ(t, y)| ≤ h(|x − y|) for every t ≥ 0 and all x, y ∈ R and a
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strictly increasing function h : R≥0 → R≥0 with h(0) = 0 and

∫ ε

0
h−2(u)du = ∞

for all ε > 0,
(iii) X1

0 ≤ X2
0 almost surely,

(iv) b1(t, x) ≤ b2(t, x) for all t ≥ 0, x ∈ R,
(v) either b1 or b2 is Lipschitz continuous, i.e. for j = 1 or j = 2 there exists a K > 0

such that |bj(t, x)− bj(t, y)| ≤ K · |x− y| for all x, y ∈ R

Then P (X1
t ≤ X2

t ∀ t ≥ 0) = 1.

9.2. Malliavin Calculus. The Malliavin calculus extends stochastic analysis by adding
a derivative operator, which can be interpreted to measure the influence of the underlying
Brownian motion at a specific time on the differentiated random variable.

Let W = (W 1, . . . ,W d) be a d-dimensional Brownian motion on a probability space
(Ω,F , P ) and fix an endtime T > 0. Denote by C∞

pol(R
n;R) the functions f : Rn → R which

are infinitely often differentiable such that f and all of its partial derivatives of any order are
bounded by polynomials. We call a random variable X smooth, if it can be written as

X = f

(∫ T

0
h1(s)dWs, . . . ,

∫ T

0
hn(s)dWs

)

with f ∈ C∞
pol(R

n;R) and hi ∈ H := L2([0, T ];Rd) for i = 1, . . . , n. The set of smooth random
variables is denoted by S.

For this class of random variables the Malliavin derivative is defined by the H-valued
random variable

DX =
n∑

i=1

∂if

(∫ T

0
h1(s)dWs, . . . ,

∫ T

0
hn(s)dWs

)
· hi

In particular DW i
t = 1[0,t](·) · ei where ei is the i-th unit vector in R

d. It can be shown
that this definition is independent of the representation of X in terms of the used function
f and the Wiener integrals

∫ T
0 h(s)dWs. Furthermore, the above operator is closable from

S ⊂ Lp(Ω,F , P ) to Lp(Ω,F , P ;H) for every p ≥ 1 and the final Malliavin derivative is
defined as the closure of the above operator. The class of differentiable random variables D1,p

is then given by

D
1,p =

{
X ∈ Lp(Ω) : ∃(Xn)n∈N ⊂ S, Y ∈ Lp(Ω;H) s.t.

Xn → X in Lp(Ω)
DXn → Y in Lp(Ω;H)

}

and the derivative DX ∈ Lp(Ω;H) is defined as the limit Y = limn→∞DXn for any ap-
proximating sequence Xn (the closability of the operator precisely guarantees that this is
well-defined). The derivative is a d-dimensional random function and we write Di

rX for the
i-th component evaluated at r ∈ [0, T ]. Note that while the set of differentiable random vari-
ables depends on the chosen Lp-norm, the actual derivative does not depend on it. In any
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case only random variables which are measurable with respect to the underlying Brownian
motions can be treated in Malliavin calculus. We denote by D

1,∞ := ∩p≥1D
1,p the set of

random variables differentiable w.r.t. all p ≥ 1.
A main tool for the derivation of the quadrature rule is the chain rule. Because we apply

it to the antiderivative of a discontinuous function, it is important that the chain rule does
not require the function to be differentiable.

Theorem 9.2. Let ϕ : Rm → R be a locally Lipschitz function. Assume X = (X1, . . . , Xm)
is a random vector with components in D

1,p. If
• ϕ(X) ∈ Lp(Ω),
• ∂iϕ(X) ·DXi ∈ Lp(Ω;H) for each i = 1, . . . ,m,
• and the set of x ∈ R

m where ϕ is not partially continuously differentiable is a PX-null
set,

then the chain rule holds: ϕ(X) ∈ D
1,p and its derivative is given by

Dϕ(X) =

n∑

i=1

∂iϕ(X) ·DXi

Here we define ∂iϕ := 0 on the set of points, where ∂iϕ does not exist.
Note that by the Theorem of Rademacher [11, §5.8.3, Theorem 6] this set is a Lebesgue-null

set and hence the third assumption is always fulfilled, if the law of X is absolute continuous
with respect to the Lebesgue measure.

Proof. The derivative is a closed operator, so in order to prove the chain rule for a function
ϕ, it is sufficient to find functions ϕn such that ϕn(X) → ϕ(X) in Lp(Ω), the chain rule holds
for all ϕn and ∂iϕn(X) ·DXi → ∂iϕ(X) ·DXi in L

p(Ω;H) for all i = 1, . . . ,m.
In the first step assume that ϕ is globally Lipschitz and bounded. For each n ∈ N choose

a function ψn : R
m → R≥0 such that ψn ∈ C∞, suppψn ⊂ [−1/n, 1/n]m and

∫
ψndx = 1 (see

for example [28, pp. 82-83]). Define ϕn := ϕ ∗ ψn. It is easily shown that ϕn(X) → ϕ(X) in
Lp(Ω) and that ∂iϕn is bounded by the Lipschitz-constant of ϕ. By Proposition 1.2.3 in [26]
the chain rule holds for functions which are continuously differentiable with bounded partial
derivatives and thus for all ϕn. Furthermore

|∂iϕn(X)− ∂iϕ(X)| ≤
∫

Rm

|∂iϕ(y)− ∂iϕ(X)| · ψn(X − y)dy

For all ω ∈ Ω such that ∂iϕ is continuous at X(ω) this converges to zero. By dominated
convergence we have ∂iϕn(X) ·DXi → ∂iϕ(X) ·DXi in L

p(Ω;H) and the chain rule is shown.

In the next step assume that ϕ is only locally Lipschitz, but bounded. Choose an increasing
sequence of natural numbers nk such that P (‖X‖∞ = nk) = 0 for all k ∈ N. Define ϕk(x) :=
ϕ(−nk ∨ x ∧ nk). Note that by construction the set of x ∈ R

m where ϕk is not differentiable,
is still a PX -null set. By the first part of the proof the chain rule holds for ϕk. Because ϕ is
bounded we have ϕk(X) → ϕ(X) in Lp(Ω) and by dominated convergence ∂iϕk(X) ·DXi →
∂iϕ(X) ·DXi in L

p(Ω;H). This proves the chain rule for ϕ.

To extend the chain rule finally to unbounded functions choose an increasing sequence
of natural numbers nk such that P (|ϕ(X)| = nk) = 0 and use the approximation ϕk(x) :=
−n ∨ ϕ(x) ∧ n in a similar way as above.
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To check the third condition of the previous theorem, the following result is particularly
useful (Theorem 2.1.3 in [26]):

Theorem 9.3. Let X ∈ D
1,p for some p ≥ 1 and assume ‖DX‖H > 0 almost surely. Then

X is absolutely continuous with respect to the Lebesgue measure on R.

Finally, we need a theorem to compute derivatives of stochastic processes given by SDEs.

Theorem 9.4. Let Wt, t ∈ [0, T ], be an m-dimensional Brownian motion and let Xt, t ∈
[0, T ], be given by the d-dimensional SDE

dXt = b(Xt)dt+ σ(Xt)dWt

Assume that both b : Rd → R
d and σ : Rd → R

d×m are continuously differentiable with bounded
derivative. Then Xi(t) ∈ D

1,∞ for all t ∈ [0, T ], i = 1, . . . , d. The derivative Dj
rXi(t) satisfies

almost everywhere the equation

Dj
rX

i(t) = σij(X(r)) +
d∑

k=1

m∑

l=1

∫ t

r
∂kσil(s)D

j
rX

k(s)dW l(s) +
d∑

k=1

∫ t

r
∂kbi(X(s))Dj

rX
k(s)ds

for r ≤ t and the equation Dj
rXi(t) = 0 for r > t.

Proof. This is a simplified version of Theorem 2.2.1 in [26] together with the remark
following that theorem.

The second important operator in Malliavin calculus is the divergence operator which in
the case of an underlying Brownian motion is called Skorohod integral. It is denoted by δ and
defined as adjoint operator of the derivative on D

1,2, i.e. the domain is given by

dom δ :=
{
u ∈ L2(Ω;H) : X 7→ 〈DX,u〉L2(Ω;H) is continuous on D

1,2
}

and on this set the Skorohod integral is defined (by Riesz’ representation theorem) as the
unique δ(u) ∈ L2(Ω) such that

〈DX,u〉L2(Ω;H) = 〈X, δ(u)〉L2(Ω) ∀ X ∈ D
1,2

This is also known as the integration by parts rule of Malliavin calculus and can be written
as

E

(∫ T

0
〈Dr(X), u(r)〉Rd dr

)
= E(X · δ(u)) ∀ X ∈ D

1,2, u ∈ dom δ

Further analysis shows that for an adapted process u the Skorohod integral δ(u) coincides

with
∫ T
0 u(s)dWs and hence it can be viewed as an extension of the Itō-integral.

To compute Skorohod integrals of non-adapted integrands, the following lemma is useful:

Lemma 9.5 (Prop. 1.3.3 in [26]). Let F ∈ L2(Ω) and u ∈ L2(Ω;H) such that the following
conditions hold:

(i) F ∈ D
1,2,

(ii) u ∈ dom δ,
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(iii) Fu ∈ L2(Ω;H),
(iv) Fδ(u)− 〈DF, u〉H ∈ L2(Ω).

Then Fu ∈ dom δ and δ(Fu) = Fδ(u)− 〈DF, u〉H .
To derive the quadrature formula for a large class of multidimensional functionals in

Theorem 6.5, we will need a derivative operator that differentiates only with respect to one
specific Brownian motion. Let a ∈ R

d with ‖a‖2 = 1. Then Bt := 〈Wt, a〉Rd defines a
Brownian motion. For X ∈ D

1,p we define the derivative with respect to B as the L2([0, T ])-
valued random variable given by

DB
r X = 〈DrX, a〉Rd , r ∈ [0, T ]

On random variables which are measurable w.r.t. to B this derivative coincides with the usual
derivative in the one-dimensional Malliavin calculus w.r.t. B. If X ∈ Lp(Ω) is independent of
B, then DB = 0.

The adjoint of DB is defined for all u ∈ Lp(Ω;L2([0, T ])) such that u · a ∈ dom δ. For
such u it is given by δB(u) = δ(u · a). The chain rule Theorem 9.2 and Lemma 9.5 are easily
extended to DB and δB.

The chain rule can even be extended to functions which are not locally Lipschitz continuous
in some directions, as long as the random variables in those directions are independent of B:

Proposition 9.6. Let B be a Brownian motion on (Ω,F , P ) and X = (X1, . . . , Xm) a ran-
dom vector with components in D

1,p and set A := {i = 1, . . . ,m : DBXi 6= 0}. Assume
ϕ : Rd → R is continuous except on a PX-zero set and assume that ϕ is locally Lipschitz con-
tinuous in all directions ei, i ∈ A: For all i ∈ A, x ∈ R

d there exists a constant Li(x) and
ǫi(x) > 0 such that |ϕ(x+ hei)− ϕ(x)| ≤ Li · h for all 0 ≤ h ≤ ǫi(x). Then ϕ(X) ∈ D

1,p and
its derivative is given by

DBϕ(X) =
∑

i∈A

∂iϕ(X) ·DBXi

Proof. First assume that ϕ is bounded and globally Lipschitz continuous in all directions
ei, i ∈ A. We will reuse the mollifier functions from the proof of Theorem 9.2. Because
the chain rule holds for ϕ ∗ ψn we only have to prove ϕ ∗ ψn(X) → ϕ(X) in Lp(Ω) and
∂iϕ ∗ ψn(X) · DBXi → ∂iϕ(X) · DBXi in Lp(Ω;L2([0, T ])) for i ∈ A. As in the proof of
Theorem 9.2 we have

|ϕ ∗ ψn(X)− ϕ(X)|p → 0,

because ϕ is continuous PX-almost everywhere. Moreover, this expression is bounded by
2p supx∈Rm |ϕ(x)|p, so we have also convergence to 0 in Lp(Ω). Furthermore

∣∣(∂i(ϕ ∗ ψn)(X)− ∂iϕ(X)) ·DBXi

∣∣p ≤
∫

Rd

|∂iϕ(y)− ∂iϕ(X)|p · ψn(X − y)p · |DBXi|pdy

This converges to 0 for all ω such that ∂iϕ is continuous at X(ω). By dominated convergence
we also have convergence in Lp(Ω;H) and the assertion is proven.

The extension to unbounded and locally Lipschitz functions is the same as in Theorem 9.2.



30

REFERENCES
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