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Hit-and-run for numerical integration

Daniel Rudolf

Abstract We study the numerical computation of an expectation of a bounded
function f with respect to a measure given by a non-normalized density on a con-
vex bodyK ⊂ R

d . We assume that the density is log-concave, satisfies a variability
condition and is not too narrow. In [19, 25, 26] it is requiredthatK is the Euclidean
unit ball. We consider general convex bodies or even the wholeR

d and show that
the integration problem satisfies a refined form of tractability. The main tools are the
hit-and-run algorithm and an error bound of a multi run Markov chain Monte Carlo
method.

1 Introduction and results

In many applications, for example in Bayesian inference, see [5, 8], or in statistical
physics, see [18, 27], it is desirable to compute an expectation of the form

∫

K
f (x)πρ (dx) =

∫

K
f (x)cρ(x)dx,

where the probability measureπρ is given by the densitycρ with c > 0. The nor-
malizing constant of the density

1
c
=

∫

K
ρ(x)dx

is not known and hard to compute. We want to have algorithms that are able to
compute the expectation without any precompution ofc.
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2 Daniel Rudolf

More precisely, letρ :Rd → R+ be a possibly non-normalized density function,
let K = supp(ρ)⊂R

d be a convex body and letf :K →R be integrable with respect
to πρ . For a tuple( f ,ρ) we define the desired quantity

A( f ,ρ) =
∫

K f (x)ρ(x)dx
∫

K ρ(x)dx
. (1)

In [19] a simple Monte Carlo method is considered which evaluates the numerator
and denominater ofA( f ,ρ) on a common independent, uniformly distributed sam-
ple in K. There it must be assumed that one can sample the uniform distribution in
K. The authors show that this algorithm is not able to use any additional structure,
such as log-concavity, of the density function. But they show that such structure can
be used by Markov chain Monte Carlo which then outperforms the simple Monte
Carlo method.

Markov chain Monte Carlo algorithms for the integration problem of the form
(1) are considered in [19, 21, 25, 26]. Basically it is always assumed thatK is the
Euclidean unit ball rather than a general convex body. We extend the results to the
case whereK might even be the wholeRd if the density satisfies some further prop-
erties. We do not assume that we can sample with respect toπρ . The idea is to
computeA( f ,ρ) by using a Markov chain which approximatesπρ . We prove that
the integration problem (1) satisfies an extended type of tractability. Now let us in-
troduce the error criterion and the new notion of tractability.

Error criterion and algorithms. Let t:N×N→ N be a function and letAn,n0 be
a generic algorithm which usest(n,n0) Markov chain steps. Intuitively, the number
n0 determines the number of steps to approximateπρ . The numbern determines the
number of pieces of information off used by the algorithm. The error is measured
in mean square sense, for a tuple( f ,ρ) it is given by

e(An,n0( f ,ρ)) =
(

E
∣

∣An,n0( f ,ρ)−A( f ,ρ)
∣

∣

2
)1/2

,

where E denotes the expectation with respect to the joint distribution of the used
sequence of random variables determined by the Markov chain.

For example the algorithm might be a single or multi run Markov chain Monte
Carlo. More precisely, assume that we have a Markov chain with limit distribution
πρ and letX1, . . . ,Xn+n0 be the firstn+ n0 steps. Then

Sn,n0( f ,ρ) =
1
n

n

∑
j=1

f (X j+n0)

is an approximation ofA( f ,ρ) and the functiont(n,n0) = n+ n0. In contrast to the
single run Markov chain Monte CarloSn,n0 one might consider a multi run Markov
chain Monte Carlo, sayMn,n0, given as follows. Assume that we haven independent
Markov chains with the same transition kernel, the same initial distribution and limit
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distributionπρ . Let X1
n0
, . . . ,Xn

n0
be the sequence of then0th steps of the Markov

chains, then

Mn,n0( f ,ρ) =
1
n

n

∑
j=1

f (X j
n0
)

is an approximation ofA( f ,ρ). In this setting the functiont(n,n0) = n ·n0.

Tractability. In [19, 21] a notion of tractability for the integration problem (1) is
introduced. It is assumed that‖ f‖∞ ≤ 1 and that the density function satisfies

supx∈K ρ(x)
infx∈K ρ(x)

≤ γ,

for someγ ≥ 3. Letsε,γ(n,n0) be the minimal number of function values of( f ,ρ) to
guarantee anε-approximation with respect to the error above. Then the integration
problem is called tractable with respect toγ if sε,γ (n,n0) depends polylogarithmi-
cally onγ and depends polynomially onε−1, d. We extend this notion of tractability.
We study a class of tuples( f ,ρ) which satisfy‖ f‖∞ ≤ 1 and we assume that for any
ρ there exists a setG ⊂ K such that forκ ≥ 3 holds

∫

K ρ(x)dx
vold(G) infx∈G ρ(x)

≤ κ , (2)

where vold(G) denotes thed-dimensional volume ofG. Then we call the integra-
tion problem tractable with respect toκ if the minimal number of function values
tε,κ(n,n0) of ( f ,ρ) to guarantee anε-approximation satisfies for some non-negative
numbersp1, p2 andp3 that

tε,κ(n,n0) = O(ε−p1d p2[logκ ]p3), ε > 0, d ∈N, κ ≥ 3.

Hence we permit only polylogarithmical dependence on the number κ , since it
might be very large (e.g. 1030 or 1040). The extended notion of tractability allows us
to considerK = supp(ρ) = R

d .

The structure of the work and the main results are as follows.We use the hit-
and-run algorithm to approximateπρ . An explicit estimate of the total variation
distance of the hit-and-run algorithm, proven by Lovász and Vempala in [15, 16],
and an error bound of the mean square error ofMn,n0 are essential. In Section 2 we
provide the basics on Markov chains and prove an error bound of Mn,n0. In Section 3
we define the class of density functions. Roughly we assume that the densities are
log-concave, that for anyρ there exists a setG ⊂ K such that condition(2) holds
for κ ≥ 3 and that the densities are not too narrow. Namely, we assumethat level
sets ofρ of measure larger than 1/8 contain a ball with radiusr. We distinguish
two settings which guarantee that the densities are not too spread out. Either the
convex bodyK = supp(ρ) is bounded by a ball with radiusR around 0, then we say
ρ ∈ Ur,R,κ , or the support ofρ is bounded in average sense,
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∫

K

∣

∣x− xρ
∣

∣

2 πρ(dx)≤ 4R2,

wherexρ =
∫

K xπρ(dx) ∈ R
d is the centroid. Then we sayρ ∈ Vr,R,κ . For precise

definitions see Section 3. In Section 4 we provide the hit-and-run algorithm and
state convergence properties of the algorithm for densities fromUr,R,κ andVr,R,κ .
Then we show that the integration problem (1) is tractable with respect toκ , see
Section 5. Forρ ∈ Ur,R,κ we obtain in Theorem 4 that

tε,κ(n,n0) = O(d2 [logd]2 ε−2 [logε−1]3 [logκ ]3). (3)

For ρ ∈ Vr,R,κ we find in Theorem 5 a slightly worse bound of the form

tε,κ(n,n0) = O(d2 [logd]2 ε−2 [logε−1]5 [logκ ]5). (4)

Here theO notation hides the polynomial dependence onr andR.
In [19, 21, 25, 26] it is proven that the problem (1) is tractable with respect toγ

for K = Bd , whereBd denotes the Euclidean unit ball. Note that forG = Bd we have
∫

K ρ(x)dx
vold(G) infx∈G ρ(x)

≤ supx∈K ρ(x)
infx∈K ρ(x)

≤ γ.

Furthermore it is assumed thatρ :Bd → R+ is log-concave and logρ is Lipschitz.
Then the Metropolis algorithm with a ball walk proposal is used to approximateπρ .
For‖ f‖p ≤ 1 with p > 2 the algorithmSn,n0 is considered for the approximation of
A( f ,ρ). It is proven that

sε,γ(n,n0) = O(d max{log2(γ),d}(ε−2+ logγ)). (5)

In open problem 84 of [21] it is asked whether one can extend this result to other
families of convex sets. The complexity bound of (5) is better than the results of
(3) and (4) in terms of the dimension, the precision andγ. On the one hand the
assumption thatK = Bd is very restrictive but on the other hand the estimates of (3)
and (4) seem to be pessimistic. However, with our results we contribute to problem
84 in the sense that tractability with respect toγ can be shown for arbitrary convex
bodies or even the wholeRd if the density functions satisfy certain properties.

2 Markov chains and an error bound

Let (Xn)n∈N be a Markov chain with transition kernelP(·, ·) and initial distributionν
on a measurable space(K,B(K)), whereK ⊂R

d andB(K) is the Borelσ -algebra.
We assume that the transition kernelP(·, ·) is reversible with respect toπρ . For
p ∈ [1,∞] we denote byLp = Lp(πρ) the class of functionsf :K →R with
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‖ f‖p =

(

∫

K
| f (x)|p πρ(dx)

)1/p

< ∞.

Similarly we denote byMp the class of measuresν which are absolutely continuous
with respect toπρ and where the densitydν

dπρ
∈ Lp. The transition kernel induces an

operatorP:Lp → Lp given by

P f (x) =
∫

K
f (y)P(x,dy), x ∈ K,

and it induces an operatorP:Mp → Mp given by

µP(C) =
∫

K
P(x,C)µ(dx), C ∈ B(K).

For n ∈ N and a probability measureν note that Pr(Xn ∈ C) = νPn(C), whereC ∈
B(K). We define the total variation distance betweenνPn andπρ as

∥

∥νPn −πρ
∥

∥

tv = sup
C∈B(K)

∣

∣νPn(C)−πρ(C)
∣

∣ .

Under suitable assumptions on the Markov chain one obtains that
∥

∥νPn −πρ
∥

∥

tv →
0 asn → ∞.

Now we consider the multi run Markov chain Monte Carlo methodand prove an
error bound. This bound is not new, see for example [4].

Theorem 1. Assume that we have n0 independent Markov chains with transition
kernel P(·, ·) and initial distribution ν ∈ M1. Let πρ be a stationary distribution of
P(·, ·). Let X1

n0
, . . . ,Xn

n0
be the sequence of the n0th steps of the Markov chains and

let

Mn,n0( f ,ρ) =
1
n

n

∑
j=1

f (X j
n0
).

Then

e(Mn,n0( f ,ρ))2 ≤ 1
n
‖ f‖2

∞ +2‖ f‖2
∞
∥

∥νPn −πρ
∥

∥

tv .

Proof. With an abuse of notation let us denote

A( f ) =
∫

K
f (x)πρ (dx) and νPn0( f ) =

∫

K
f (x)νPn0(dx).

We decompose the error into variance and bias. Then

e(Mn,n0( f ,ρ))2 =
1
n

∫

K
| f (x)−νPn0( f )|2 νPn0(dx)+ |νPn0( f )−A( f )|2

=
1
n

(

νPn0( f 2)−νPn0( f )2)+ |νPn0( f )−A( f )|2

≤ 1
n
‖ f‖2

∞ +
∫

K
f (x)2

∣

∣νPn0(dx)−πρ(dx)
∣

∣
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≤ 1
n
‖ f‖2

∞ +2‖ f‖2
∞
∥

∥νPn0 −πρ
∥

∥

tv .

The last inequality follows by a well known characterization of the total variation
distance, see for example [24, Proposition 3].

Very often there exists a numberβ ∈ [0,1) and a numberCν < ∞ such that
∥

∥νPn −πρ
∥

∥

tv ≤Cνβ n.

For example, ifβ = ‖P−A‖L2→L2
< 1 andCν = 1

2

∥

∥ν −πρ
∥

∥

2, see [23] for more
details. Let us define theL2-spectral gap as

gap(P) = 1−‖P−A‖L2→L2
.

This is a significant quantity, see for instance [2, 26, 27, 28, 29]. In [26] it is shown
that

e(Sn,n0( f ,ρ))2 ≤ 4‖ f‖4

ngap(P)
for n0 ≥

log
(

64
∥

∥

∥

dν
dπρ

−1
∥

∥

∥

2

)

gap(P)
.

There are several Markov chains where it is possible to provide, for certain classes of
density functions, a lower bound of gap(P) which grows polynomially with respect
to the dimension, see for example [16, 19]. Then, the error bound of the single run
Markov chain Monte Carlo method might imply that the integration problem(1) is
tractable with respect to someκ .

Note that there are also other possible approximation schemes and other bounds
of the error ofSn,n0 which depend on different assumptions to the Markov chain (e.g.
Ricci curvature condition, drift condition, small set), see for instance [9, 11, 12, 13].
For example one might consider a multi run Markov chain MonteCarlo method
where function values of a trajectory of each Markov chain after a sufficiently large
n0 are used. But all known error bounds of such methods include quantities such as
theL2-spectral gap or the conductance.

It is not an easy task to prove that a Markov chain satisfies thedifferent assump-
tions stated above and it is also not an easy task to prove a lower bound of the
L2-spectral gap. It might be easier to estimate the total variation distance ofνPn0

andπρ directly. Then one can use Theorem 1 to show that the integration problem
(1) is tractable with respect to someκ .

3 Densities with additional structure

Let us assume that the densities have some additional structure. For 0< r ≤ R and
κ ≥ 3 a density functionρ :K → R+ is in Ur,R,κ if the following properties are
satisfied:
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(a) ρ is log-concave, i.e. for allx,y ∈ K andλ ∈ [0,1] one has

ρ(λ x+(1−λ )y)≥ ρ(x)λ ρ(y)1−λ .

(b) ρ is strictly positive, i.e.K = supp(ρ) and we assume thatK ⊂ RBd , whereRBd

is the Euclidean ball with radiusR around 0.
(c) There exists a setG ⊂ K such that

∫

K ρ(x)dx
vold(G) infx∈G ρ(x)

≤ κ ,

and we can sample the uniform distribution onG.
(d) For s > 0 let K(s) = {x ∈ K | ρ(x) ≥ t} be the level set ofρ and letB(z,r) be

the Euclidean ball with radiusr aroundz. Then

πρ(K(s))≥ 1
8

=⇒ ∃z ∈ K B(z,r)⊂ K(s).

The log-concavity ofρ implies that the maximal value is attained on a convex
set, that the function is continuous and that one has an isoperimetric inequality, see
[16]. Assumption (b) gives thatK is bounded.

By (c) we can sample the uniform distribution onG. We can choose it as initial
distribution for a Markov chain, where the numberκ provides an estimate of the
influence of this initial distribution.

The condition on the level setK(s) guarantees that the peak is not too narrow.
Roughly speaking, if theπρ measure of a level set is not too small, then the Lebesgue
measure is also not too small. Note thatK is bounded from below, since condition
(d) implies thatB(z,r)⊂ K.

Now we enlarge the class of densities. Let us define the following property:

(b’) ρ is strictly positive, i.e.K = supp(ρ) andxρ =
∫

K x πρ(dx)∈R
d is the centroid

of πρ . Then
∫

K

∣

∣x− xρ
∣

∣

2 πρ(dx)≤ 4R2.

We haveρ ∈ Vr,R,κ if the densityρ satisfies (a), (b’), (c) and (d). We substituted the
boundedness condition (b) by (b’). Note that (b) implies (b’). HenceUr,R,κ ⊂ Vr,R,κ .
Condition (b’) provides a boundedness criterion in averagesense. Namely, it implies
that

∫

K

∫

K
|x− y|2 πρ(dx) πρ(dy)≤ 8R2.

Example of a Gaussian function in Vr,R,κ . Let Σ be a symmetric and positive
definited× d matrix. We consider the non-normalized density

ϕ(x) = exp(−1
2

xT Σ−1x), x ∈ R
d .
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The target distributionπϕ is a normal distribution with meanxϕ = 0 ∈ R
d and

covariance matrixΣ . There exists an orthogonal matrixV = (v1, . . . ,vd), where
v1, . . . ,vd are the eigenvectors ofΣ . Then

V−1ΣV = Λ ,

whereΛ = diag(λ1, . . . ,λd) and λ1, . . . ,λd with λi > 0 for i ∈ {1, . . . ,d} are the
corresponding eigenvalues ofΣ . Recall that the trace and the determinant ofΣ are

tr(Σ) =
d

∑
i=1

λi and det(Σ) =
d

∏
i=1

λi.

We show that ifr, R andκ are appropriately chosen, thenϕ ∈ Vr,R,κ .

To (a): The densityϕ is obviously log-concave.
To (b’): Sincexϕ = 0 we obtain

∫

K

∣

∣x− xϕ
∣

∣

2 πϕ(dx) =
1

(2π)d/2
√

det(Σ)

∫

Rd
|x|2 ϕ(x)dx = tr(Σ).

Hence we setR = 1
2

√

tr(Σ).
To (c): Let λmin = mini=1,...,d λi and letvmin be the corresponding eigenvector.

Note thatxT Σ−1x ≤ λ−1
min |x|

2 and that equality holds forx = vmin. With G = Bd

we obtain
∫

Rd ϕ(x)dx
vold(Bd) infx∈Bd ϕ(x)

= exp(
1
2

λ−1
min) Γ (d/2+1) 2d/2

√

det(Σ),

whereΓ (d) =
∫ ∞

0 td−1exp(−t)dt is the gamma function. Hence we set

κ = exp(
1
2

λ−1
min) Γ (d/2+1) 2d/2

√

det(Σ).

To (d): The level sets ofϕ are ellipsoids

K(s) = {x ∈ R
d | xT Σ−1x ≤ 2log(s−1)}, s ∈ [0,1].

In general one has

πϕ(K(s)) =

∫ ∞
0 vold(K(s)∩K(t)) dt

∫ ∞
0 vold(K(t)) dt

=
s vold(K(s))+

∫ ∞
s vold(K(t))dt

∫ ∞
0 vold(K(t)) dt

.

By the well known formula of the volume of an ellipsoid we obtain

vold(K(t)) = 2d/2 logd/2(t−1)
√

det(Σ) vold(Bd), t ∈ [0,1]

and
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πϕ(K(s)) =
s logd/2(s−1)+

∫ 1
s logd/2(t−1) dt

∫ 1
0 logd/2(t−1) dt

, s ∈ [0,1].

Hence

πϕ(K(s)) =
γ(logs−1,d/2)

Γ (d/2)
, s ∈ [0,1],

whereγ(r,d) =
∫ r

0 td−1exp(−t)dt is the lower incomplete gamma function. Let
us define a functionr∗ : N→ R by

r∗(d) = inf{r ∈ [0,∞): γ(r,d/2)≥ 1
8

Γ (d/2)}.

If we substitute 1/8 by 1/2 in the definition ofr∗(d) we have the median of the
gamma distribution with parameterd/2 and 1. It is known that the median is in
Θ(d), see [1]. Figure 1 suggests thatr∗(d) behaves also linearly ind.

0 200 400 600 800 1,000

0

100

200

300

400

500

dimension d

r∗(d)

d/2

Fig. 1 Plot of an approximation ofr∗(d) with a Newton method and an appropriately chosen initial
value.

Let log(s∗(d)−1) = r∗(d), such thats∗(d) = exp(−r∗(d)). Then

πϕ(K(s∗(d))) =
1
8

and B(0,(λminr∗(d))1/2)⊂ K(s∗(d)).
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Hence we setr = (λminr∗(d))1/2.

Let us summarize. Forr = (λminr∗(d))1/2, R = 1
2

√

tr(Σ) and

κ = exp(
1
2

λ−1
min) Γ (d/2+1) 2d/2

√

det(Σ)

we obtain thatϕ ∈ Vr,R,κ . Note thatκ depends exponentially on the dimensiond.
However, if one has tractability with respect toκ , then the error depends polynomi-
ally on the dimension.

4 Hit-and-run algorithm

For ρ :K → R+ the hit-and-run algorithm is as follows. Letν be a probability mea-
sure on(K,B(K)) and letx1 ∈ K be chosen byν. Fork ∈ N suppose that the states
x1, . . . ,xk are already computed. Then

1. choose a directionu uniformly distributed on∂Bd ;
2. setxk+1 = xk +α u, whereα ∈ Ik = {α ∈ R | xk +αu ∈ K} is chosen with

respect to the distribution determined by the density

ℓk(s) =
ρ(xk + su)

∫

Ik
ρ(xk + t u)dt

, s ∈ Ik.

The second step might cause implementation issues. However, if we have a log-
concave densityρ thenℓk is also log-concave. In this setting one can use different
acceptance/rejection methods. For more details see for example [6, Section 2.4.2]
or [17]. In the following we assume that we can sample the distribution determined
by ℓk.

Other algorithms for the approximation ofπρ would be a Metropolis algorithm
with suitable proposal [19] or a combination of a hit-and-run algorithm with uniform
stationary distribution and a Ratio-of-uniforms method [10]. Also hybrid samplers
are promising methods, especially whenρ decreases exponentially in the tails [7].

Now let us state the transition kernel, sayHρ , of the hit-and-run algorithm

Hρ(x,C) =
2

vold−1(∂Bd)

∫

C

ρ(y)dy

ℓρ(x,y) |x− y|d−1 , x ∈ K,C ∈ B(K),

where
ℓρ(x,y) =

∫ ∞

−∞
ρ(λ x+(1−λ )y)1K(λ x+(1−λ )y)dλ .

The transition kernelHρ is reversible with respect toπρ , let us refer to [3] for further
details.
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In the following we state several results from Lovaśz and Vempala. This part is
based on [15]. We start with a special case of [15, Theorem 1.1] and sketch the proof
of this theorem.

Theorem 2. Let ε ∈ (0,1/2) and ρ ∈Ur,R,κ . Let ν be an initial distribution with the
following property. There exists a set Sε ⊂ K and a number D ≥ 1 such that

dν
dπρ

(x)≤ D, x ∈ K \ Sε ,

where ν(Sε)≤ ε . Then for

n0 > 1027(dr−1 R)2 log2(8Ddr−1 Rε−1) log(4Dε−1)

the total variation distance between νHn0
ρ and πρ is less than 2ε .

Proof (Sketch).

1. Let us assume thatSε = /0:

Then it follows
∥

∥

∥

dν
dπρ

∥

∥

∥

∞
≤ D, so thatν ∈ M∞. We use [14, Corollary 1.6] with

s = ε
2D and obtain

∥

∥

∥
νHn

ρ −πρ

∥

∥

∥

tv
≤ ε/2+Dexp(−1

2
n Φ2

ε
2D
),

whereΦ ε
2D

is the ε
2D -conductance ofHρ . By Theorem 3.7 of [15] and the scaling

invariance of the hit-and-run algorithm we find a lower boundof Φ ε
2D

. It is given
by

Φ ε
2D

≥ 10−13

2 dr−1 R log(4dr−1 RD ε−1)
. (6)

This leads to

∥

∥

∥
νHn

ρ −πρ

∥

∥

∥

tv
≤ ε/2+D exp

( −10−26n

8(dr−1 R)2 log2(4dr−1RD ε−1)

)

. (7)

2. Now let us assume thatSε 6= /0:
Let ε̃ := ν(Sε ), so that 0< ε̃ ≤ ε ≤ 1/2 and forC ∈ B(K) let

µ1(C) =
ν(C∩Sc

ε)

ν(Sc
ε)

and µ2(C) =
ν(C∩Sε)

ν(Sε)
.

Then
ν = (1− ε̃)µ1+ ε̃µ2

and
∥

∥

∥

dµ1
dπρ

∥

∥

∥

∞
≤ 2D. Furthermore for anyC ∈ B(K) we find

∣

∣

∣
νHn

ρ(C)−πρ(C)
∣

∣

∣
≤ (1− ε̃)

∣

∣

∣
µ1Hn

ρ(C)−πρ(C)
∣

∣

∣
+ ε̃.
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By using(7) we get

∥

∥

∥
µ1Hn

ρ −πρ

∥

∥

∥

tv
≤ ε/2+2Dexp

( −10−26n

8(dr−1 R)2 log2(8dr−1RDε−1)

)

,

and altogether

∥

∥

∥
νHn

ρ −πρ

∥

∥

∥

tv
≤ 3ε/2+2Dexp

( −10−26n

8(dr−1R)2 log2(8dr−1 RDε−1)

)

. (8)

Choosingn so that the right hand side of the previous equation is less than or
equal to 2ε completes the proof.

The next Corollary provides an explicit upper bound of the total variation distance.

Corollary 1. Under the assumptions of Theorem 2 with

β = exp

( −10−9

(dr−1 R)2/3

)

and C = 12dr−1RD

one obtains
∥

∥νHn0
ρ −πρ

∥

∥

tv ≤C β 3√n0, n ∈ N.

Proof. Setε = 8dr−1 RDexp
(

−10−9 n1/3

(dr−1 R)2/3

)

and use(8) to complete the proof.

Note that the result of Theorem 2 is better than the result of Corollary 1. However,
Corollary 1 provides an explicit estimate of the total variation distance. One can see
that there is an almost exponential decay, namely the total variation distance goes to
zero at least asβ 3√n0 goes to zero for increasingn0.

In the previous results we assumed thatρ ∈ Ur,R,κ . It is essentially used that
(b) holds. Now let us assume thatρ ∈ Vr,R,κ . The next statement is proven in [15,
Theorem 1.1].

Theorem 3. Let ε ∈ (0,1/2), ρ ∈ Vr,R,κ . Let ν be an initial distribution with the
following property. There exists a set Sε ⊂ K and a number D ≥ 1 such that

dν
dπρ

(x)≤ D, x ∈ K \ Sε ,

where ν(Sε)≤ ε . Then for

n0 ≥ 4 ·1030(dr−1 R)2 log2(2 Ddr−1 Rε−1) log3(Dε−1)

the total variation distance between νHn0
ρ and πρ is less than 2ε .

Note that Theorem 2 and Theorem 3 can be applied if the initialdistribution

is bounded, i.e. we can setD =
∥

∥

∥

dν
dπρ

∥

∥

∥

∞
andSε = /0. Furthermore ifν ∈ M2, i.e.



Hit-and-run for numerical integration 13

∥

∥

∥

dν
dπρ

∥

∥

∥

2
is bounded, then we can also apply Theorem 2 and Theorem 3 withD =

∥

∥

∥

dν
dπρ

∥

∥

∥

2

2
ε−1 and

Sε =

{

x ∈ K | dν
dπρ

(x)>

∥

∥

∥

∥

dν
dπρ

∥

∥

∥

∥

2

2

ε−1

}

.

5 Main results

Now we are able to state and to prove the main results. To avoidany pathologies we
assume thatr−1Rd ≥ 3.

Theorem 4. Let ε ∈ (0,1/2) and

Fr,R,κ = {( f ,ρ) | ρ ∈ Ur,R,κ , ‖ f‖∞ ≤ 1} .

For ( f ,ρ) ∈ Fr,R,κ let ν be the uniform distribution on G ⊂ R
d from (c). Let

X1
n0
, . . . ,Xn

n0
be a sequence of the n0th steps of n independent hit-and-run Markov

chains with stationary distribution πρ and initial distribution ν . Recall that

Mn,n0( f ,ρ) =
1
n

n

∑
j=1

f (X j
n0
).

Then for n ≥ ε−2 and

n0 ≥ 1027(dr−1 R)2 log2(8dr−1 Rκ ε−2) log(4κ ε−2)

we obtain
sup

( f ,ρ)∈Fr,R,κ

e(Mn,n0( f ,ρ)) ≤ 3ε.

Hence

tε,κ(n,n0) = O(d2 (r−1 R)2 log2(dr−1 R)ε−2 [logε−1]3 [logκ ]3).

Proof. ForC ∈ B(K) we have

ν(C) =
∫

C

1G(y)
∫

K ρ(x)dx
vold(G)ρ(y)

πρ(dy).

It implies that dν
dπρ

(x) ≤ κ for all x ∈ K. Then the assertion follows by Theorem 1
and Theorem 2.

Now let us consider densities which belong toVr,R,κ .

Theorem 5. Let ε ∈ (0,1/2) and
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Gr,R,κ = {( f ,ρ) | ρ ∈ Vr,R,κ , ‖ f‖∞ ≤ 1} .

Let Mn,n0 be given as in Theorem 4. Then for n ≥ ε−2 and

n0 ≥ 4 ·1030(dr−1 R)2 log2(2dr−1 Rκ ε−2) log3(κ ε−2)

we obtain
sup

( f ,ρ)∈Gr,R,κ

e(Mn,n0( f ,ρ)) ≤ 3ε.

Hence

tε,κ(n,n0) = O(d2 (r−1 R)2 log2(dr−1 R)ε−2 [logε−1]5 [logκ ]5).

Proof. The assertion follows by the same steps as the proof of Theorem 4. Note that
we use Theorem 3 instead of Theorem 2.

Note that in both theorems there is no hidden dependence on further parameters
in theO notation. However, the explicit constant might be very large, of the mag-
nitude of 1030. The theorems imply that the problem of integration (1) is tractable
with respect toκ on the classesFr,R,κ andGr,R,κ .

Example of a Gaussian function revisited. In the Gaussian example of Section 3
we obtained

R/r = (2r∗(d)1/2)−1 ·
√

tr(Σ)/λmin,

κ = exp(
1
2

λ−1
min) Γ (d/2+1) 2d/2

√

det(Σ).

If we assume thatr∗(d) increases linearly ind (Figure 1), that
√

tr(Σ)/λmin and
log(exp(1

2 λ−1
min)

√

det(Σ)) grows polynomially in the dimension, thentε,κ(n,n0)
grows also polynomially in the dimension. This implies thatthe integration problem
with respect to the Gaussian function is polynomially tractable in the sense of Novak
and Woźniakowski [20, 21, 22].
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sian Correction. Preprint 26, DFG-SPP 1324, August 2009.
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