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ALTERNATING DIRECTIONS FITTING (ADF) OF HIERARCHICAL
LOW RANK TENSORS

LARS GRASEDYCK∗, MELANIE KLUGE∗ , AND SEBASTIAN KRÄMER∗

Abstract. We consider the problem of fitting a low rank tensor A ∈ RI , I = {1, . . . , n}d, to a given
set of data points {Mi ∈ R | i ∈ P}, P ⊂ I. The low rank format under consideration is the hierarchical
or TT or MPS format. It is characterized by rank bounds r on certain matricizations of the tensor. The
number of degrees of freedom is in O(dnr2). For a fixed rank and mode size n we observe that it is
possible to approximate a tensor from a number of samples that is in O(logN) for a tensor having N = nd

entries. Our approach is an alternating directions fitting (ADF) inspired by the LMaFit method for matrix
completion, but generalized to tensor completion. We aim at finding a tensor A that fulfils the first order
optimality conditions by a nonlinear SOR-type solver that consists of an alternating fit cycling through the
directions µ = 1, . . . , d. In the numerical experiments we observe robustness of the completion algorithm
with respect to noise and good reconstruction capability. Our tests provide evidence that the algorithm is
suitable in higher dimension (>10) as well as for moderate ranks.

Keywords: MPS, Tensor Completion, Tensor Train, TT, Hierarchical Tucker, HT, ALS.
MSC: 15A69, 65F99

1. Introduction. We consider the problem of fitting a low rank tensor

A ∈ RI , I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, µ ∈ D := {1, . . . , d},

to given data points

{Mi ∈ R | i ∈ P}, P ⊂ I, #P ≥
d�

µ=1

nµ,

by minimizing the distance between the given values (Mi)i∈P and approximations (Ai)i∈P :

A = argmin
Ã∈T

�

i∈P
(Mi − Ãi)

2 (T being a certain tensor class)

In the class of general dense tensors this is trivial, because the entries of the tensor are all
independent. For sparse tensors this reduces to a simple Knapsack problem. Our target
tensor class is the set of low rank tensors, i.e., we assume that the implicitly given tensor
M ∈ RI allows for a low rank approximation

�M − M̃� ≤ ε, ε ∈ R≥0,

where the unknown approximant M̃ ∈ RI fulfils certain rank bounds that will be introduced
later. In particular we allow ε = 0 so that the task is to reconstruct the whole tensor
M = M̃ in the low rank format. This particular case is considered, e.g. in [11, 3].

1.1. Completion versus Sampling. A tensor fitting problem might arise as follows:
the entries (Mi)i∈P could be measurements of a multiparameter model such that each index
i ∈ P represents a specific choice of d parameters. If the measurements are incomplete or
in parts known to be incorrect, then the goal is to reconstruct all values of M for all
parameter combinations i ∈ I from the known values (Mi)i∈P (prior to the assumption
that M allows for an approximation in the low rank format). It is crucial that the points P

∗Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen,
Germany. Email: lgr@igpm.rwth-aachen.de. All three authors gratefully acknowledge support by the
DFG priority programme 1324 under grant GR3179/2-2.
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are given and we are not free to choose them. In case that the points can be chosen freely
one after another, the problem simplifies drastically and can be approached as in [15, 2] by
an adaptive sampling strategy. Sometimes one can propose rules on how the entries from
P should be chosen, as it is done in quasi Monte Carlo methods. This approach is persued
in [7] and defines sampling rules that allow an efficient approximation scheme. Again, this
is different and possibly a simpler task than the tensor completion considered here.

1.2. Low Rank Tensor Formats. The class of tensors in which we aim for a com-
pletion of the given tensor entries is a low rank format. In the case d = 2 the rank of
a tensor coincides with the usual matrix rank, but in dimension d > 2 there are several
possibilities to define the rank of a tensor and thus there are several data-sparse low rank
formats available.

In the CP(k)1 format or representation

A =
k�

�=1

d
⊗
µ=1

gµ,�, Ai1,...,id =
k�

�=1

d�

µ=1

gµ,�(iµ), gµ,�(iµ) ∈ R

the tensor completion has been considered in [19, 1, 10]. The minimal number of summands
k by which the tensor A can be represented is the tensor rank of A, but minimality of k is
often not relevant. The CP(k) format is data sparse in the sense that storing the factors
gµ,� amounts to O(dnk) units (real numbers) of storage, as opposed to the nd units of the
full dense and unstructured tensor A. This is the reason for the attractivity of the format
despite many theoretical and practical difficulties [8].

In the Tucker format

Ai1,...,id =

k1�

�1=1

· · ·
kd�

�d=1

C�1,...,�d

d�

µ=1

gµ,�µ(iµ), gµ,�(iµ) ∈ R, C ∈ Rk1×···×kd ,

tensor completion has been considered in [17, 9, 12, 16]. This format is limited to small

dimensions d since the so-called core tensor C requires
�d

µ=1 kµ units of storage. The
advantage on the other hand is that standard matrix approximation techniques can be
used by matricizing the tensor.

The low rank format that we consider lies in between these two, combining the benefits
of both: the number of degrees of freedom scales linearly with the dimension d and the
format is based on matricizations such that standard linear algebra tools are applicable.

Here, we put no special assumptions on the data points P , except that they are rea-
sonably distributed:

Definition 1.1 (Slices and slice density). We define the density cov (or oversampling
factor) of a point set {Mi ∈ R | i ∈ P}, P ⊂ I, in direction µ ∈ D and index jµ∈ Iµ by

cov(jµ) := #{i ∈ P | iµ = jµ}

The corresponding slice of a tensor A ∈ RI is defined by

Aiµ=jµ := Â ∈ RI1×···×Iµ−1×Iµ+1×···×Id , Âi1,...,iµ−1,iµ+1,...,id := Ai1,...,iµ−1,jµ,iµ+1,...,id

Depending on the rank parameters of A (which in turn depend on the target accuracy of
the approximation) the slice densities of the set P have to be high enough, i.e.

cov(jµ) > Cov, jµ ∈ Iµ, µ ∈ D.

1CP stands for canonical polyadic, in the literature also called CANDECOMP and PARAFAC
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If one of the values cov(jµ) were zero, then this simply means that the slice Aiµ=jµ is
undetermined and not observable for any of the low rank formats mentioned above and in
the following.

The low rank format under consideration is the hierarchical [5, 4] or TT [14, 13] or
MPS [22, 20] format.

G1(·)
i1 = 1

i1 = 2

i1 = n1

G2(·) Gµ(·)

iµ = 1

iµ = 2

iµ = nµ

Gd−1(·) Gd(·)

Fig. 1.1. The TT representation of a tensor in TT (r1, . . . , rd−1) with Gµ(iµ) ∈ Rrµ−1×rµ .

Definition 1.2 (TT tensor format). Let r0, . . . , rd ∈ N and r0 = rd = 1. A tensor
A ∈ RI of the form or representation

Ai1,...,id = G1(i1) · · ·Gd(id), Gµ(iµ) ∈ Rrµ−1×rµ (1.1)

for all i ∈ I and Gµ : Iµ → Rrµ−1×rµ is said to be of MPS (matrix product states) format
or TT (tensor train) format or hierarchical format, cf. Figure 1.1. We define the set of
tensors in TT format by

TT (r1, . . . , rd−1) := {A ∈ RI | A is of the form (1.1)}.

The parameters rµ are called representation ranks and combined to the rank vector r:=
(r1, . . . , rd−1). For the matrix blocks (Gµ)

d
µ=1 we use the short notation G. G is called a

representation system of A, and if we want to indicate that A is represented by G we write
AG. The minimal ranks rµ for the representation of a tensor A in TT format are the
ranks of certain matricizations of A [4, 15].

The number of degrees of freedom or parameters in the MPS representation is in

O
�

d�

µ=1

rµ−1rµnµ

�
∼ O(dr2n), r := max

µ∈D
rµ, n := max

µ∈D
nµ.

It could thus in principle be possible to reconstruct the tensor from a number of samples
that is in O(logN) for a tensor having N =

�d
i=1 ni entries, cf. Section 4.3.

1.3. Statement of the Main Approximation Problem. The full approximation
problem can be stated as follows. For S ⊂ I let

�X�F :=

��

i∈I
X2
i , (X|S)i :=

�
Xi if i ∈ S

0 otherwise
, �X�S := �X|S�F .

Problem 1.3 (Main problem). Given a tensor M ∈ RI known only at points P ⊂ I,
and given representation ranks r1, . . . , rd−1, find a representation (1.1) with representation
system G such that A = AG fulfils

A = argmin
Ã∈TT (r1,...,rd−1)

�M − Ã�P .
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A related approach for tensor completion is presented in [18] where the authors use a
steepest descent iteration on the tensor manifold. Our approach, the alternating directions
fitting (ADF) algorithm, is based on ideas from LMaFit for matrix completion [21]; and
we generalize these to tensor completion.

1.4. First Order Optimality. For a representation system (Gµ)
d
µ=1 such that A =

AG one can write the main problem in the form

G = argmin
G̃

�M −AG̃�P

and by introducing an additional tensor Z ∈ RI , G can be found via the task to

minimize f(G,Z) := �Z −AG�F s.t. Z|P = M |P , AG ∈ TT (r1, . . . , rd−1).

The latter function f yields first order optimality conditions

Z|I\P = AG|I\P and Gµ = argmin
Gµ

�Z −AG�P .

Solving this nonlinear system of equations simultaneously for G1, . . . , Gd, Z is not trivial.
In a hard or soft thresholding iteration one would have to find a best approximation AG to
a given tensor Z, and in the matrix case d = 2 this is expensive but possible. For tensors
in d > 2 such a best approximation is not available. A common technique for finding
something close to a best approximation is an alternating fit cycling through the unknowns
Gµ. But since our final goal is not the approximation of Z but the minimization of f , it
makes sense to directly solve the nonlinear system by an alternating fit. We approach this
nonlinear system by a nonlinear block Gauß-Seidel iteration where the blocks of unknowns
are G1, . . . , Gd, Z:

Require: Initial guess AG

for i=1,. . . do
For all i ∈ I \ P set Zi := AG

i and for all i ∈ P set Zi := Mi

For all µ ∈ D minimize �Z −AG�F with respect to Gµ

end for

Finally, we use (partial) successive overrelaxation in order to speed up the convergence,
and we change the order of optimization of blocks to be Z,G1, . . . , Gh, Z,Gd, . . . , Gh for
some fixed h ∈ D. Altogether this defines the basic proceeding of the alternating directions
fit (ADF) Algorithm 1 by which we solve the tensor completion problem.

1.5. Organization of the Article. In Section 2 we introduce the necessary basic
tools for the analysis and algorithmic treatment of the tensor approximation problem.
Section 3 presents the ADF algorithm in detail and analyses the computational and storage
complexity of one iterative step. Several practical issues like adaptive choice of the ranks,
improved performance, and stopping criteria are considered. In the numerical examples
Section 4 we apply our algorithm to two classes of examples: a) smooth function related
tensors, and b) random low rank tensors with and without noise. We end with a conclusion
in Section 5.

2. Optimization in TT-Format.

2.1. Matrix Fitting. We first present a central tool, by which a k-rank approxima-
tion of a sparsely known matrix can be obtained quite efficiently, cf. [21].
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Algorithm 1 Basic proceeding of the ADF algorithm

Require: Initial guess AG, overrelaxation parameter α ≥ 1
while breaking condition not fulfilled do
For all i ∈ I \ P set Zi := AG

i and for all i ∈ P set Zi := Mi

for µ = 1, . . . , h do
Determine G+

µ := argminGµ
�Z −AG�F and set Gµ := Gµ + α(G+

µ −Gµ)
end for
For all i ∈ I \ P set Zi := AG

i and for all i ∈ P set Zi := Mi

for µ = d, . . . , h do
Determine G+

µ := argminGµ
�Z −AG�F and set Gµ := Gµ + α(G+

µ −Gµ)
end for

end while

Theorem 2.1 (LMaFit principle). Let W ∈ Rn×m and Y ∈ Rk×m be given matrices
and Y of full rank k. Define X ∈ Rn×k as the minimizer

X := argmin
X̃

�W − X̃Y �F

Then we gain

range(WY T ) = range(X).

Proof. ([21]) Using the SVD of Y = UΣV T we have the pseudo inverse Y + = V Σ+UT .
Hence X = WV Σ+UT , while WY T = WV ΣUT . Thereby range(WY T ) = range(X).

Fortunatly, the LMaFit principle also proves to be a very useful tool in the approxima-
tion of a sparsely known tensor of TT-ranks r1, . . . , rd−1 with the help of the representation
G. It takes, however, some preparation until its use can be justified.

2.2. Statement of the Lefthand and Righthand Approximation Problem.
For practical reasons (based on the LMaFit principle) it is most efficient if in Algorithm 1
the blocks G1, . . . , Gh or Gd, . . . Gh are optimized consecutively, where the direction h can
be anything between 1 and d. Since we would like to update Z not only after all blocks
Gµ are optimized but earlier, we choose

h := �(d+ 1)/2�. (2.1)

Problem 2.2 (Lefthand problem). Given a tensor Z ∈ RI (all entries known), ranks
r, and a starting representation G, replace for µ = 1, . . . , h the entries of Gµ such that
Gµ = argminGµ

�Z − AG�F . In order to avoid confusion we want to remark that the
task for the lefthand problem is neither to find the minimizer (G1, . . . , Gd) nor the partial
minimizer (G1, . . . , Gh). Instead, we seek consecutively the partial minimizers in the stated
order

G1 := argmin
G1

�Z −AG�F , G2 := argmin
G2

�Z −AG�F , . . . , Gh := argmin
Gh

�Z −AG�F .

Problem 2.3 (Righthand problem). Given a tensor Z ∈ RI (known at all points),
ranks r, and a starting representation G, replace for µ = d, . . . , h the entries of Gµ such
that Gµ = argminGµ

�Z −AG�F .
5



2.3. Tensor Calculus. In this section we introduce the neccessary tools to work with
matrix blocks in order to construct and prove the core step of the ADF algorithm (Theorem
3.1).

Definition 2.4 (Matrix block). Let k1, k2, n ∈ N. We define a matrix block H ∈
(Rk1×k2)n as a vector of matrices H(1), . . . , H(n) ∈ Rk1×k2 . We call k1×k2 the dimension
and n the length of H.

Remark 2.5 (Algebraic properties). Let k1, k2 ∈ N be fixed. Then the set of matrix
blocks H ∈ (Rk1×k2)n forms an R-vectorspace. Additionally, it can also be viewed as left-
module over the non-abelian matrix ring Rk1×k1 as well as right-module over Rk2×k2 . Next
we introduce a tool to combine multiple matrix blocks into one, which is ultimately used
for the definition of the TT representation AG.

Definition 2.6 ((Kronecker) product between matrix blocks). We define the (Kro-
necker) product ⊗ for matrix blocks H1, H2 of dimensions k1 × km, km × k2 and lengths
n1, n2 as

(H1 ⊗H2)((i, j)) := H1(i)H2(j)

where (H1 ⊗ H2) is a matrix block of dimension k1 × k2 and length n1n2. Note that this
is analogous to the conventional Kronecker product, but (H1 ⊗ H2)

T does neither equal
HT

1 ⊗HT
2 nor HT

2 ⊗HT
1 . In order to simplify the notation we use the following convention:

• We treat the product of a matrix and a matrix block as if the matrix was a block
of length 1 and skip the ⊗. It is referred to as pointwise multiplication.

• We write (H1 ⊗ . . .⊗Hn)(i1 . . . in) instead of (H1 ⊗ . . .⊗Hn)((i1 . . . in)).
• The empty Kronecker product is defined to be I, the identity matrix of suitable size.

Remark 2.7 (Generating AG). Using the Kronecker product, one can express AG by

AG
(i1,...,id)

= (G1 ⊗ . . .⊗Gd)(i1, . . . , id), AG = G1 ⊗ . . .⊗Gd.

Next, we define operations to switch between matrix blocks, matrices, and tensors.
Definition 2.8 (Lefthand block and righthand block). Let H ∈ (Rk1×k2)n be a matrix

block. We define the lefthand block H� as

H� :=




H(1)
H(2)
...

H(n)


 ∈ Rnk1×k2 ,

·�
(2.2)

and the righthand block �H as

�H :=
�
H(1) H(2) . . . H(n)

�
∈ Rk1×nk2 .

�·
(2.3)

The transpose HT of a matrix block is defined as HT (i) := H(i)T .
Remark 2.9 (Conjugacy of block operations). The lefthand block operation is conju-

gate to the righthand block operation by means of

(·)T ◦ ·� = �· ◦ (·)T .
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Definition 2.10 (Block matricization). Let A ∈ RI be a d-dimensional tensor. A
block matricization with respect to s ∈ {1, . . . , d}, A(s), is defined as the matrix block of
dimension (n1 . . . ns−1)× (ns+1 . . . nd) and length ns, given by

(A(s)(is))(i1,...,is−1),(is+1,...,id) := Ai1,...,id , ∀is ∈ Is.

Example 2.11 (Block matricization of AG). For a better understanding one may have
a look at the following equation, which is valid for any s and representation G:

AG
(s) = (G1 ⊗ . . .⊗Gs−1)� Gs �(Gs+1 ⊗ . . .⊗Gd).

=

Note that both the multiplication with the lefthand as well as righthand block is elementwise,
i.e. A(s)(is)(i1,...,is−1),(is+1,...,id) = (G1(i1) · · ·Gs−1(is−1)) Gs(is) (Gs+1(is+1) · · ·Gd(id)).

For further calculations we give a scalar product for matrix blocks and derive a norm,
which is essentially the Frobenius norm.

Definition 2.12 ((Scalar) product of matrix blocks). Let G and H be matrix blocks
of the dimensions k1 × km,km × k2 and same length. Then we define the (scalar) product
of two matrix blocks as

�G,H� :=
�

i

G(i)H(i) = �GH� ∈ Rk1×k2 .

For a matrix J ∈ Rkm×km we define

�G, J,H� := �GJ,H� = �G, JH�.

Note that �·, ·� is only a product with scalar output regarding its module properties.
Definition 2.13 (R-scalar product and matrix block norm). Let V := (Rk1×k2)n be

the R-Vectorspace of matrix blocks of dimension k1× k2 and length n. Then �·, ·� defines a
scalar product �·, ·�R on V via

�G,H�R := trace�G,HT � = trace�GT , H�, G,H ∈ V.

The corresponding norm || · || on V is defined as �G� :=
�
�G,G�R.

Remark 2.14 (Properties of the matrix block norm). For a matrix block G, tensor A
and index s ∈ D holds

�G� =
��

i

||G(i)||2F , �A�F = �A(s)�.

We introduce the concept of orthogonality (cf. [6]) for matrix blocks, by which we can
greatly simplify the minimization problem.

Definition 2.15 (Orthogonality of matrix blocks). For a matrix block H, we call H
lefthand orthogonal if the columns of H� are orthogonal (this being �HT , H� = I), and
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righthand orthogonal if the rows of �H are orthogonal (this being �H,HT � = I).

Let Q be a matrix block of same dimensions as H. We then define the (non-unique)
operation orth� such that for Q = orth�(H), the pair (Q�, R) is a QR-decomposition of
H�. Then Q is lefthand orthogonal and QR = H.
Likewise orthr is such that for Q = orthr(H), the pair (L, �Q) is an LQ-decomposition
of �H. Then Q is righthand orthogonal and LQ = H. In the following we demonstrate
how orthogonality, the scalar product and the Kronecker product act together and form
a central result (Corollary 2.18) regarding the feasibility (Theorem 3.4) of the ADF core
step (Theorem 3.1) for which we initially only need Corollary 2.17.

Lemma 2.16 (Scalar products of Kronecker products). Let G1, G2 and H1, H2 be
matrix blocks of appropriate dimensions and lengths. Then

�(G1 ⊗G2)
T , H1 ⊗H2� = �GT

2 , �GT
1 , H1�, H2�,

respectively

�G1 ⊗G2, (H1 ⊗H2)
T � = �G1, �G2, H

T
2 �, HT

1 �.

Proof. Due to analogy we consider only the first case. By definition and reordering of
summation we get

�(G1 ⊗G2)
T , H1 ⊗H2� =

�

i

((G1 ⊗G2)(i))
T (H1 ⊗H2)(i)

=
�

i1,i2

G2(i2)
TG1(i1)

T (H1(i1)H2(i2)) =
�

i2

G2(i2)
T
�

i1

(G1(i1)
TH1(i1))H2(i2)

=
�

i2

G2(i2)
T �GT

1 , H1�H2(i2) = �GT
2 , �GT

1 , H1�, H2�.

Corollary 2.17 (Orthogonality of Kronecker products). If two matrix blocks G,H
are lefthand (righthand) orthogonal, then G ⊗H is lefthand (righthand) orthogonal. This
follows as for a matrix block K and a lefthand (righthand) orthogonal matrix block Q (P ),
we have

�(Q⊗K)T , Q⊗K� = �KT ,K� and �K,KT � = �K ⊗ P, (K ⊗ P )T �, respectively.

Furthermore this implies

||Q⊗K|| = ||K|| = ||K ⊗ P ||.

Corollary 2.18 (Scalar products of multiple Kronecker products). Let G1, . . . , G�

and H1, . . . , H� be matrix blocks of appropriate dimensions. Let G := G1 ⊗ . . . ⊗ G� and
H := H1 ⊗ . . .⊗H�. Then

�GT , H� = �GT
� , . . . , �GT

1 , H1�, . . . , H��.

If G1 = H1, . . . , Gk = Hk are lefthand orthogonal, we have

�GT , H� = �GT
� , . . . , �GT

k+1, Hk+1� . . . , H�� = �(Gk+1 ⊗ . . .⊗G�)
T , Hk+1 ⊗ . . .⊗H��.
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Likewise

�G,HT � = �G1, . . . , �G�, H
T
� �, . . . , HT

1 �.

If Gk = Hk, . . . , G� = H� are righthand orthogonal, we have

�G,HT � = �G1, . . . , �Gk−1, H
T
k−1�, . . . , HT

1 � = �G1 ⊗ . . .⊗Gk−1, (H1 ⊗ . . .⊗Hk−1)
T �.

Note that this decouples the Kronecker product and reduces the amount of computations as
well as the involved dimensions. For shorter notation we set the empty scalar product (i.e.
� = 0) as I, the identity matrix of suitable size. We offer a last remark on a property
which is central to the ADF core step.

Remark 2.19 (Non-uniqueness of representations). Considering A(·) : H �→ AH , one
has a mapping which is non-injective as for the representations H1 : H1, . . . , (H�J), . . . , Hd

and H2 : H1, . . . , (JH�+1), . . . , Hd one has A
H1

= AH2

, where � is arbitrary and J a square
matrix of appropriate dimension. This degree of freedom is not a disadvantage, indeed
we exploit this property in Theorem 3.1 by use of the LMaFit principle (Theorem 2.1).
Furthermore one can always assume, using the operations orth� and orthr, that all matrix
blocks Hi, i < h are lefthand orthogonal as well as that all matrix blocks Hi, i > h are
righthand orthogonal. Then also ||AG||F = ||Gh||.

3. The ADF Algorithm. We approach the main Problem 1.3 by the ADF Algorithm
1. As a basic step of the algorithm one has to solve the lefthand and righthand problem,
i.e., optimize with respect to G1, . . . , Gh or Gd, . . . , Gh while keeping the other variables
fixed. In the following we give a detailed description for solving these problems, as well as
for the choice of the overrelaxation parameter α (Remark 3.8 and Algorithm 2).

3.1. The ADF Core Step. The core step we now give solves the lefthand respec-
tively righthand problem in the sense that G1, . . . , Gh, respectively Gd, . . . , Gh, are each
optimized individually as it is required for the update of G in Algorithm 1.

Theorem 3.1 (Core step of the ADF algorithm). Given the lefthand problem one
can, as one sequence, optimize consecutively G1, . . . , Gh in order s = 1 → h, respectively
Gh, . . . , Gd in order s = h ← d when given the righthand problem. Without loss of gen-
erality we assume that G1 . . . Gh−1 are given lefthand orthogonal, respectively Gh+1 . . . Gd

righthand orthogonal (cf. Remark 2.19). The solution of the lefthand or righthand problem
is given by

Gs(j) =
�

i∈I,is=j

Zi(G1(i1) . . . Gs−1(is−1))
T (Gs+1(is+1) . . . Gd(id))

T = QT
s Z(s)(j)P

T
s

where

Qs := (G1 ⊗ . . .⊗Gs−1)�, Ps := �(Gs+1 ⊗ . . .⊗Gd),

followed by

Gs ←





orth�(Gs), if s < h

Gs, if s = h

orthr(Gs), if s > h.

Proof. (lefthand) We carry out the proof for s < h and s = h, assuming that the steps
before were performed as described above. Thereby G1 . . . Gs−1 are lefthand orthogonal.
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We abbreviate P := Ps and Q := Qs. As Q is orthogonal we have

Gs = argmin
Gs

�Z −AG�F = argmin
Gs

�Z(s) −AG
(s)� = argmin

Gs

�Z(s) −QGsP�

= argmin
Gs

�QTZ(s) −GsP� = argmin
Gs

�(QTZ(s))� −Gs�P�F (LS),

the latter being one single least squares problem to be solved for the matrix Gs�.
Case s < h : At this point we can, for s < h, use the LMaFit principle. We thereby know
that

range((QTZ(s))�PT )) = range(Gs�),

which for some matrix R yields

(QTZ(s))�PTR = Gs� ⇔ QTZ(s)(is)P
TR = Gs(is) ∀is.

In principle we have found Gs, but we do certainly not want to calculate R. Therefore, we
interprete R as part of Gs+1 instead of Gs. This is a valid operation that does not change
AG, as

. . . Gs−1(is−1) (QTZ(s)(is)P
TR)Gs+1(is+1) . . .

= . . . Gs−1(is−1) (QTZ(s)(is)P
T ) (RGs+1(is+1)) . . . ∀(i1, . . . , id) ∈ I.

Thereby R will vanish as the newly formed RGs+1 is next to be replaced. Hence we can,
instead of the direct minimizer, choose

Gs(is)← QTZ(s)(is)P
T ∀is. (∗)

followed by lefthand orthogonalizing Gs. This again produces some R, which is treated
likewise (cf. [6] for the matrix case).
Case s = h : One can see a more specific reason for the splitting into lefthand and righthand
now. There is naturally a limit for R to be transferred to the right, at the latest Gd. This
implies that we can neither use the LMaFit principle nor orthogonalize for one index, this
being s = h. Yet in this case P is orthogonal. Starting at (LS) again, we can thereby
without any further reasoning put P to the right as we did with Q. This immediately
results in the same formula (∗), except that we do not orthogonalize. This completes the
proof.

The core step described above solves the lefthand (or righthand) problem without
overrelaxation. The overrelaxation parameter α can be incorporated directly into the core
step by modifying Z as follows.

Lemma 3.2. Let AG = G1 ⊗ · · · ⊗Gd ∈ RI be given, α ∈ R, Z ∈ RI and

G+
µ := argmin

G̃µ

�Z −G1 ⊗ · · · ⊗Gµ−1 ⊗ G̃µ ⊗Gµ+1 ⊗ · · · ⊗Gd�.

Then Gα
µ := αG+

µ + (1− α)Gµ fulfils

Gα
µ = argmin

G̃µ

�Zα −G1 ⊗ · · · ⊗Gµ−1 ⊗ G̃µ ⊗Gµ+1 ⊗ · · · ⊗Gd�

for Zα := αZ + (1− α)AG.
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Proof. We insert αG+
µ + (1 − α)Gµ into the righthand side of the last equation and

obtain

�Zα −G1 ⊗ · · · ⊗Gµ−1 ⊗ (αG+
µ + (1− α)Gµ)⊗Gµ+1 ⊗ · · · ⊗Gd�

=�αZ + (1− α)AG −G1 ⊗ · · · ⊗Gµ−1 ⊗ (αG+
µ + (1− α)Gµ)⊗Gµ+1 ⊗ · · · ⊗Gd�

=�αZ − αG1 ⊗ · · · ⊗Gµ−1 ⊗G+
µ ⊗Gµ+1 ⊗ · · · ⊗Gd�

=α�Z −G1 ⊗ · · · ⊗Gµ−1 ⊗G+
µ ⊗Gµ+1 ⊗ · · · ⊗Gd�

and any other choice G̃µ = αG̃+
µ + (1 − α)Gµ does not give a smaller value since G+

µ is a
minimizer.

Notation 3.3 (Denoting current and old representations). During one sweep of up-
dating G1, . . . , Gh in the lefthand problem, we use the notation G− for the representation
before the sweep and G for the updated representation. Analogously for the righthand prob-
lem.

Theorem 3.4 (Practical ADF core step (lefthand)). Under the assumptions from
Theorem 3.1 the update G1, . . . , Gh for the lefthand problem with overrelaxation parameter
α is given by

Gs(j) = �GT
s−1, . . . �GT

1 , G
−
1 � . . . G−

s−1�� �� �
(LS1

s)

G−
s (j) �G−

s+1 . . . �G−
h , G

−
h

T � . . . G−
s+1

T �� �� �
(LS2

s)

(3.1)

+
�

i=(i1,...,id)∈P
is=j

α(Mi −AG−
i ) (G1(i1) . . . Gs−1(is−1))

T

� �� �
(LM1

s )i

(G−
s+1(is+1) . . . G

−
d (id))

T

� �� �
(LM2

s )i

(3.2)

Gs ←
�
orth�(Gs), if s < h

Gs, if s = h.
(3.3)

(The short notations are used for Lemma 3.5.)
Proof. According to Theorem 3.1 and Lemma 3.2, we have

Gs(j) = QT
s Z

α
(s)(j)P

T
s

=
�

i=(i1,...,id)∈I
is=j

Zα
i (G1(i1) . . . Gs−1(is−1))

T (Gs+1(is+1) . . . Gd(id))
T ∀j. (3.4)

Z = AG− |I\P +M |P (cf. Algorithm 1) and Zα = αZ + (1−α)AG−
(cf. Lemma 3.2) yield

Zα = AG−

����
�→First summand

+α(M |P −AG− |P )� �� �
�→Second summand

which we insert it into (3.4).

First summand: Recall that AG−
(s) can be expanded (Example 2.11). Using the definition

for Qs and Ps (Theorem 3.1) we have:

QT
s A

G−
(s) (j)P

T
s =

(G1 ⊗ . . .⊗Gs−1)�T (G−
1 ⊗ . . .⊗G−

s−1)�G−
s (j) �(G−

s+1 ⊗ . . .⊗G−
d )�(Gs+1 ⊗ . . .⊗Gd)

T

(3.5)
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With Remark 2.9 and the definition for the scalar product (Definition 2.12) we can simplify

(3.5) = �(G1⊗. . .⊗Gs−1)
T , (G−

1 ⊗. . .⊗G−
s−1)� G−

s (is) �(G−
s+1⊗. . .⊗G−

d ), (Gs+1⊗. . .⊗Gd)
T �

Due to Corollary 2.18 and the fact that Gs+1, . . . , Gd still equal G−
s+1, . . . , G

−
d and are

righthand orthogonal as of index h + 1 when optimizing lefthand we can simplify both
scalar products

(3.5) = �GT
s−1, . . . �GT

1 , G
−
1 � . . . G−

s−1�G−
s (j) �G−

s+1 . . . �G−
h , G

−
h

T � . . . G−
s+1

T �.

Second summand: As (M |P −AG− |P )i = 0 for any i /∈ P , we can reduce the summation
from I to P without changing its outcome. We use again that Gs+1, . . . , Gd still equal
G−
s+1, . . . , G

−
d and receive the formula stated in the theorem.

Analogously to the lefthand case we can treat the righthand case by

Gs(j) = �G−
s−1

T
, . . . �G−

h

T
, G−

h � . . . G−
s−1�G−

s (j) �G−
s+1 . . . �G−

d , G
T
d � . . . GT

s+1�
+

�

i=(i1,...,id)∈P
is=j

α(Mi −AG−
i ) (G−

1 (i1) . . . G
−
s−1(is−1))

T (Gs+1(is+1) . . . Gd(id))
T

Gs ←
�
orthr(Gs), if s > h

Gs, if s = h.

3.2. Computational Complexity of ADF. Each statement in this section which
we give in its lefthand version can be treated analogously in the righthand case, leading to
equivalent results.

Lemma 3.5 (Successive computing). In the lefthand core step (Theorem 3.4) occuring
terms can be reduced to simpler successive computations, via:

(LS1
s ) = �GT

s−1, (LS
1
s−1), G

−
s−1�, (3.6)

(LS2
s ) = �G−T

s+1, (LS
2
s+1), G

−
s+1�, (3.7)

where (LS1
1) = 1 and (LS2

h) = I (the identity matrix). Likewise

(LM1
s )i = Gs−1(is−1)

T (LM1
s−1)i, (3.8)

(LM2
s )i = (LM2

s )iG
−
s+1(is+1)

T (3.9)

where (LM1
1 ) = 1 and (LM2

h) is inherited from the righthand step. Hence, while (LS1) and
(LM1) are updated within the sequence, (LS2) and (LM2) are calculated before. Further-

more, (LM1
h) and (LM2

h) can be used to update A
G−
P .

Corollary 3.6 (Computational complexity). Let r := max{r1, . . . , rd−1}, n :=
max{n1, . . . , nd} and p := #P . If we consider one full lefthand optimization sweep (Z,
G1, . . . , Gh), we can give an upper bound for the effort by analyzing the operations in
Lemma 3.5 and Theorem 3.4:

1. (3.6) & (3.7): 2n times (r × r) times (r × r) matrix multiplications
2. (3.8) & (3.9): p times (1× r) times (r × r) matrix multiplications
3. (3.1): n times (r × r) times (r × r) matrix multiplications
4. (3.2): p times (r × 1) times (1× r) matrix multiplications
5. (3.3): at most one QR decomposition of an nr × r matrix

12



Each of these steps is performed about d/2 times. As the number of samples scales like
p ∼ Covr

2nd, items 1, 3, 5 are negligible. This leaves us with a total effort for one lefthand
sweep of

C = O(pr2d) = O(Covr
4nd2),

where the oversampling constant Cov is assumed to be the uniform slice density, cf. Def-
inition 1.1. Note that the constant hidden in the order is very small, but the number of
necessary lefthand and righthand sweeps can be large.

Corollary 3.7 (Storage complexity). Let r := max{r1, . . . , rd−1} and p := #P and
n := max{n1, . . . , nd}. As in the lefthand case (LS2) and (LM2) have to be calculated
beforehand and stored for efficiency reasons, we require

S = O(prd) = O(Covr
3nd2)

numbers to be stored.

3.3. Choice of the SOR Parameter α. By an optimized determination of the accel-
eration parameter α one can speed up the convergence of the ADF algorithm considerably.
Therefore, after each sweep for the lefthand or righthand problem, we allow a relatively
expensive search for a suitable α by testing increased (αup) and reduced (αdown) values of
α until the residual decays (or we break).

Remark 3.8 (Determination of the direction). To handle the acceleration parameter
α, we introduce a second parameter δ taking the role of an increment. Each lefthand or
righthand sweep is run for two different accelerations (αup, αdown), where we denote by α
the previous one:

αup := α+ δ, αdown := max{1, α− δ/5.}

By this choice the overrelaxation parameter is at least α ≥ 1. Depending on the residuals
of the results, one of the three directions, denoted by (up), (down) or (back), is chosen as
specified in Algorithm 2. It determines the new α, δ as well as G. At the start we use
α := 1 (possibly adapted to the problem) and δ := α/4.

Algorithm 2 Choice of the SOR parameter α

Let G− be the old representation received by having used α. Let Gup, Gdown denote the
representation obtained by either a lefthand or righthand sweep with parameter αup, αdown

leading to residuals R−, Rup, Rdown.

Notation: �= decrease, ��= heavy decrease, �= increase

if Rup > R− and Rdown > R− then
�� α (but α ≥ 1); � δ; keep G← G− and repeat step; Γ← (back);

else if (Rup < Rdown) then
If Γ = (up) then � δ, otherwise � δ;
α← αup; G← Gup; Γ← (up);

else if (Rdown < Rup) then
If Γ = (down) then � δ, otherwise � δ;
α← αdown; G← Gdown; Γ← (down);

end if
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3.4. Generating Starting Values and Stopping Criteria. We continue by intro-
ducing an incremental approach for finding good initial values for the iterative optimization
by the ADF algorithm.

Remark 3.9 (Stepwise increase of r). A successful strategy for finding good initial
values for the optimization is to start with minimal rank r0 = . . . = rd = 1, and each time
the algorithm does not do sufficient progress anymore (cf. Remark 3.10), the ranks rµ of
G are increased until the target rank is reached. For the very first guess with TT ranks
r1 = . . . = rd−1 = 1, we define

(Gs(i))1,1 :=
1√
n
, ∀s, i.

G is uniform and fulfils all required orthogonality conditions, cf. Theorem 3.4. Finally,
we need a reliable stopping criterion and decide when to increase the ranks.

Remark 3.10 (Breaking criteria). We break if one of the following criteria is met:
• the last 10 directions were (back), i.e., there is no reduction of the residual even if
the SOR parameter α approaches 1.

• the last 5 quotients of old and new residuals are in average too small, and either
the direction is (down) or the change in the two last quotients of residuals is too
small.

The term ”too small” is related to a parameter ε. Most reasonable choices vary between
10−4 and 10−6. The first criterion prevents that the algorithm gets stuck trying to lower α

Algorithm 3 ADF algorithm

Initialize the representation G for r = 1 (Remark 3.9), α and δ;
while r ≤ rfinal do
for iter = 1, . . . , itermax do
do the while loop lefthand, then righthand: {Remark 3.8}
while Γ = (back) do
for (up) and (down) direction optimize respective hand; {Theorem 3.4, Lemma
3.5}
choose direction; {Algorithm 2}

end while
if breaking criteria apply then
stop and continue outer for loop; {Remark 3.10}

end if
end for
adapt representation to r + 1; {Remark 3.9}

end while

more and more. In the second one, instead of using some kind of absolute criteria regarding
the residual, it is much better to look at relative improvements. As these can fluctuate a
bit we take the average of several. In order to prevent too early breaking, the direction
is supposed to be (down), as while α increases (in case of (up)) or is accidentially far too
large (in case of (back)), there is still a chance that this improves. However, if this happens
too slow, the algorithm will break anyway to prevent that the algorithm gets stuck. The
final ADF algorithm is given in Algorithm 3

4. Numerical Experiments.

4.1. Generating of Data and Details to Measurements. In order to obtain a
sufficient slice density, cf. Definition 1.1, we generate the set P in a quasi-random way
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as follows: For each direction µ = 1, . . . , d and each index iµ ∈ Iµ we pick Covr
2 indices

i1, . . . , iµ−1, iµ+1, . . . , id at random (uniformly). This gives in total dnCovr
2 samples (ex-

cluding some exceptions), where Cov is the oversampling factor in the sense that the low
rank tensor format inhibits at most dnr2 degrees of freedom.

As a control set C we use a set of the same cardinality as P that is generated in the
same way. We give neither a limit to time nor to the number of iterations and use only
the previously mentioned breaking criteria with varying ε ∈ {10−4, 10−5, 10−6}. For the
results of the tests we denote the ratio of known points ρ = #P/nd, the relativ residual
resP = �A − X�P /�A�P , the error on the control set resC = �A − X�C/�A�C and the
time in seconds (s), minutes (m) or hours (h).

4.2. Approximation of a Full Rank Tensor with Decaying Singular Values.
As a first example, we consider a tensor A ∈ RI given by the entries

A(i1,...,id) :=

�
d�

µ=1

i2µ

�−1/2

.

We carry out three different tests, each one focusing on a different parameter, i.e. d
(dimension), r (final rank) and n (size).

Each combination of parameters is tested 10 times for different random P and C,
where �resC� and �resP � denote the geometric mean of the respective results and �time�
the arithmetic mean of times. A plot of the convergence of �resP �, �resC� for fixed d = 8
and n = 20 is given in Figure 4.1. We observe convergence for all choices of parameters.
In Table 4.1 we list the detailed results for oversampling factor Cov = 10 and stopping
criterion ε = 10−6.

r �resC� �resP � �time�
2 1.94e-02 8.15e-03 14 s

3 2.05e-03 3.84e-04 1.3 m

4 1.72e-03 7.50e-05 24 m

5 1.49e-03 4.50e-05 39 m

6 2.25e-03 1.84e-05 1.7 h

7 8.53e-04 7.36e-06 2.6 h

d �resC� �resP � �time�
5 1.30e-02 2.07e-03 6.3 s

8 2.98e-03 4.15e-04 32 s

13 3.07e-03 6.02e-04 2.9 m

21 6.29e-03 4.03e-03 4.3 m

34 7.66e-03 7.59e-03 27 s

55 4.63e-03 4.56e-03 2.1 m
Table 4.1

Convergence and timing with respect to the target rank r for fixed d = 8, n = 20, Cov = 10, ε = 10−6

(left). Convergence and timing with respect to the dimension d for fixed r = 3, n = 8, Cov = 10, ε = 10−6

(right).

We observe that the timing results can be quite inhomogenous due to the stopping
criterion that does not limit the maximal number of iterative steps. However, the results
show that an approximation in dimension d = 55 still works fine, although only extremely
few points of the whole tensor (less than 10−50 × nd) are known.

At last we consider the variation of the mode sizes n ∈ {8, 16, 32} in Table 4.2. Here we
also observe an independence of the mode size n, but we could observe in further numerical
experiments that for large n and larger ranks r the results are less satisfying.

4.3. Reconstruction of a Low Rank Tensor without Noise. As second example,
we consider quasi-random tensors with exact, common low TT ranks A ∈ TT (r, . . . , r) (cf.
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ε = 10−4, Cov = 50

ε = 10−5, Cov = 10

ε = 10−5, cov = 20

ε = 10−5, Cov = 50

ε = 10−6, Cov = 5

ε = 10−6, Cov = 10

10−7 10−6 10−5 10−4

10−6

10−5

10−4

10−3

10−2

10−1

Fig. 4.1. Plotted are the residuals �resP � (right) as well as the control residuals �resC� (left) as func-
tion of ρ for varying target ranks r = 2, . . . , 10 . Each curve corresponds to one choice of the oversampling
parameter Cov and the stopping parameter ε.

Definition 1.2). Each tensor is generated via a TT representation G as follows: Each entry
of G1, . . . , Gd is (uniformly) assigned with a random value in [−0.5, 0.5]. The tensor is then
computed as A = AG. Each combination of parameters is tested 20 times for different
random P and C. We consider such a reconstruction successful if resC < 10−3. As an
additional heuristic method we allow the algorithm after a failure to try the same task at
most 5 times again. In these tests only portions of the previous P (which increase with the
current rank) are used. However, no new information is anyhow used in these trials. Two
diagrams, for d = 4, 5, with fixed n = 20 and ε = 10−5 are given in Figure 4.2, displaying

16



n �resC� �resP � �time�
8 2.91e-03 1.56e-04 20 s

16 7.13e-03 3.87e-04 1.4 m

32 6.82e-03 4.01e-04 2.8 m
Table 4.2

Convergence and timing with respect to the mode size n for fixed d = 8, r = 4, Cov = 10, ε = 10−5.

the numbers of successes in 20 shades of gray, from white (0) to black (all 20).
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Fig. 4.2. Displayed as shades of gray (white (0) to black (all 20)) are the numbers of successful
reconstructions for varying target ranks r = 1, . . . , 8 and oversamplings Cov = 2, 4, . . . , 256 with d = 4
(left) and d = 5 (right)

We observe that the results for d = 4 are quite satisfying and that with increasing
rank, less oversampling is needed. For d = 5, the performance is decreasing rather fast. In
general the known portion of points ρ seems to effort a magnitude of about 10−3 to 10−2.

4.4. Reconstruction of a Low Rank Tensor with Noise. As last test we exactly
repeat the previous one but with perturbed tensors Ã = A+10−4νE , where A is generated
as before and ν := �A�P /

√
#P . E is a tensor of same proportions; each entry being

a (uniformly) quasi-randomly assigned value in [−1, 1]. A test is considered successful
if resC < 10−3, where the control set residuum is still evaluated on A. However, no
information about the non perturbed tensor is used in the algorithm. We desist from a
diagram as there is no observable difference. It seems as if the algorithm ignores uniform
noise as far as theoretically possible.

5. Conclusions. In this article we presented an alternating directions fitting algo-
rithm that aims at finding a low tensor rank approximation to a tensor whose entries are
known only in a small subset of all indices. It is important to use a certain oversampling
factor in order to obtain a reasonable reconstruction of the tensor, and in our numerical
experiments it turns out that this factor depends on the dimension but can be decreased
with increasing rank, where it approaches Cov = 2 in dimension d = 4. The SOR-type
solver of the first order optimality conditions is able to minimize the residual on the known
set of indices (the samples) for moderate ranks r < 10 and dimension d < 50. A modifica-
tion or extension is necessary in order to treat varying TT ranks r1, . . . , rd−1 instead of a
uniform rank. Also, large mode sizes n > 100 possibly require smoothness conditions and a
refined sampling strategy. The influence of noise on the reconstruction is rather harmless,
where the noise can be unstructured or of rank structure but of smaller magnitude than
the desired target accuracy. It seems that the low rank format introduces an automatic
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regularization in the same way as the singular value truncation pronounces low frequency
components.
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Smooth Bivariate Functions by the Easy Path Wavelet Transform. Preprint 78,
DFG-SPP 1324, January 2011.



[79] A. Mugler and H.-J. Starkloff. On Elliptic Partial Differential Equations with
Random Coefficients. Preprint 79, DFG-SPP 1324, January 2011.

[80] T. Müller-Gronbach, K. Ritter, and L. Yaroslavtseva. A Derandomization of the
Euler Scheme for Scalar Stochastic Differential Equations. Preprint 80, DFG-SPP
1324, January 2011.

[81] W. Dahmen, C. Huang, C. Schwab, and G. Welper. Adaptive Petrov-Galerkin
methods for first order transport equations. Preprint 81, DFG-SPP 1324, January
2011.

[82] K. Grella and C. Schwab. Sparse Tensor Spherical Harmonics Approximation in
Radiative Transfer. Preprint 82, DFG-SPP 1324, January 2011.

[83] D.A. Lorenz, S. Schiffler, and D. Trede. Beyond Convergence Rates: Exact In-
version With Tikhonov Regularization With Sparsity Constraints. Preprint 83,
DFG-SPP 1324, January 2011.

[84] S. Dereich, M. Scheutzow, and R. Schottstedt. Constructive quantization: Ap-
proximation by empirical measures. Preprint 84, DFG-SPP 1324, January 2011.

[85] S. Dahlke and W. Sickel. On Besov Regularity of Solutions to Nonlinear Elliptic
Partial Differential Equations. Preprint 85, DFG-SPP 1324, January 2011.

[86] S. Dahlke, U. Friedrich, P. Maass, T. Raasch, and R.A. Ressel. An adaptive
wavelet method for parameter identification problems in parabolic partial differ-
ential equations. Preprint 86, DFG-SPP 1324, January 2011.

[87] A. Cohen, W. Dahmen, and G. Welper. Adaptivity and Variational Stabilization
for Convection-Diffusion Equations. Preprint 87, DFG-SPP 1324, January 2011.

[88] T. Jahnke. On Reduced Models for the Chemical Master Equation. Preprint 88,
DFG-SPP 1324, January 2011.

[89] P. Binev, W. Dahmen, R. DeVore, P. Lamby, D. Savu, and R. Sharpley. Com-
pressed Sensing and Electron Microscopy. Preprint 89, DFG-SPP 1324, March
2011.

[90] P. Binev, F. Blanco-Silva, D. Blom, W. Dahmen, P. Lamby, R. Sharpley, and
T. Vogt. High Quality Image Formation by Nonlocal Means Applied to High-
Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-
STEM). Preprint 90, DFG-SPP 1324, March 2011.

[91] R. A. Ressel. A Parameter Identification Problem for a Nonlinear Parabolic Dif-
ferential Equation. Preprint 91, DFG-SPP 1324, May 2011.



[92] G. Kutyniok. Data Separation by Sparse Representations. Preprint 92, DFG-SPP
1324, May 2011.

[93] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to
Compressed Sensing. Preprint 93, DFG-SPP 1324, May 2011.

[94] H.-C. Kreusler and H. Yserentant. The Mixed Regularity of Electronic Wave
Functions in Fractional Order and Weighted Sobolev Spaces. Preprint 94, DFG-
SPP 1324, June 2011.

[95] E. Ullmann, H. C. Elman, and O. G. Ernst. Efficient Iterative Solvers for
Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Prob-
lems. Preprint 95, DFG-SPP 1324, June 2011.

[96] S. Kunis and I. Melzer. On the Butterfly Sparse Fourier Transform. Preprint 96,
DFG-SPP 1324, June 2011.

[97] T. Rohwedder. The Continuous Coupled Cluster Formulation for the Electronic
Schrödinger Equation. Preprint 97, DFG-SPP 1324, June 2011.

[98] T. Rohwedder and R. Schneider. Error Estimates for the Coupled Cluster Method.
Preprint 98, DFG-SPP 1324, June 2011.

[99] P. A. Cioica and S. Dahlke. Spatial Besov Regularity for Semilinear Stochastic
Partial Differential Equations on Bounded Lipschitz Domains. Preprint 99, DFG-
SPP 1324, July 2011.

[100] L. Grasedyck and W. Hackbusch. An Introduction to Hierarchical (H-) Rank and
TT-Rank of Tensors with Examples. Preprint 100, DFG-SPP 1324, August 2011.

[101] N. Chegini, S. Dahlke, U. Friedrich, and R. Stevenson. Piecewise Tensor Product
Wavelet Bases by Extensions and Approximation Rates. Preprint 101, DFG-SPP
1324, September 2011.

[102] S. Dahlke, P. Oswald, and T. Raasch. A Note on Quarkonial Systems and Multi-
level Partition of Unity Methods. Preprint 102, DFG-SPP 1324, September 2011.

[103] A. Uschmajew. Local Convergence of the Alternating Least Squares Algorithm
For Canonical Tensor Approximation. Preprint 103, DFG-SPP 1324, September
2011.

[104] S. Kvaal. Multiconfigurational time-dependent Hartree method for describing par-
ticle loss due to absorbing boundary conditions. Preprint 104, DFG-SPP 1324,
September 2011.



[105] M. Guillemard and A. Iske. On Groupoid C*-Algebras, Persistent Homology and
Time-Frequency Analysis. Preprint 105, DFG-SPP 1324, September 2011.

[106] A. Hinrichs, E. Novak, and H. Woźniakowski. Discontinuous information in the
worst case and randomized settings. Preprint 106, DFG-SPP 1324, September
2011.

[107] M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Efficient
Analysis of High Dimensional Data in Tensor Formats. Preprint 107, DFG-SPP
1324, September 2011.

[108] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider. Optimization Problems
in Contracted Tensor Networks. Preprint 108, DFG-SPP 1324, October 2011.

[109] S. Dereich, T. Müller-Gronbach, and K. Ritter. On the Complexity of Computing
Quadrature Formulas for SDEs. Preprint 109, DFG-SPP 1324, October 2011.

[110] D. Belomestny. Solving optimal stopping problems by empirical dual optimization
and penalization. Preprint 110, DFG-SPP 1324, November 2011.

[111] D. Belomestny and J. Schoenmakers. Multilevel dual approach for pricing Amer-
ican style derivatives. Preprint 111, DFG-SPP 1324, November 2011.

[112] T. Rohwedder and A. Uschmajew. Local convergence of alternating schemes for
optimization of convex problems in the TT format. Preprint 112, DFG-SPP 1324,
December 2011.

[113] T. Görner, R. Hielscher, and S. Kunis. Efficient and accurate computation of
spherical mean values at scattered center points. Preprint 113, DFG-SPP 1324,
December 2011.

[114] Y. Dong, T. Görner, and S. Kunis. An iterative reconstruction scheme for pho-
toacoustic imaging. Preprint 114, DFG-SPP 1324, December 2011.

[115] L. Kämmerer. Reconstructing hyperbolic cross trigonometric polynomials by sam-
pling along generated sets. Preprint 115, DFG-SPP 1324, February 2012.

[116] H. Chen and R. Schneider. Numerical analysis of augmented plane waves methods
for full-potential electronic structure calculations. Preprint 116, DFG-SPP 1324,
February 2012.

[117] J. Ma, G. Plonka, and M.Y. Hussaini. Compressive Video Sampling with Ap-
proximate Message Passing Decoding. Preprint 117, DFG-SPP 1324, February
2012.



[118] D. Heinen and G. Plonka. Wavelet shrinkage on paths for scattered data denoising.
Preprint 118, DFG-SPP 1324, February 2012.

[119] T. Jahnke and M. Kreim. Error bound for piecewise deterministic processes mod-
eling stochastic reaction systems. Preprint 119, DFG-SPP 1324, March 2012.

[120] C. Bender and J. Steiner. A-posteriori estimates for backward SDEs. Preprint
120, DFG-SPP 1324, April 2012.

[121] M. Espig, W. Hackbusch, A. Litvinenkoy, H.G. Matthiesy, and P. Wähnert. Eff-
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[124] P.A. Cioica, S. Dahlke, N. Döhring, U. Friedrich, S. Kinzel, F. Lindner, T. Raasch,
K. Ritter, and R.L. Schilling. On the convergence analysis of Rothe’s method.
Preprint 124, DFG-SPP 1324, July 2012.

[125] P. Binev, A. Cohen, W. Dahmen, and R. DeVore. Classification Algorithms using
Adaptive Partitioning. Preprint 125, DFG-SPP 1324, July 2012.

[126] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dynamical approx-
imation of hierarchical Tucker and Tensor-Train tensors. Preprint 126, DFG-SPP
1324, July 2012.
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