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Multilevel preconditioning for sparse optimization

of functionals with nonconvex fidelity terms∗

S. Dahlke, M. Fornasier, U. Friedrich, T. Raasch

Abstract

This paper is concerned with the development of numerical schemes
for the minimization of functionals involving sparsity constraints and
nonconvex fidelity terms. These functionals appear in a natural way
in the context of Tikhonov regularization of nonlinear inverse prob-
lems with �1 penalty terms. Our method of minimization is based
on a generalized conditional gradient scheme. It is well–known that
these algorithms might converge quite slowly in practice. Therefore,
we propose an acceleration which is based on a decreasing threshold-
ing strategy. Its efficiency relies on certain spectral properties of the
problem at hand. We show that under certain boundedness and con-
traction conditions the resulting algorithm is linearly convergent to
a global minimizer and that the iteration is monotone with respect
to the functional. We study important classes of operator equations
to which our analysis can be applied. Moreover, we introduce a cer-
tain multilevel preconditioning strategy which in practice promotes the
aforementioned spectral properties for problems where the nonlinearity
is a perturbation of a linear operator.

MSC 2010: 65K10, 65J15, 41A25, 65N12, 65T60, 47J06, 47J25.
KeyWords: Conditional gradient method, non-convex optimization, sparse
minimization, (nonlinear) operator equations, iterative thresholding, multi-
level preconditioning, wavelets.

1 Introduction

The aim of this paper is to derive an efficient numerical algorithm for the
global minimization of functionals of the form

Γα(u) :=
��K(u)− y

��2
Y
+ 2�u��1,α(J ), u ∈ �2(J ), (1)

where K : �2(J ) → Y is a nonlinear, continuously Fréchet differentiable
operator acting between the sequence space �2(J ) over the countable index

∗December 13, 2013. This work has been supported by Deutsche Forschungsgemein-
schaft (DFG), grant DA 360/12-2 and the LOEWE Center for Synthetic Microbiology
(Synmikro), Marburg.
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set J and a separable Hilbert space Y . Here y ∈ Y is a given datum, and
�u��1,α(J ) :=

�
µ∈J αµ|uµ| denotes the weighted �1-norm of u with respect

to a positive weight sequence α ∈ RJ
+ . We shall assume that there exists

α > 0 such that αµ ≥ α for all µ ∈ J . Whenever the index set J is fixed
and clear from the context, we will drop it in the notation and simply write
�2 and �1,α, respectively.

Typical examples where minimization problems of the form (1) arise are
Tikhonov regularizations of nonlinear operator equations

K(u) = y (2)

when the forward operator K : X → Y maps a separable Hilbert space
X into Y . We refer, e.g., to [16] for a detailed discussion of Tikhonov
regularization schemes. If the unknown solution is guaranteed to have a
sparse expansion with respect to some suitable countable Riesz basis Ψ :=
{ψµ}µ∈J forX, it makes sense to utilize that the weighted �1-norm promotes
sparse solutions. Denoting linear synthesis operator associated to Ψ with

u =
�

µ∈J
uµψµ =: F(u), u ∈ �2(J ),

and setting K := K ◦ F , the minimization of (1) will produce a sparsely
populated coefficient array u with K(u) ≈ y. The modeling motivation
is the search of the “simplest” (in this case modeled by the “sparsest”)
explanation to the given datum y, resulting from the nonlinear process K,
in the spirit of the Occam’s razor. Moreover, it is known that, under certain
smoothness conditions, the global minimizers of (1) are regularizers for the
problem.

By now there is a vast literature concerning sparse regularization of
nonlinear inverse problems [2,3,19,23]. For most of the results in the litera-
ture related to minimizing algorithms for functionals of the type (1) usually
only convergence to critical points is shown. Unfortunately, differently from
global minimizers, nothing is really known concerning the regularization
properties of critical points, significantly questioning the relevance of such
convergence results.

The starting point of our present discussion is a generalized conditional
gradient method which is known to guarantee the computation of subse-
quences converging to critical points of (1). The scope of this paper is to
show under which sufficient conditions on K one may expect to have linear
convergence of a suitable modification of this algorithm towards a global
minimizer, hence guaranteeing regularization properties.

Several authors have independently proposed such an algorithm, see [14,
17,20,21] for the case of linear operators K and [2,3] for the generalization
to the nonlinear case. The general setting can be described as follows. One
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introduces an auxiliary parameter λ ∈ R+, and considers the splitting

Γα(u) = �K(u)− y�2Y − λ�u�2�2� �� �
=:Γ

(1)
λ (u)

+λ�u�2�2 + 2�u��1,α� �� �
=:Γ

(2)
λ,α(u)

. (3)

Then Γ
(1)
λ is continuously Fréchet differentiable and Γ

(2)
λ,α is convex, lower

semicontinuous, and coercive with respect to � ·��2 , so that all the necessary
properties to set up a generalized conditional gradient method are satisfied.
The algorithm is given by

Algorithm 1.1. 1. Choose u(0) ∈ �1,α; n := 0;
2. Determine descent direction v(n)

v(n) ∈ arg min
v∈�2

�
2�
�
K �(u(n))

�∗�
K(u(n))− y

�
− λu(n),v��2

+ λ�v�2�2 + 2�v��1,α
�
;

(4)

3. Determine step size s(n)

s(n) ∈ arg min
s∈[0,1]

�
Γα(u

(n) + s(v(n) − u(n)))
�
; (5)

4. Set u(n+1) := u(n) + s(n)(v(n) − u(n)); n := n+ 1; return to step 2.

Here
�
K �(u(n))

�∗ ∈ L(Y, �2) denotes the adjoint mapping of K �(u(n)) ∈
L(�2, Y ). We refer to [2] for a detailed discussion and convergence analysis
of Algorithm 1.1. If the parameter λ is chosen large enough, it is possible
to choose s(n) = 1 and to omit the third step of the algorithm, see Lemma
2.4 in [2]. Throughout this paper we always make this assumption, hence
we focus on the minimization problem (4) in the following. Observe that by
expanding the quadratic term below, (4) is equivalent to

arg min
v∈�2

�
�v −

�
u(n) − 1

λ

�
K �(u(n))

�∗�
K(u(n))− y

��
�2�2 + 2�v��1,α

λ

�
. (6)

The minimizer of such a functional combining an �2-norm fidelity term and
weighted �1-norm penalization can be directly computed using a soft thresh-
olding operation, see [4, 13]. By defining

Sα(x) :=





x− α, x > α,

0, |x| ≤ α,

x+ α, x < −α,

and Sα(u)µ := Sαµ(uµ) it holds that

Sα(a) = arg min
v∈�2

�v − a�2�2 + 2�v��1,α . (7)
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Consequently, through (6), we obtain that (4) is uniquely solved by

v(n) = Sα
λ

�
u(n) +

1

λ

�
K �(u(n))

�∗�
y −K(u(n))

��
. (8)

This explains why Algorithm 1.1 is also known as the iterated soft thresh-
olding algorithm (ISTA) or the thresholded Landweber iteration.

The convergence of Algorithm 1.1 for nonlinear operators K was studied
in [3]. There it was shown that the sequence

�
u(n)

�
n∈N has subsequences

which are guaranteed to converge to a stationary point u∗ of (1), i.e.,

u∗ ∈ arg min
v∈�2

�
2�
�
K �(u∗)

�∗�
K(u∗)− y

�
− λu∗,v��2 + λ�v�2�2 + 2�v��1,α

�
,

or equivalently 0 ∈
�
∂Γα

�
(u∗). However, it is known from the linear case,

that the algorithm in its most basic form converges rather slowly. Strategies
to accelerate the convergence of the method are necessary for its applicabil-
ity. In [10] three of us considered the case of linear operatorsK and proposed
to chose a decreasing thresholding strategy for the parameters α(n). In this
u∗ = u∗α is a global minimizer of (1). Moreover it has been possible to show
that the resulting scheme is guaranteed to converge linearly, under spectral
conditions of K, the so-called restricted isometry property, see (60) below.
Furthermore this property is obtainable for certain classes of operators by
means of multilevel preconditioners, we refer to [10] for details. This paper
is concerned with the generalization of this strategy to nonlinear operators
K. That is, we are interested in the convergence analysis of the iteration

u(n+1) := S 1
λ
α(n)

�
u(n) +

1

λ

�
K �(u(n))

�∗�
y −K(u(n))

��
, (9)

where α(n) ∈ RJ
+ is an entrywise decreasing sequence with limn→∞α(n) = α

and α
(n)
µ , αµ ≥ α ∈ R+, µ ∈ J .

The basic convergence analysis is outlined in Section 2. Our analysis re-
lies on two fundamental assumptions. We need that the operator K satisfies
certain boundedness and Lipschitz continuity conditions, see (22). More-
over, we have to assume that the operator

T : �2 → �2, v �→ T (v) := v +
1

λ

�
K �(v)

�∗�
y −K(v)

�

is a contraction on a sufficiently small ball around a critical point u∗ of the
functional Γα, which will turn out to be the unique global minimizer there.
Then the iteration is linearly convergent, i.e.,

�u∗ − u(n)��2 ≤ γn�u∗��2 , for some γ ≤ 1.

Moreover, the iteration is monotone in the sense that

Γα(n+1)(u(n+1)) < Γα(n)(u(n)), (10)
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provided that u(n) is not a critical point of Γα(n) . These properties are
specified in Theorem 2.4 which is the main result of this paper.

The local contraction condition (42) on T may be hard to verify. In
the Sections 2.2 and 2.3, we discuss in detail two classes of operators where
it is satisfied. The first class consists of operators with bounded second
derivatives and first derivative that satisfies the contraction property. The
second class is given by nonlinear perturbations of linear operators satisfying
the restricted isometry property (60). As already shown in [10] for large
classes of linear operators K where (60) fails, it can actually be resumed by
preconditioning. Details will be outlined for the case of a nonlinear K which
is mild perturbation of a linear operator in Section 3.

The analysis in this paper is performed in an infinite dimensional setting.
In this general setting, clearly the operator K and K � cannot be evaluated
exactly. Therefore, in Section 4, we discuss strategies to solve the infinite
dimensional problem by turning it into a finite dimensional one and using
the expected sparsity of the minimizer. If implementable approximations of
the actions of K and K � up to prescribed tolerances are applied, then the
resulting inexact, but implementable, version of the algorithm will be again
linearly convergent. If the underlying Riesz basis is of wavelet type, then
the desired approximations are known in the literature for certain classes of
nonlinearities [8, 12, 18].

2 Convergence analysis

In this section we analyze the convergence properties of the iteration (9).
As a first step we show that under relatively mild assumptions Γα(n)(u(n))
decreases monotonically. It is known that in the case of constant thresh-
olding parameters αn = α, n ∈ N, the sequence

�
u(n)

�
n∈N has a convergent

subsequence and every convergent subsequence converges to a stationary
point of (1). However, we are in particular interested in the global mini-
mizer of (1). Therefore, we prove that under more restrictive assumptions
and for decreasing thresholing parameters αn the iterates converge linearly
to the global minimizer of (1). In the remainder of this section we present
examples of settings where our analysis can be applied. In Section 2.2, we
describe how our assumptions can be fulfilled under smoothness conditions
on the nonlinear operator K and its derivative. In Section 2.3 we present
the important special case where K can be expressed as the sum of a linear
operator satisfying the restricted isometry property, and a small nonlinear
perturbation.

2.1 A general convergence result

We are particularly interested in computing approximations with the small-
est possible number of nonzero entries to solutions of (2). As a benchmark,
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we recall that the most economical approximations of a given vector v ∈ �2
are provided by the best N -term approximations vN , defined by discarding
in v all but the N ∈ N0 largest coefficients in absolute value. The error of
best N -term approximation is defined as

σN (v) := �v − vN��2 . (11)

The subspace of all �2 vectors with best N -term approximation rate
s > 0, i.e., σN (v) � N−s for some decay rate s > 0, is commonly referred
to as the weak �τ space �wτ (J ), for τ = (s+ 1

2)
−1, which, endowed with

|v|�wτ (J ) := sup
N∈N0

(N + 1)sσN (v), (12)

becomes the quasi-Banach space (�wτ (J ), | · |�wτ (J )). Moreover, for any 0 <
� ≤ 2− τ , we have the continuous embeddings �τ (J ) �→ �wτ (J ) �→ �τ+�(J ),
justifying why �wτ (J ) is called weak �τ (J ). As before we omit the depen-
dency on the index set J whenever it is clear from the context.

When it comes to the concrete computations of good approximations
with a small number of active coefficients, one frequently utilizes certain
thresholding procedures. Here small entries of a given vector are simply
discarded, whereas the large entries may be slightly modified. In this paper,
we will make use of soft-thresholding that we already introduced in (7). It
is well-known that Sα is non-expansive for any α ∈ RJ

+ ,
Moreover, for any fixed x ∈ R, the mapping β �→ Sβ(x) is Lipschitz

continuous with
��Sβ(x)− Sβ�(x)

�� ≤ |β − β�|, for all β, β� ≥ 0. (13)

We readily infer the following technical estimate (for the proof we refer the
reader to [10]).

Lemma 2.1. Assume v ∈ �2, α,β ∈ RJ
+ such that 0 < α = min

�
infµ αµ, infµ βµ

�
,

and define Λα(v) :=
�
µ ∈ J : |vµ| > α

�
. Then

��Sα(v)− Sβ(v)
��
�2
≤

�
#Λα(v)

�1/2
max

µ∈Λα(v)
|αµ − βµ|. (14)

In the sequel, we shall also use the following support size estimate, whose
proof follows the lines of Lemma 5.1 in [6], more details are provided in [10].

Lemma 2.2. Let v ∈ �wτ and w ∈ �2 with �v − w��2 ≤ �. Assume α =
(αµ)µ∈J ∈ RJ

+ and infµ αµ = α > 0. Then it holds

#supp Sα(w) ≤ #Λα(w) ≤
4�2

α2
+ 4C|v|τ�wτ α

−τ , (15)

where C = C(τ) > 0. In particular if v ∈ �0(J ) then the estimate is refined

#supp Sα(w) ≤ #Λα(w) ≤
4�2

α2
+ �v��0(J ). (16)
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For the analysis of the iteration (9), we will always assume that the
datum y ∈ Y is fixed and contained in a bounded set, i.e.,

�y�Y ≤ CY <∞. (17)

In this setting, we define the operator

T : �2 → �2, v �→ T (v) := v +
1

λ

�
K �(v)

�∗�
y −K(v)

�
. (18)

In the following we want to show the convergence of the algorithm (9)
to stationary points of Γα and to estimate the rate of convergence. In order
to do that we shall in particular show that, under certain local contraction
properties of the operator T , the stationary point is actually unique in a
predetermined ball around 0 and coincides with the global minimizer of Γα.
First of all, we need to characterize the ball where the interesting stationary
points should be searched.

To this end, we recall that for all α ∈ RJ
+ , αµ ≥ α > 0, µ ∈ J , the

related energy functional Γα, defined by (1) is coercive, i.e., Γα(v)→∞ as
�v��2 →∞. In particular this implies that

R := sup {�v��2 ,Γα(v) ≤ Γα(0)(0)} (19)

is finite and we define

B(R) := {u ∈ �2, �u��2 ≤ R}. (20)

Notice that for v ∈ �2 such that Γα(v) ≤ Γα(0)(0), we have

2α�v��2 ≤ 2�u��1,α(J ) ≤ Γα(v) ≤ Γα(0)(0),

hence,

R ≤ Γα(0)(0)

2α
. (21)

For the remainder of this section we will make the following additional
standing hypothesis. The operators K and K � are Lipschitz continuous on
closed bounded sets, i.e., for all closed and bounded O ⊂ �2 we assume

�K(u)−K(v)�Y ≤ CLip
K (O)�u− v��2 , u,v ∈ O,

�K �(u)−K �(v)�L(�2,Y ) ≤ CLip
K� (O)�u− v��2 , u,v ∈ O.

(22)

With a slight abuse of notation we denote the Lipschitz constants of K and
K � on B(R) by CLip

K (R) and CLip
K� (R), respectively. In particular (22) implies

that K and K � are bounded on closed and bounded sets. Indeed, let O ⊂ �2
and v0 ∈ O. Then we may bound K by estimating

sup
v∈O

�K(v)�Y ≤ sup
v∈O

�K(v)−K(v0)�Y + �K(v0)�Y

≤ CLip
K (O) sup

v∈O
�v − v0��2 + �K(v0)�Y <∞,

(23)
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and K � by a similar estimate. We introduce the abbreviations

Cbnd
K (R) := sup

v∈B(R)
�K(v)�Y , Cbnd

K� (R) := sup
v∈B(R)

�K �(v)�L(�2,Y ). (24)

With these preliminaries, we can formulate the following proposition, which
generalizes Lemma 2.4 in [2].

Proposition 2.3. Suppose that (17) and (22) hold. For some λ0 > 0 and
R as in (19) we define

R� := R+
1

λ0
Cbnd

K� (R)(Cbnd
K (R) + CY ). (25)

Then �K(·)− y�2Y is locally Lipschitz. We choose in (3)

λ > λmin := max{λ0, CLip
K� (R

�)(Cbnd
K (R�) + CY ) + Cbnd

K� (R�)CLip
K (R�)} (26)

and denote by
�
u(n)

�
n∈N the iterates of the decreasing thresholding iteration

(9) starting from u(0) = 0. Then it holds

Γα(n+1)(u(n+1)) < Γα(n)(u(n)), (27)

provided that u(n) is not yet a critical point of Γα(n). Furthermore the iter-
ates fulfill the bound

�u(n)��2 ≤ R, n ∈ N. (28)

Proof. We shall prove by induction over n that

�u(n)��2 ≤ R and Γα(n)(u(n)) ≤ Γα(0)(0). (29)

We will show that if λ is chosen according to (26) and u(n) �= u(n+1), which
is the case if u(n) is no critical point of Γα(n) , then this implies

Γα(n)(u(n+1)) < Γα(n)(u(n)). (30)

From the fact that α(n) decreases to α, together with (30) and (29) we
would obtain

Γα(u
(n+1)) ≤ Γα(n+1)(u(n+1)) ≤ Γα(n)(u(n+1)) < Γα(n)(u(n)) ≤ Γα(0)(0).

By (19) this would also imply the validity of (29) for n→ n+ 1 and simul-
taneously of (27) and (28) for all n ∈ N.

Notice that (29) in particular holds for n = 0. We begin by proving
u(n+1) ∈ B(R�), where R� is defined in (25). We use the fact that soft
shrinkage is nonexpansive, together with (24) and (17) to estimate

�u(n+1)��2 ≤ �u(n) +
1

λ

�
K �(u(n))

�∗�
y −K(u(n))

�
��2

≤ �u(n)��2 +
1

λ
Cbnd

K� (R)(Cbnd
K (R) + CY ) ≤ R�.

(31)
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Hence it follows that u(n),u(n+1) ∈ B(R�). To prove (30) we shall use
(4), reformulated for u(n) and Γα(u

(n)). In (3) we introduced the splitting

Γα(u) = Γ
(1)
λ (u)+Γ

(2)
λ,α(u), where Γ

(1)
λ is continuously Fréchet differentiable.

The derivative of Γ
(1)
λ was already implicitly stated in (4) and may be refor-

mulated by means of T as follows

�
Γ
(1)
λ

��
(u)v = 2�

�
K �(u)

�∗�
K(u)− y

�
− λu,v��2 = −2λ�T (u),v��2 . (32)

Recall that by means of (7), (6), and (32), the definition of u(n+1) in (9)
can be reformulated as

u(n+1) = argmin
v∈�2

�
�v − T (u(n))�2�2 + 2�v��

1, 1
λ
α(n)

�

= argmin
v∈�2

�
− 2λ�T (u(n)),v��2 + λ�v�2�2 + 2�v��

1,α(n)

�

= argmin
v∈�2

��
Γ
(1)
λ

��
(u(n))v + Γ

(2)

λ,α(n)(v)
�
.

In particular it follows that

�
Γ
(1)
λ

��
(u(n))u(n+1) + Γ

(2)

λ,α(n)(u
(n+1)) ≤

�
Γ
(1)
λ

��
(u(n))u(n) + Γ

(2)

λ,α(n)(u
(n))

holds, which is equivalent to

�
Γ
(1)
λ

��
(u(n))(u(n+1) − u(n)) ≤ Γ

(2)

λ,α(n)(u
(n))− Γ

(2)

λ,α(n)(u
(n+1)). (33)

Next, we apply the fundamental theorem of calculus to Γ
(1)
λ and write

Γ
(1)
λ (u(n+1))− Γ

(1)
λ (u(n))

=

� 1

0

�
Γ
(1)
λ

��
(u(n) + τ(u(n+1) − u(n)))(u(n+1) − u(n))dτ

=

� 1

0

��
Γ
(1)
λ

��
(u(n) + τ(u(n+1) − u(n)))−

�
Γ
(1)
λ

��
(u(n))

�
(u(n+1) − u(n))dτ

+
�
Γ
(1)
λ

��
(u(n))(u(n+1) − u(n)).

This, together with (33) and (32) yields

Γα(n)(u(n+1))− Γα(n)(u(n))

=
�
Γ
(1)
λ (u(n+1)) + Γ

(2)

λ,α(n)(u
(n+1))

�
−
�
Γ
(1)
λ (u(n)) + Γ

(2)

λ,α(n)(u
(n))

�

≤
� 1

0

��
Γ
(1)
λ

��
(u(n) + τ(u(n+1) − u(n)))−

�
Γ
(1)
λ

��
(u(n))

�
(u(n+1) − u(n))dτ

=

� 1

0
2�
�
K �(u(n) + τ(u(n+1) − u(n)))

�∗�
K(u(n) + τ(u(n+1) − u(n)))− y

�

−
�
K �(u(n))

�∗�
K(u(n))− y

�
, (u(n+1) − u(n))��2dτ − λ�u(n+1) − u(n)�2�2 .

(34)
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Moreover, by the assumptions (22) on K and K �, we can estimate for u,v ∈
B(R�)

�
�
K �(u)

�∗
(K(u)− y)−

�
K �(v)

�∗
(K(v)− y)��2

= �
��
K �(u)

�∗ −
�
K �(v)

�∗�
(K(u)− y) +

�
K �(v)

�∗�
K(u)−K(v)

�
��2

≤ λmin�u− v��2 .

We apply this inequality for the special case u = u(n)+τ(u(n+1)−u(n)),v =
u(n), to further estimate (34) as follows

Γα(n)(u(n+1))− Γα(n)(u(n))

≤
� 1

0
2τλmin�u(n+1) − u(n)�2�2dτ − λ�u(n+1) − u(n)�2�2

= (λmin − λ)�u(n+1) − u(n)�2�2 .

(35)

Furthermore the right-hand side is negative if λ is chosen according to (26)
and u(n) �= u(n+1), which is the case if u(n) is no critical point of Γα(n) , and
this shows (30) and concludes the proof.

Notice that we decided to start our iteration from u(0) = 0. On the one
hand, this choice is motivated by the fact that a priori we do not dispose of
any information on potentially interesting stationary points and an arbitrary
choice of the initial iteration has to be made. On the other hand, as we will
show below, under certain assumptions, we will be able to identify in this
way the unique global minimizer of the functional Γα. As we are seeking for
stationary points which are limits of the sequence

�
u(n)

�
n∈N of the iterates

of the decreasing thresholding iteration (9) starting from u(0) = 0, in view
of Proposition 2.3 we can assume without loss of generality that interesting
stationary points u∗ belongs to the ball B(R). This assumption is not void,
because a global minimizer u◦ of Γα necessarily has to lay in the ball B(R),
because Γα(u

◦) < Γα(0). We shall also show below that all the iterates�
u(n)

�
n∈N are actually additionally confined within the ball

B := {v ∈ �2 : �u∗ − v��2 ≤ �u∗��2}, (36)

where u∗ is an arbitrary stationary point of Γα within B(R). Hence, under
the regularity assumption so far made for the operators K and K �, the
reference domain of the iterations of the algorithm is B ∩ B(R). Within
this setting we assume the following hypothesis: T satisfies the Lipschitz
condition

�T (u∗)− T (v)��2 ≤ CLip
T �u∗ − v��2 , v ∈ B ∩B(R), y ∈ Y, �y�Y ≤ CY ,

(37)

10



for any fixed stationary point u∗. (As we shall see below, such a condition is
not so strong as we shall apply it to only one stationary point.) Furthermore
we define for some fixed λ0 > 0 the analogue of (25) on B ∩B(R) , that is

R�� := R+
1

λ0
Cbnd

K� (B ∩B(R))(Cbnd
K (B ∩B(R)) + CY ). (38)

Then, the following convergence theorem holds.

Theorem 2.4. Let u∗ be a stationary point of (1) that satisfies T (u∗) ∈ �wτ
for some 0 < τ < 2. For some λ0 > 0 and R�� as in (38) we choose

λ > max{λ0,
�
CLip

K� (B ∩B(R��)(Cbnd
K (B ∩B(R��)) + CY )

+ Cbnd
K� (B ∩B(R��))CLip

K (B ∩B(R��))
�
}.

(39)

Furthermore let α(n),α ∈ RJ
+ with α

(n)
µ ≥ αµ ≥ α ∈ R+, µ ∈ J . We set

L :=
4(CLip

T )2�u∗�2�2λ2
α2

+ 4C|T (u∗)|τ�wτ
�α
λ

�−τ
, (40)

with C is as in Lemma 2.2 and CLip
T as in (37). Moreover we define the set

BL := {v ∈ �2 : �u∗ − v��2 ≤ �u∗��2 ,#suppv ≤ L}. (41)

Let us assume that there exists 0 < γ0 < 1, such that for all v ∈ BL and
supp(v) ⊂ Λ ⊂ J with #Λ ≤ 2L

�
�
T (u∗)− T (v)

�
|S∗∪Λ��2(S∗∪Λ) ≤ γ0�u∗ − v��2 , (42)

where S∗ := suppu∗. Then, for any γ0 < γ < 1, the sequence
�
u(n)

�
n∈N

obtained by (9) fulfills

�
u(n)

�
n∈N ⊂ BL ∩B(R) (43)

and converges to u∗ at a linear rate

�u∗ − u(n)��2 ≤ �(n) := γn�u∗��2 , (44)

whenever the α(n) are chosen according to

max
µ∈J

|α(n)
µ − αµ| ≤ λL− 1

2 (γ − γ0)�(n). (45)

Moreover, the iteration is monotone

Γα(n+1)(u(n+1)) < Γα(n)(u(n)),

provided that u(n) is not yet a critical point of Γα(n).

11



Remark 2.5. Before proving this result, let us comment the following fun-
damental implication: under the assumptions of Lipschitzianity (37) and
local contraction property (42), the iterations

�
u(n)

�
n∈N of the algorithm

starting from u(0) = 0 must converge to any stationary point u∗ ∈ B(R),
hence implying automatically its uniqueness! In fact, if there were another
stationary point, it would also coincide with the limit of this sequence. In
particular, the global minimizer u◦ of Γα necessarily lies in the ball B(R)
and is a stationary point of Γα, and we have linear convergence of the iter-
ates to u◦. Let us now address the proof of Theorem 2.4.

Proof. The proof is performed by induction over n. There is nothing to
show for n = 0. The first step is to prove that u(n+1) is indeed contained in
BL. Let u

(n) ∈ BL ∩B(R), then since α(n) is decreasing to α it holds that

suppu(n+1) = supp S 1
λ
α(n)

�
T (u(n))

�
⊂ supp S 1

λ
α

�
T (u(n))

�
. (46)

The Lipschitz property (37) implies that

�T (u∗)− T (u(n))��2 ≤ CLip
T �u∗ − u(n)��2 .

By Lemma 2.2 we can estimate

# supp S 1
λ
α

�
T (u(n))

�
≤ Λα

λ

�
T (u(n))

�

≤
4(CLip

T )2�u∗ − u(n)�2�2λ2
α2

+ 4C|T (u∗)|�wτ
�α
λ

�−τ
≤ L.

(47)

We conclude that # suppu(n+1) ≤ L. Let us denote S(n) = suppu(n), S∗ =
suppu∗, and Λ(n) = S∗ ∪ S(n) ∪ S(n+1). Notice that #S(n) ∪ S(n+1) ≤ 2L.
By the thresholding properties it is clear that after restriction to Λ(n)

u∗|Λ(n) = S 1
λ
α(T (u

∗)|Λ(n)), (48)

and
u
(n+1)

|Λ(n) = S 1
λ
α(n)(T (u

(n))|Λ(n)) (49)

hold. This, together with the nonexpansiveness of the soft-thresholding,
Lemma 2.1 in the second inequality, and (42) together with # suppu(n+1) ≤

12



L in the third inequality yields

�u∗ − u(n+1)��2
= �u∗|Λ(n) − u(n+1)

|Λ(n) ��2(Λ(n))

= �S 1
λ
α(T (u

∗)|Λ(n))− S 1
λ
α(n)(T (u

(n))|Λ(n))��2(Λ(n))

≤ �S 1
λ
α(T (u

∗)|Λ(n))− S 1
λ
α(T (u

(n))|Λ(n))��2(Λ(n))

+ �S 1
λ
α(T (u

(n))|Λ(n))− S 1
λ
α(n)(T (u

(n))|Λ(n))��2(Λ(n))

≤ �T (u∗)|Λ(n) − T (u(n))|Λ(n)��2(Λ(n))

+

�
#Λα

λ
(T (u(n)))

�1/2

λ
( max
µ∈Λα

λ
(T (u(n)))

|αµ − α(n)
µ |)

≤ γ0�u∗ − u(n)��2 +
L1/2

λ
( max
µ∈Λα(T (u(n)))

|αµ − α(n)
µ |)

≤ γ0�
(n) + (γ − γ0)�(n) = γ�(n) = �(n+1).

The last inequality is a consequence of induction hypothesis and (45). This
proves u(n+1) ∈ BL. Obviously u

(n+1) ∈ B(R) because of the monotonicity
of the iterations:

Γα(u
(n+1)) ≤ Γα(n+1)(u(n+1)) ≤ Γα(n)(u(n+1)) < Γα(n)(u(n)) ≤ Γα(0)(0).

2.2 Nonlinear operators with bounded second derivatives

In this section we state smoothness conditions on the nonlinear operator K
which imply that the operator T defined in (18) fulfills (37) and (42). In the
following we assume that S∗ is the support of a global minimizer u∗ of Γα

in B(R). As discussed above, once we prove that T fulfills (37) and (42),
then by Theorem 2.4 we automatically have that u∗ is actually the unique
stationary point of Γα in B(R).

Theorem 2.6. Let the data fulfill assumption (17). Assume that K is twice
continuously differentiable on an open set that contains B and, together with
its derivative K �, is bounded on B. Furthermore, assume that there exist
0 < γ2 ≤ γ1 < 1 such that for all Λ ⊂ J ,#Λ ≤ 2L and ζ ∈ B, supp ζ ⊂
S∗ ∪ Λ, the following local contraction property

�
�
Id− 1

λ

�
K �(ζ)

�∗
K �(ζ)

�
|S∗∪Λ×S∗∪Λ

�L(�2(S∗∪Λ),�2(S∗∪Λ)) ≤ γ2 (50)

holds. Moreover, let us assume that the uniform spectral gap condition

�
� 1
λ

�
K ��(ζ)(·)

�∗�
y−K(ζ)

��
|S∗∪Λ×S∗∪Λ

�L(�2(S∗∪Λ),�2(S∗∪Λ)) ≤ γ1− γ2 (51)

13



holds. Then T defined in (18) fulfills (37) and (42).

Proof. The proof is an application of the mean value theorem. In order to
compute the derivative of T we introduce the auxiliary operator

G : (u,v) �→ u+
1

λ

�
K �(u)

�∗�
y −K(v)

�
, (u,v) ∈ �2 × �2

and observe T = G ◦ (Id, Id)�. We compute

T �(ζ) z =
�∂G
∂u

,
∂G

∂v

��
(ζ, ζ)

�
◦
�
Id, Id

��
z

=
�
Id+

1

λ

�
K ��(ζ)(·)

�∗�
y −K(ζ)

�
,− 1

λ

�
K �(ζ)

�∗
K �(ζ)(·)

�
◦
�
Id, Id

��
z

= z+
1

λ

�
K ��(ζ) z

�∗�
y −K(ζ)

�
− 1

λ

�
K �(ζ)

�∗
K �(ζ) z.

(52)
Observe thatK : �2 → Y ,K � : �2 → L(�2, Y ), andK �� : �2 → L(�2,L(�2, Y )).
Therefore K ��(ζ) z ∈ L(�2, Y ) holds. Consequently

�
K ��(ζ) z

�∗ ∈ L(Y, �2),
so that the composition in (52) is well defined. By our assumptions K,K �,
and K �� are bounded on the bounded set B. This, together with (17) implies
supξ∈B �T �(ξ)�L(�2,�2) < ∞. Since B is convex we can use the mean value
theorem to conclude the Lipschitz property (37). In order to prove (42) let
v ∈ BL and supp(v) ⊂ Λ ⊂ J with #Λ ≤ 2L. Then, by (52), (50), and (51)
the estimate

�
�
T �(ζ)

�
|S∗∪Λ×S∗∪Λ�L(�2(S∗∪Λ),�2(S∗∪Λ))

≤ �
�
Id− 1

λ

�
K �(ζ)

�∗
K �(ζ)

�
|S∗∪Λ×S∗∪Λ

�L(�2(S∗∪Λ),�2(S∗∪Λ))

+ �
� 1
λ

�
K ��(ζ)(·)

�∗�
y −K(ζ)

��
|S∗∪Λ×S∗∪Λ

�L(�2(S∗∪Λ),�2(S∗∪Λ))

≤ γ1

holds. The restriction B|S∗∪Λ := {u|S∗∪Λ,u ∈ B} of B onto the index set
S∗ ∪ Λ is a convex set in �2(S

∗ ∪ Λ). Hence, we can apply the mean value
theorem again to finalize the proof as follows

�
�
T (u∗)− T (v)

�
|S∗∪Λ��2(S∗∪Λ)

≤ sup
ζ∈B|S∗∪Λ

�
�
T �(ζ)

�
|S∗∪Λ×S∗∪Λ�L(�2(S∗∪Λ),�2(S∗∪Λ))�u∗ − v��2

≤ γ1�u∗ − v��2 .
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2.3 Nonlinear perturbation of linear operators

In this section we discuss the validity of (42) for the special case that K is
given by the sum of a linear operator and a nonlinear perturbation. To be
specific, we consider

Kσ = A+ σN, (53)

where σ ∈ R+, A ∈ L(�2, Y ) and N : �2 → Y is a nonlinear perturbation
with the property that

N : �2 → Y, and N � : �2 → L(�2, Y ),
v �→ N(v), v �→ N �(v)

(54)

are Lipschitz continuous on closed bounded sets. Similarly to (22) and (24)
we denote the respective Lipschitz constants and suprema on B(R) with
CLip

N (R), CLip
N � (R), Cbnd

N (R), and Cbnd
N � (R).

We begin by deriving uniform bounds for those constants. We denote

R(σ) = sup {�v��2 , Γα,σ(v) ≤ Γα(0),σ(0)},

where Γα,σ is the functional Γα for K = Kσ depending on σ. Accordingly
we denote

R�(σ) := R(σ) +
1

λ0
Cbnd

K� (R(σ))(Cbnd
K (R(σ)) + CY ).

We denote with C(σ) the set of critical points of Γα,σ in B(R(σ)). For any
u∗(σ) ∈ C(σ) we denote

L(u∗(σ)) :=
4(CLip

T )2�u∗(σ)�2�2λ2
α2

+ 4C|T (u∗(σ))|τ�wτ
�α
λ

�−τ
. (55)

Lemma 2.7. Let the data fulfill assumption (17). Further let σ0 ∈ R+ and
Kσ, σ ∈ [0, σ0], be of the form (53). Suppose that the assumptions (54)
hold. Then it holds that

R0 := sup
σ∈[0,σ0]

R(σ) <∞,

R�
0 := sup

σ∈[0,σ0]
R�(σ) <∞,

sup
σ∈[0,σ0]

CLip
Kσ

(R�(σ)) <∞,

sup
σ∈[0,σ0]

CLip
K�

σ
(R�(σ)) <∞.

(56)

Under the additional assumption

sup
σ∈[0,σ0]

sup
u∗(σ)∈C(σ)

|Tσ(u
∗(σ))|�wτ <∞ (57)
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it further holds that

L0 := sup
σ∈[0,σ0]

sup
u∗(σ)∈C(σ)

L(u∗(σ)) <∞. (58)

Remark 2.8. Before proving this lemma, let us comment on the condition
(57), requiring to consider a supremum over the set C(σ), which a priori
can be very large. As we will show later, the boundedness of the quantities
of this lemma and an additional spectral properties on the operator A, the
so-called restricted isometry property, see formula (60) below, will imply the
operator T to fulfill (42). As already stated above, under this condition, the
set C(σ) consists only of one point, i.e., the global minimizer of Γα,σ. Hence
the condition (57) will turn out to be much less restrictive as it seems at a
first glance. Let us now prove the lemma.

Proof. It is immediate to see that (21) implies R(σ) ≤ supσ�∈[0,σ0]

�
Γ
α(0),σ� (0)

�
2α .

Furthermore the term supσ�∈[0,σ0]

�
Γα(0),σ�(0)

�
is finite as

σ� �→ Γα(0),σ�(0) = �σ�N(0)− y�2Y ,

is continuous and bounded on [0, σ0], because of the assumptions (17) and
(54). Hence, we conclude the boundedness of R0 in (56). By the assump-
tion (54) we may bound the Lipschitz constant of Kσ on B(Rσ) as follows

CLip
Kσ

(R(σ)) ≤ �A�L(�2,Y ) + σ0C
Lip
N (R0). (59)

The constant CLip
K�

σ
(R(σ)) may be bounded analogously. By the same reason-

ing as in (23) it follows that Cbnd
Kσ

(R(σ)) and Cbnd
K�

σ
(R(σ)) may be bounded

independently of σ ∈ [0, σ0]. This proves the existence of uniform bounds for
Cbnd

Kσ
(R(σ)) and Cbnd

K�
σ
(R(σ)), and consequently of R�

0 in (56). Using assump-

tion (54) on B(R�
0) allows us to estimate similarly to (59) uniform bounds

for CLip
Kσ

(R�(σ)) and CLip
K�

σ
(R�(σ)). It remains to prove the finiteness of L0

in (58). To this end observe that the Lipschitz property of K and K � on
B(R0) imply that Tσ, defined in (18), is Lipschitz on B(R0) and that the
corresponding Lipschitz constants may be uniformly bounded in σ. The re-
maining terms in (55) are bounded uniformly in σ by assumption (57) and
the estimate �u∗(σ)��2 ≤ R(σ) ≤ R0.

We are now able to state conditions under which the fundamental con-
traction property (42) of the operators Tσ, defined by (18) can be ensured
uniformly in σ for σ0 sufficiently small.

Lemma 2.9. Let the assumptions of Lemma 2.7 hold. Fix σ0 ∈ R+. For
all σ ∈ [0, σ0], we fix u∗(σ) ∈ C(σ) and denote S∗

σ := suppu∗(σ). We make
the assumption that the linear part A of Kσ fulfills the restricted isometry
property

�(Id−A∗A)|Λ◦×Λ◦�L(�2(Λ◦),�2(Λ◦)) ≤ γ1 < 1, (60)
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for all Λ◦ ⊂ J with #Λ◦ ≤ 3L0. By using the notations as in (56), the
constant

C :=�A�L(�2,Y )C
Lip
N (R0)

+ CLip
N � (R0)

�
�A�L(�2,Y )R0 + σ0C

bnd
N (R0) + CY

�

+ Cbnd
N � (R0)

�
�A�L(�2,Y ) + σ0C

Lip
N (R0)

�
(61)

is bounded and for all σ ∈ [0,min(σ0, (1− γ1)C−1)) the following holds: For
all v ∈ B(R0) with #suppv ≤ L0, and supp(v) ⊂ Λ ⊂ J with #Λ ≤ 2L0,
the contraction property

�
�
Tσ(u

∗(σ))− Tσ(v)
�
|S∗

σ∪Λ
��2(S∗

σ∪Λ) ≤ γ0�u∗ − v��2 , (62)

holds with γ0 := γ1 + σC < 1.

Proof. We begin by proving that the constant C in (61) is bounded. To this
end we apply Lemma 2.7 and observe that the Lipschitz property of N and
N � on B(R0) implies similarly to (23) that N and N � are also bounded on
B(R0).

Now fix σ ∈ [0, σ0] and let v ∈ B(R0), # suppv ≤ L0 and suppv ⊂ Λ ⊂
J with #Λ ≤ 2L0 and denote Λ◦ := S∗

σ ∪ Λ.
We use the splitting

Tσ(v)− Tσ(u
∗(σ)) = v − u∗(σ)−A∗A(v − u∗(σ))− σA∗�N(v)−N(u∗(σ))

�

− σ
�
N �(v)−N �(u∗(σ))

�∗�
(A+ σN)(v)− y

�

− σ
�
N �(u∗(σ))

�∗�
(A+ σN)(v)− (A+ σN)(u∗(σ))

�

together with the assumption (60) to estimate

�
�
Tσ(v)− Tσ(u

∗(σ))
�
|Λ◦��2(Λ◦)

≤ �
�
(Id−A∗A)(v − u∗(σ))

�
|Λ◦��2(Λ◦) + σ

�
�
�
A∗�N(v)−N(u∗(σ))

��
|Λ◦
��2(Λ◦)

+ �
��
N �(v)−N �(u∗(σ))

�∗�
(A+ σN)(v)− y

��
|Λ◦
��2(Λ◦)

+ �
��
N �(u∗(σ))

�∗�
(A+ σN)(v)− (A+ σN)(u∗(σ))

��
|Λ◦
��2(Λ◦)

�

≤
�
γ1 + σ

�
�A�L(�2,Y )C

Lip
N (R0)

+ CLip
N � (R0)

�
�A�L(�2,Y )R0 + σ0C

bnd
N (R0) + CY

�

+ Cbnd
N � (R0)

�
�A�L(�2,Y ) + σ0C

Lip
N (R0)

���
�v − u∗(σ)��2

=
�
γ1 + σC

�
�v − u∗(σ)��2 ,

which implies that the contraction property (62) holds for σ < (1− γ1)C−1.
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The last lemma established the contraction property (62) uniformly in
σ. Therefore, for the current choice of K = Kσ as in (53), we are able to
apply directly Theorem 2.4. Let us summarize the result as follows.

Theorem 2.10. Let the assumptions of Lemma 2.9 hold. Then, for all
σ ∈ [0,min(σ0, (1 − γ1)C

−1)) and γ0 < γ < 1, if we choose
�
α(n)

�
n∈N

according to (45) and λ such that

λ > max{λ0, CLip
K�

σ
(R�

0)(C
bnd
Kσ

(R�
0) + CY ) + Cbnd

K�
σ
(R�

0)C
Lip
Kσ

(R�
0)},

the sequence
�
u(n)(σ)

�
n∈N defined by (9) with initial guess u(0) = 0 satisfies

�
u(n)(σ)

�
n∈N ⊂ B(R0). (63)

Furthermore it converges to any u∗(σ) ∈ C(σ) at a linear rate, i.e.,

�u∗(σ)− u(n)(σ)��2 ≤ γn�u∗(σ)− u(0)(σ)��2 , (64)

and moreover

Γα(n+1),σ(u
(n+1)(σ)) < Γα(n),σ(u

(n)(σ)),

provided that u(n)(σ) is not yet a critical point of Γα(n),σ. In particu-
lar u∗(σ) ∈ C(σ) has to be the only critical point of Γα,σ in B(R0) with
#suppu∗(σ) ≤ L0, actually it is its unique global minimizer in B(R0).

3 Preconditioning

The convergence analysis in Section 2 for the iteration (9) relies on the
contraction property (42) of the operator T defined in (18). This property
also ensures that, despite the fact that Γα is a nonconvex functional, it has
nevertheless a unique global minimizer in a prescribed ball centered at 0
and that the iteration (9) is guaranteed to converge to it with linear rate.
Unfortunately, we can not expect this powerful property to hold in general,
even for the case where the underlying operator K is linear and compact.
Therefore, in this section, we present how preconditioning can be applied
to promote property (42) for K being a nonlinear perturbation of a linear
operator. We have to imagine the action of this preconditioning as a sort of
“stretching” of the functional Γα, so that no local minimizers or stationary
points remain around 0 other than a unique global minimizer. Precondi-
tioning also changes the topology of the minimization problem related to
(1). Therefore, in Section 3.1, we begin by discussing the related topolog-
ical issues. In Section 3.2 we present a preconditioning strategy and state
conditions under which the restricted isometry property (60) will be satis-
fied. Finally in Section 3.3 we apply our findings to an interesting class of
operators.
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3.1 General setting

We shall consider the following modified functional
�
Γα ◦D−1

�
(z) = �(K ◦D−1)(z)− y�2Y + 2�D−1z��1,α , z ∈ Ran(D), (65)

where D : �2 → Ran(D) is a suitable preconditioning matrix with well
defined formal inverse D−1 : Ran(D) → �2. Moreover we assume that D
maps finitely supported vectors on finitely supported vectors and that

�D−1z��1,α ∼ �diag(D−1)z��1,α . (66)

Note, that preconditioning of the energy functional (1) changes the topol-
ogy of the associated minimization problem. Moreover, the preconditioning
operator D may be unbounded in the topology of �2. However, as we will see
below, this is not an issue here. Indeed, Theorem 4.3, which will be proved
later in Section 4, enables us to reduce the setting to a finite dimensional
one whenever needed, so that we can use the equivalence of norms on finite
dimensional vector spaces.

To this end we begin with the observation that any stationary point u∗

of (1) can be characterized by the subdifferential inclusion

0 ∈ ∂
�
Γα

�
(u∗).

An analogous characterization holds for the stationary points z∗ of (65). By
the chain rule for subdifferentials, see [15, Proposition I.5.7], we have

0 ∈ ∂
�
Γα ◦D−1

�
(z∗) =

�
D−1

��
∂
�
Γα

�
(D−1z∗),

where
�
D−1

��
is the dual mapping of D−1. In other words, there is a one-

to-one relationship of the stationary points of (1) and (65). Moreover, by
our assumptions on D, if u∗ is a finitely supported stationary point of (1),
the related stationary point z∗ = Du∗ of (65) is also finitely supported.

We will use the assumption (66) to simplify the preconditioned energy
functional Γα◦D−1. Indeed, motivated by the observation that � diag(D−1)z��1,α =
�z��1,diag(D−1)α

and with a slight abuse of notation we will consider the mod-

ified energy functional

ΓD
α(z) := �(K ◦D−1)(z)− y�2Y + 2�z��1,diag(D−1)α

, z ∈ Ran(D), (67)

and the resulting minimization problem.
We avoid to deal with the topology of Ran(D) in the following way. Let

z∗ be a fixed stationary point of the preconditioned energy functional (67)
of finite support and Λ0 ⊂ J an arbitrary finite set such that supp z∗ ⊂ Λ0.
The restriction of (67) onto Λ0 is then given by

ΓD
α,Λ0

(z) := �(K ◦D−1)|Λ0
(z)− y�2Y + 2�z��1,(diag(D−1)α)|Λ0

(Λ0), z ∈ RΛ0 .

(68)
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The minimization problem can now be considered in RΛ0 endowed with
the Euclidean norm. We denote the restriction of z∗ onto Λ0 by z∗|Λ0

, by

EΛ0 : �2(Λ0) → �2 the trivial extension by 0, and by
�
EΛ0

��
its adjoint,

being actually the restriction operator z∗|Λ0
=

�
EΛ0

��
z∗. Then it follows by

the chain rule for subdifferentials that

0 ∈
�
EΛ0

��
∂
�
ΓD
α

�
(z∗) =

�
EΛ0

��
∂
�
ΓD
α

�
(EΛ0z

∗
|Λ0

)

= ∂
�
ΓD
α ◦ EΛ0

�
(z∗|Λ0

)

= ∂
�
ΓD
α,Λ0

�
(z∗|Λ0

).

Consequently z∗|Λ0
is also a stationary point of the finite dimensional energy

functional (68). Unfortunately, the vice versa is not valid, because
�
EΛ0

��
is

not injective and a stationary point for ΓD
α,Λ0

does not necessarily correspond
a priori to the restriction to a finite dimensional set Λ0 of a stationary point
of ΓD

α in Ran(D).
Nevertheless, if one could assume that ΓD

α,Λ0
has actually only one crit-

ical point in RΛ0 for any choice of Λ0 ⊂ J finite, then we can argue the
uniqueness of the critical point of ΓD

α in Ran(D) as well. In fact, if there
were two critical points z∗1 and z∗2 for ΓD

α in Ran(D), their support could
be included in a finite set Λ�

0 of indexes. Without loss of generality this set
could be assumed to be a subset of Λ0 for the latter large enough. Hence,
the assumed uniqueness of the critical point in RΛ0 for ΓD

α,Λ0
would immedi-

ately imply that (z∗1)Λ0 = (z∗2)Λ0 or, equivalently, that z∗1 = z
∗
2. In turn this

means that, in the situation of a unique critical point in finite dimensions,
the minimization of the finite dimensional problem is actually equivalent to
the minimization of the infinite dimensional one.

In Section 4 we will present an implementable numerical scheme, which
solves the finite dimensional minimization problem related to (68). We shall
also show that a priori knowledge of the set Λ0 is not needed. In fact, it will
be constructed on the fly by the presented adaptive scheme.

3.2 Multilevel preconditioning

In Section 2.3 we considered the case that K consists of a dominant lin-
ear part A and a nonlinear perturbation. In this setting, we were able to
show that the contraction assumption (42) can be guaranteed if the linear
part of the equation fulfills the restricted isometry property (60). In gen-
eral this condition will fail to hold, even if A is a compact linear operator.
Nevertheless, in this section, we show that this issue can be solved by a
preconditioning strategy. To this end, we partly follow the lines of [10] and
recall the corresponding results as far as they are needed for our purposes.

In the following we will assume that Ω ⊂ Rd is a bounded Lipschitz
domain and Ψ := {ψµ}µ∈J is a compactly supported wavelet basis or frame
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of wavelet type for L2(Ω), see e.g. [5, §2.12]. Every µ ∈ J is of the form
µ = (j, k, e), where j ∈ Z is the scale, often denoted as |µ|, k ∈ Zd is
the spatial location and e is the type of ψµ. We refer to [5, 7] for further
details concerning this notation. We do not go into construction details
concerning these bases or the alternative of wavelet frames. In fact, we
simply assume the following properties for all µ ∈ J . Furthermore, for the
ease of presentation, we formulate them for the case of an orthogonal wavelet
basis on Ω = (0, 1)d:

(W1) The support Ωµ := suppψµ fulfills |Ωµ| ∼ 2−|µ|d. Furthermore there
exists a suitable cube Q, centered at the origin, s.t., Ωµ ⊂ 2−|µ|k +
2−|µ|Q, see [5, §2.12].

(W2) The basis has the cancellation property
�
Ω ξ

βψµ(ξ)dξ = 0, |β| =
0, . . . , d∗ ∈ N.

(W3) �ψµ�L∞(Ω) ≤ C2d/2|µ|.

Examples of wavelet bases satisfying these conditions can be found in [11].
In this setting the synthesis map related to Ψ reads as

F : �2 → L2(Ω), F(u) :=
�

µ∈J
uµψµ, u ∈ �2. (69)

Its adjoint is given by

F∗ : L2(Ω)→ �2, F∗(u) := (�u, ψµ��2)µ∈J . (70)

Let A ∈ L(L2(Ω), Y ) be a linear operator and consider its discretization
A := AF . In this section we aim at stating conditions under which (60) can
be ensured by means of a preconditioning strategy. We will make technical
assumptions on the matrix G =

�
Gµ,ν

�
µ,ν∈J given by

G := A∗A =
�
�A∗Aψν , ψµ�L2(Ω)

�
µ,ν∈J . (71)

To be specific, we will assume that there exist constants c1, c2, c3, s, η, r ∈
R+, r > d, such that the following conditions hold for all µ = (j, k, e), ν =
(j�, k�, e�) ∈ J :

• The entries of G satisfy the decay estimate

|Gµ,ν | ≤ c1
2−s||µ|−|ν||2−ηmin(|µ|,|ν|)

�
1 + 2min(|µ|,|ν|) dist(Ωµ,Ων)

�r (72)

• On the diagonal, i.e., µ = ν, it holds that

|Gµ,µ| ≥ c22
−η|µ|. (73)
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• For the same scale, i.e., |µ| = |ν|, the entries satisfy

|Gµ,ν | ≤ c3
2−2η|µ|

(1 + |k − k�|)r . (74)

Under these conditions the following holds.

Theorem 3.1 [10, Thm.4.6.]. Suppose that G fulfills (72), (73), and (74)
with c2 > c3/(r − d). Let D be the block-diagonal matrix consisting of the
diagonal level blocks of G, i.e.,

Dµ,ν :=

�
Gµ,ν |µ| = |ν|,
0 otherwise.

(75)

Then there exists a constant C = C(c1, c2, c3, r, d) such that for each finite
set Λ ⊂ J with |Λ| ≤ 2sC−1 the sub-matrix (D−1/2GD−1/2)|Λ×Λ satisfies

�(Id−D−1/2GD−1/2)|Λ×Λ� < C 2−(s− η
2
)|Λ|

and

κ
�
(D−1/2GD−1/2)|Λ×Λ

�
≤ 1 + C 2−(s− η

2
)|Λ|

1− C 2−(s− η
2
)|Λ|

.

3.3 Integral operators with Schwartz kernels on disjoint do-
mains

In this section we study a class of operators which fits into the setting
of Section 2.3. Let Ω, Ω̂ ⊂ Rd be two bounded Lipschitz domains with
dist(Ω, Ω̂) = δ > 0. For fixed t ∈ R+ we consider

K = A+ σN : L2(Ω)→ Ht(Ω̂),

where σ ∈ R+, A ∈ L(L2(Ω), H
t(Ω̂)) is linear, and N : L2(Ω) → Ht(Ω̂) is

a nonlinear operator. Furthermore, we assume that the linear part A is an
integral operator with a Schwartz kernel. To be specific, we assume that A
is given by

v �→ Av :=
�

Ω
Φ(·, ξ)v(ξ)dξ, (76)

where Φ : Ω̂× Ω→ R is a kernel of Schwartz type, i.e.,

|∂αx ∂βξ Φ(x, ξ)| ≤ cα,β|x− ξ|−(d+2t+|α|+|β|), α,β ∈ Nd, (77)

holds. Concerning the nonlinear perturbation N , we assume that it is given
by

v �→ N (v) :=

�

Ω
Φ̃(·, ξ)|v(ξ)|2dξ,
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where Φ̃ also fulfills (77). This condition implies that A and N are well
defined as operators mapping into Ht(Ω̂). Moreover, the nonlinear pertur-
bation N is twice continuously differentiable and consequently indeed N
and N � are Lipschitz continuous on bounded closed sets: To see this, we
write N = N1 ◦ N2 with

N1 : L1(Ω)→ Ht(Ω̂), N2 : L2(Ω)→ L1(Ω),

v �→
�

Ω
Ψ̃(·, ξ)v(ξ)dξ, v �→ |v|2.

Here the operator N1 as well as the derivative of N2, i.e.,

N �
2 : v �→ 2�v, ·�L2(Ω),

are linear. Recall that the synthesis map F associated to Ψ is given by (69).
It is linear and hence Lipschitz. Together with the Lipschitz properties of N ,
this implies that the discretized version of the nonlinear part, i.e., N = NF ,
fulfills (54).

Let us now assume that the linear term A = AF of K = A + σN does
not fulfill already (60). We want to show that setting

K ◦D = A ◦D + σN ◦D,

for a suitable preconditioning matrix D, will allow us now to fulfill it for
A ◦ D. Moreover the new nonlinear perturbation N ◦ D will again satisfy
the Lipschitz continuity conditions (54) as soon as we will remember that,
eventually, the problem will be turned into a finite dimensional one. We shall
construct the preconditioning matrix D by using the multilevel techniques
presented in Section 3.2. To be specific, the remainder of this section is
dedicated to the proof of property (72) of the matrix G :=

�
AF

�∗AF . (The
other required properties (73) and (74) may be difficult to be shown, but
they are often verified in practice.) To this end we follow the lines of [9]. To
be explicit, with (71), the entries of G are given as

Gµ,ν = �A∗Aψν , ψµ�L2(Ω) = �Aψν ,Aψµ�Ht(Ω̂). (78)

We begin with the special case t = 0. and apply Taylor’s formula to the
kernel Φ around a point ξ0 ∈ Ωµ. For every ξ ∈ Ωµ there exists θ ∈ [0, 1]
such that

Φ(x, ξ) =
�

|β|≤d∗

∂βξ Φ(x, ξ0)

β!
(ξ−ξ0)β+

�

|β|=d∗+1

∂βξ Φ(x, ξ + θ(ξ − ξ0))
β!

(ξ−ξ0)β.

(79)
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With (77) we can estimate

|
�

|β|=d∗+1

∂βξ Φ(x, ξ + θ(ξ − ξ0))
β!

(ξ − ξ0)β|

≤
�

|β|=d∗+1

1

β!
|(ξ − ξ0)β| sup

ξ�∈Ωµ

|∂βξ Φ(x, ξ�)|

≤
�

|β|=d∗+1

1

β!
|(ξ − ξ0)β|c0,β dist(x,Ωµ)

−(d+2t+d∗+1|).

(80)

The cancellation property (W2) of ψµ ∈ Ψ, together with (79) and (80)
yields

|Aψµ(x)| = |
�

Ωµ

Φ(x, ξ)ψµ(ξ)dξ|

≤
�

|β|=d∗+1

1

β!
c0,β dist(x,Ωµ)

−(d+2t+d∗+1)

�

Ωµ

|(ξ − ξ0)β||ψµ(ξ)|dξ.
(81)

By our assumptions (W1) and (W3) on the wavelets, i.e., Ωµ ⊂ 2−|µ|k +
2−|µ|Q and �ψµ�L∞(Ω) ≤ C2d/2|µ|, together with ξ0 ∈ Ωµ, it holds that

�

Ωµ

|(ξ − ξ0)β||ψµ(ξ)|dξ ≤ C2
d
2
|µ|

�

Ωµ

|(ξ − ξ0)β|dξ

≤ C2
d
2
|µ|

�

Q
|(2−|µ|(ξ� + k)− ξ0)β|2−d|µ|dξ�

≤ C �2−|µ|( d
2
+|β|).

The combination of (81) and the last estimate implies

|Aψµ(x)| ≤ Cd∗ dist(x,Ωµ)
−(d+2t+d∗+1)2−|µ|( d

2
+d∗+1). (82)

Since we assumed that Ω and Ω̂ are disjoint domains, it holds for ξ, ξ� ∈ Ω
with ξ �= ξ� and �ξ − x�2, �ξ� − x�2 ≥ δ that 1

|ξ−x||ξ�−x| ≤ Cx,δ
1

|ξ−ξ�| . Further
Cx,δ may be bounded independently of x. With (82) we prove immediately,
for µ �= ν with dist(Ωµ,Ων) > 0 the estimate

|�Aψµ,Aψν�L2(Ω̂)|

≤ (Cd∗)
22−(|µ|+|ν|)( d

2
+d∗+1)

�

Ω̂

�
dist(x,Ωµ) dist(x,Ων)

�−(d+2t+d∗+1)
dx

≤ (Cd∗)
2|Ω̂|2−(|µ|+|ν|)( d

2
+d∗+1) dist(Ωµ,Ων)

−(d+2t+d∗+1)

= (Cd∗)
2|Ω̂|2

−||µ|−|ν||( d
2
+d∗+1)2−min(|µ|,|ν|)(d∗+1−2t)

�
2min(|µ|,|ν|) dist(Ωµ,Ων)

�d+2t+d∗+1
.

(83)
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For the case dist(Ωµ,Ων) = 0 we use again (82) and apply dist(x,Ωµ) ≥ δ
directly to derive the simpler estimate

|�Aψµ,Aψν�L2(Ω̂)| ≤ (Cd∗)
2|Ω̂|2−(|µ|+|ν|)( d

2
+d∗+1)δ−2(d+2t+d∗+1). (84)

Together (83) and (84) imply that
�
�Aψµ,Aψν�L2(Ω̂)

�
µ,ν∈J fulfills the as-

sumption (72).
For the general case t > 0, we consider

�
�∂αx (Aψµ), ∂

α
x (Aψν)�L2(Ω̂)

�
µ,ν∈J ,

α ∈ Nd
0. In this setting

∂αx (Aψµ) =

�

Ω
∂αx Φ(·, ξ)ψµ(ξ)dξ

is again an integral with a Schwartz kernel. Indeed, an analogous argumen-
tation as in the case t = 0 yields condition (72) for the case t ∈ N, and
consequently for t ∈ R+.

4 Equivalence to an inexact finite dimensional scheme

In practice, whenever we deal with infinite dimensional problems, the oper-
ators K and K � can not be evaluated exactly, and one has to replace their
output by suitable numerical approximations. In this section we study the
convergence behavior of the resulting inexact algorithm to solve the precon-
ditioned minimization problem (67). Although the original problem is posed
in general in infinite dimensions, adaptive approximations will allow us to
show the confinement of the iteration within a well-determined finite dimen-
sional space. In particular, in Theorem 4.3 below, we show that the global
support of all iterates is contained in a finite set Λ0. From a practical point
of view, there would be no difference between the iterates produced by the
adaptive scheme over the whole index set J or if we would restrict the set of
possible indices to the (a priori unknown) set Λ0. Therefore, by arguing as in
Section 3.1, the combination of preconditioning and adaptive solvers yields
an iterative scheme for the minimization of the unpreconditioned functional
Γα.

We focus on the error introduced by the inexact evaluation of the nonlin-
ear functional K and the linear operator (K �(·))∗. To this end let us assume
that for given tolerances ρ, δ > 0, there exist approximation schemes which
for every v ∈ �2 and pairs (v, w) ∈ �2 × Y , respectively, compute finite
dimensional approximations [K(v)]ρ and [

�
K �(v)

�∗
(w)]δ such that

�K(v)− [K(v)]ρ�Y ≤ ρ,

�
�
K �(v)

�∗
(w)− [

�
K �(v)

�∗
(w)]δ��2 ≤ δ.

(85)

This assumption is realistic, e.g., if the exact application of K and (K �(·))∗
involves the solution of partial differential or integral equations and the nu-
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merical approximations can be computed by means of adaptive discretiza-
tion schemes. Let us mention two prominent examples from the context of
adaptive wavelet schemes of linear and nonlinear operator equations.

Example 4.1. Let ΨY = {ψX,µ}µ∈JX
and ΨY = {ψY,µ}µ∈JY

be wavelet
Riesz bases for X and Y , respectively, such that the assumptions of Sec-
tion 3.2 are satisfied. We denote the associated synthesis operators by FX

and FY . Furthermore let K = K◦FX : �2 → Y for some nonlinear operator
K : X → Y .

(i) For the efficient approximate application of the linear operator (K �(v))∗

to a given w ∈ Y , it is advantageous if the coefficient array w ∈ �2(JY )
of w = FY (w), or at least good approximations of it, has a fast de-
cay [7]. In that case, one may exploit the representation

(K �(v))∗(w) = (F∗
X ◦ (K�(FX(v))∗ ◦ FY )(w) =: Avw

and the compressibility of the stiffness matrixAv ∈ L(�2(JY ), �2(JX)).
In fact, if Av ∈ L(�wτ (JY ), �

w
τ (JX)) for all 0 < τ0 < τ < 2, then the

second inequality in (85) can be ensured by suitable matrix compres-
sion techniques. In the special case of wavelet Riesz basesΨX , ΨY and
K�(FX(v)) being a differential operator or an integral operator with
Schwartz kernel, e.g., we can expect that the stiffness matrix Av is
s∗-compressible, i.e., there exist biinfinite matrices Av,j with at most
a constant multiple of 2j nontrivial entries per row and column, such
that �Av −Av,j�2 ≤ Cs2

−js, 0 < s < s∗. This property implies that
Av boundedly maps �wτ (JY ) into �

w
τ (JX). We refer to [7, 22] and re-

lated works on the compressibility of operators in wavelet coordinates
and the concrete realization of associated adaptive matrix-vector mul-
tiplications.

(ii) The approximate evaluation of the nonlinearity K itself at a given
input v ∈ �2 is enabled under additional assumptions on the type of the
nonlinearity. In the context of nonlinear operators, tree approximation
techniques play an important role. Here a tree structure is imposed
on the coefficient array of the output argument. For example, in the
special case that X is a closed subspace of Hs(Ω), s ≥ 0, Ω ⊂ Rd a
bounded domain, Y = X � and K decomposes into K = A + N with
a linear, boundedly invertible operator A : X → X � and a Nemytskii-
type nonlinearity

N : X → X �, (N (v))(x) = f
�
∂β1v(x), . . . , ∂βkv(x)

�
, βj ∈ Nd

0,

adaptive wavelet tree approximation techniques have been developed
and implemented in [1, 8, 12, 18].
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For simplicity, we will assume in the sequel that y is given exactly. For
convenience, we define the analogue of (18) by

T̃ρ,δ(v) := v −
1

λ
[
�
K �(v)

�∗
([K(v)]ρ − y)]δ. (86)

An implementable version of ISTA with decreasing threshold parameters
α(n), i.e., (9), is then given by

ũ(n+1) = S 1
λ
α(n)

�
T̃ρ(n),δ(n)(ũ(n))

�
. (87)

The following theorem shows that if the parameters ρ(n), δ(n) are suitably
chosen, the overall algorithm is still linearly convergent.

Theorem 4.2. Let u∗ be a stationary point of (1) that satisfies T (u∗) ∈
�wτ (J ) for some 0 < τ < 2. Furthermore let α(n),α ∈ RJ

+ with α
(n)
µ ≥ αµ ≥

α ∈ R+, µ ∈ J . We set ũ(0) = 0 and assume that T fulfills condition (37).
With CLip

T be as therein and C is as in Lemma 2.2 we set

L̃ :=
4
�
(CLip

T + γ̃ − γ)�u∗��2
�2
λ2

α2
+ 4C|T (u∗)|τ�wτ (J )

�α
λ

�−τ
,

and define BL̃ analogously to (41). Let us assume that there exists 0 < γ0 <

1, such that for all v ∈ BL̃ and supp(v) ⊂ Λ ⊂ J with #Λ ≤ 2L̃

�
�
T (u∗)− T (v)

�
|S∗∪Λ��2(S∗∪Λ) ≤ γ0�u∗ − v��2 . (88)

For the operator K � we assume

Cbnd
K� (BL̃) := sup

v∈BL̃

�K �(v)�L(�2,Y ) <∞. (89)

Then, for any γ0 < γ < γ̃ < 1 the inexact thresholded iteration (87) fulfills

�
ũ(n)

�
n∈N ⊂ BL̃

and converges to u∗ at a linear rate

�u∗ − ũ(n)��2 ≤ �̃(n) := γ̃n�u∗��2 , (90)

whenever the parameters and tolerances are chosen according to

1

λ

�
Cbnd

K� (BL̃)ρ
(n) + δ(n)

�
≤ (γ̃ − γ)�̃(n), (91)

max
µ∈J

|α(n)
µ − αµ| ≤ λL̃− 1

2 (γ − γ0)�̃(n). (92)
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Proof. The proof is an induction over n. The case n = 0 is covered by the
assumptions. Now let ũ(n) ∈ BL̃ and (90) hold for n ∈ N. We begin by

proving # supp ũ(n+1) ≤ L̃. To this end we use the standing assumption
(85) on the inexact operator evaluations, together with the assumption (91)
to estimate for v ∈ BL̃

�T (v)− T̃ρ,δ(v)��2
=

1

λ
�
�
K �(v)

�∗
(K(v)− y)− [

�
K �(v)

�∗
([K(v)]ρ − y)]δ��2

≤ 1

λ

�
�
�
K �(v)

�∗
(K(v)− y)−

�
K �(v)

�∗
([K(v)]ρ − y)��2

+ �
�
K �(v)

�∗
([K(v)]ρ − y)− [

�
K �(v)

�∗
([K(v)]ρ − y)]δ��2

�

≤ 1

λ

�
�
�
K �(v)

�∗�L(Y,�2)ρ+ δ
�

≤ (γ̃ − γ)�̃(n).

(93)

This inequality, applied for v = ũ(n) ∈ BL̃, implies together with the Lips-
chitz continuity assumption (37) that

�T (u∗)− T̃ρ(n),δ(n)(ũ(n))��2
= �T (u∗)− T (ũ(n)) + T (ũ(n))− T̃ρ(n),δ(n)(ũ(n))��2
≤ (CLip

T + γ̃ − γ)�̃(n),

By invoking Lemma 2.2 we can conclude

# supp(ũ(n+1)) = # supp S 1
λ
α(n)

�
T̃ρ(n),δ(n)(ũ(n))

�
≤ L̃. (94)

For the second part of the proof we set Λ̃(n) := S∗∪supp ũ(n)∪supp ũ(n+1).
Notice that # supp ũ(n)∪supp ũ(n+1) ≤ 2L̃. Because shrinkage is nonexpan-
sive and by the assumption (88) we may estimate

�u∗|Λ̃(n) − S 1
λ
α

�
T (ũ(n))|Λ̃(n)

�
��2(Λ̃(n))

= �S 1
λ
α

�
T (u∗)|Λ̃(n)

�
− S 1

λ
α

�
T (ũ(n))|Λ̃(n)

�
��2(Λ̃(n)) ≤ γ0�̃

(n).
(95)

Moreover, we may use the Lipschitz assumption (37) directly and invoke
Lemma 2.2 directly to conclude

# supp S 1
λ
α

�
T (ũ(n))

�
≤

4�T (u∗)− T (ũ(n))�2�2λ2
α2

+ 4C|T (u∗)|τ�wτ (J )

�α
λ

�−τ

≤ 4(CLip
T �̃(n))2λ2

α2
+ 4C|T (u∗)|τ�wτ (J )

�α
λ

�−τ
(96)

≤ L̃
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Sinceα(n) is decreasing toα it holds that supp S 1
λ
α(n)

�
T (ũ(n))

�
⊂ supp S 1

λ
α

�
T (ũ(n))

�
.

This, together with (92) gives

�S 1
λ
α

�
T (ũ(n))|Λ̃(n)

�
− S 1

λ
α(n)

�
T (ũ(n))|Λ̃(n)

�
��2(Λ̃(n))

≤
�
#supp S 1

λ
α(T (ũ

(n)))
� 1

2

λ
max
µ∈J

|α(n)
µ − αµ|

≤ (γ − γ0)�̃(n).

(97)

Finally, we use that shrinkage in nonexpansive, together with (93) for ũ(n)

for the estimate

�S 1
λ
α(n)

�
T (ũ(n))|Λ(n)

�
− S 1

λ
α(n)

�
T̃ρ(n),δ(n)(ũ(n))|Λ̃(n)

�
��2(Λ̃(n)) ≤ (γ̃ − γ)�̃(n).

(98)
The combination of (95), (97), and (98) finalizes the proof

�u∗ − ũ(n+1)��2 ≤ �u∗|Λ̃(n) − S 1
λ
α

�
T (ũ(n))|Λ̃(n)

�
��2(Λ̃(n))

+ �S 1
λ
α

�
T (ũ(n))|Λ̃(n)

�
− S 1

λ
α(n)

�
T (ũ(n))|Λ̃(n)

�
��2(Λ̃(n))

+ �S 1
λ
α(n)

�
T (ũ(n))|Λ̃(n)

�
− ũ(n+1)

|Λ̃(n)
��2(Λ̃(n))

≤ γ0�̃
(n) + (γ − γ0)�̃(n) + (γ̃ − γ)�̃(n) = �̃(n+1).

We have shown that the support size of each iterate ũ(n) can be bounded
by a uniform constant. As it turns out there also exists a bounded set
Λ0 ⊂ J that contains all those supports.

Theorem 4.3. Let the assumptions of Theorem 4.2 hold. Let N ∈ N be
large enough such that there exists δ > 0 with

�̃(N+1) + δ ≤ 1

λ
inf
µ∈J

αµ. (99)

Then it holds that

supp(ũ(n)) ⊂ Λδ(T (u
∗)), n ≥ N,

and consequently

supp(ũ(n)) ⊂
� N�

j=0

supp(ũ(j))
�
∪ Λδ(T (u

∗)) =: Λ0, n ∈ N.

Proof. We prove that for any fixed n ≥ N all µ ∈ J \ Λδ(T (u
∗)) it holds

that (ũ(n+1))µ = 0. To this end let 0 < γ0 < γ < γ̃ < 1 be as in Theorem 4.2
and denote Λ̃(n) := S∗ ∪ supp ũ(n) ∪ ũ(n+1). Recall that by estimating as in
equation (93) it holds that

�
�
T (ũ(n))|Λ̃(n) − T̃ρ(n),δ(n)(ũ(n))|Λ̃(n)

�
��2(Λ̃(n)) ≤ (γ̃ − γ)�̃(n), (100)
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and further that, since # supp ũ(n) ≤ L̃, we can use (42) to estimate

�
�
T (u∗)|Λ̃(n) − T (ũ(n))|Λ̃(n)��2(Λ̃(n)) ≤ γ0�̃

(n). (101)

By definition µ ∈ Λ̃(n) \ Λδ(T (u
∗)) implies that |

�
T (u∗)

�
µ
| ≤ δ. Therefore,

for such µ we may use (100), (101), (99), and the fact that α(n) is decreasing
to α to estimate

|
�
T̃ρ(n),δ(n)(ũ(n))

�
µ
| ≤ �T (u∗)|Λ̃(n) − T̃ρ(n),δ(n)(ũ(n))|Λ̃(n)��2(Λ̃(n)) + |

�
T (u∗)

�
µ
|

≤ �̃(N+1) + δ ≤ inf
ν∈J

αν ≤ inf
ν∈J

α(n)
ν .

Finally, by the definition of S 1
λ
α(n) it follows that (ũ(n+1))µ = 0.
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[154] M. Kovács, S. Larsson, and F. Lindgren. On the Backward Euler Approximation
of the Stochastic Allen-Chan Equation. Preprint 154, DFG-SPP 1324, November
2013.

[155] S. Dahlke, M. Fornasier, U. Friedrich, and T. Raasch. Multilevel preconditioning
for sparse optimization of functionals with nonconvex fidelity terms. Preprint 155,
DFG-SPP 1324, December 2013.


