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In this paper, we present error estimates for the approximation of multivariate
periodic functions in periodic Hilbert spaces of isotropic and dominating mixed
smoothness by trigonometric polynomials. The approximation is based on sam-
pling of the multivariate functions on rank-1 lattices. We use reconstructing rank-1
lattices with generating vectors of Korobov form for the sampling and generalize
the technique from [24], in order to show that the aliasing error of that approxima-
tion is of the same order as the error of the approximation using the partial sum
of the Fourier series. The main advantage of our method is that the computation
of the Fourier coefficients of such a trigonometric polynomial, which we use as
approximant, is based mainly on a one-dimensional fast Fourier transform, i.e.,
the arithmetic complexity of the computation depends only on the cardinality of
the support of the trigonometric polynomial in the frequency domain. Numerical
results are presented up to dimension d = 10.
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1 Introduction

We approximate functions f ∈ Hω(Td) from the Hilbert space

Hω(Td) :=



f ∈ C(Td) : �f |Hω(Td)� :=

��

k∈Zd

ω(k)2|f̂k|2 < ∞



 ,

where ω : Zd → (0,∞] is a weight function, by trigonometric polynomials p with frequencies
supported on an index set I ⊂ Zd of finite cardinality, p(x) :=

�
k∈I p̂k e

2πikx. Thereby, we
are especially interested in the higher-dimensional cases, i.e., d ≥ 4. As usual, we denote the
Fourier coefficients of the function f ∈ L2(Td) by

f̂k :=

�

Td

f(x)e−2πikxdx, k ∈ Zd.

We remark that for the special choice ω ≡ 1, we have Hω(Td) = C(Td) ∩ L2(Td). One
theoretical possibility to obtain such a trigonometric polynomial p is to formally approximate
the function f by the Fourier partial sum

SIf :=
�

k∈I
f̂k e

2πik◦,

where I ⊂ Zd is a frequency index set of finite cardinality. Since SIf is the truncated Fourier
partial sum of the function f , this approximation causes a truncation error �f −SIf�, where
� · � is an arbitrarily chosen norm. For a function f ∈ L2(Td)∩Hω(Td) we choose a frequency
index set I = IN := {k ∈ Zd : ω(k)1/ν ≤ N} of refinement N ∈ R, N ≥ 1, ν > 0, and obtain

�f − SIN f |L2(Td)� ≤ N−ν�f |Hω(Td)�,

see Lemma 3.3. We stress the fact that SIN f is the best approximation of the function
f with respect to the L2(Td) norm in the space ΠIN := span{e2πik◦ : k ∈ IN} of trigono-
metric polynomials with frequencies supported on the index set IN and that the operator
SIN : L

1(Td)→ ΠIN only depends on the frequency index set IN .
Since, in general, we do not know the Fourier coefficients f̂k, we are going to approximate

the function f from samples using the approximated Fourier partial sum

S̃IN f :=
�

k∈IN

˜̂
fk e

2πik◦ .

We compute the approximated Fourier coefficients
˜̂
fk ∈ C, k ∈ IN , of the function f using a

lattice rule by

˜̂
fk :=

1

M

M−1�

j=0

f (xj) e
−2πikxj for k ∈ IN , (1.1)

where the sampling nodes xj :=
j
M z mod 1 are the nodes of a so-called reconstructing rank-1

lattice Λ(z,M, IN ) with generating vector z ∈ Zd and rank-1 lattice size M ∈ N for the
frequency index set IN , see Section 2.2 for the definition. Lattice rules have extensively been
investigated for the integration of functions of many variables for a long time, cf. e.g., [22, 4, 5]
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and the extensive reference list therein. Especially, rank-1 lattice rules have also been studied
for the approximation of multivariate functions of suitable smoothness, cf. [24, 18, 17, 19].
Furthermore, there exist already comprehensive tractability results for numerical integration
and approximation using rank-1 lattices, see [20, 17].

Since we consider the partial sum S̃IN f of the approximated Fourier coefficients
˜̂
fk instead

of the Fourier partial sum SIN f of Fourier coefficients f̂k, we obtain an additional error.
We estimate the approximation error �f − S̃IN f |L2(Td)� using the triangle inequality �f −
S̃IN f |L2(Td)� ≤ �f − SIN f |L2(Td)� + �SIN f − S̃IN f |L2(Td)�, where �f − SIN f |L2(Td)� is
called the truncation error and �SIN f − S̃IN f |L2(Td)� is called the aliasing error.
In this paper, we consider frequency index sets IN of special structure and show that there

exists a reconstructing rank-1 lattice Λ(z,M, IN ) of reasonable sizeM , see Section 2.2 for the
definition, such that the order of the aliasing error �SIN f − S̃IN f |L2(Td)� is bounded by the
order of the truncation error �f − SIN f |L2(Td)� . To this end, we use the highly structured
rank-1 lattice rules with generating vector of Korobov form. This allows us to generalize the
ideas of V. N. Temlyakov, see [24], in order to estimate the aliasing error. We consider, similar
to [7] and as in [14], functions f from the Hilbert space

Hω(Td) = Hα,β(Td) :=

�
f ∈ C(Td) : �f |Hα,β(Td)� :=

��
k∈Zd

ωα,β(k)2|f̂k|2 < ∞
�

,

where the parameter β ∈ R, β ≥ 0, characterizes the dominating mixed smoothness, the
parameter α ∈ R, α > −β, characterizes the isotropic smoothness, and the weights ω(k) =
ωα,β(k) are given by

ωα,β(k) := max(1, �k�1)α
d�

s=1

max(1, |ks|)β , k := (k1, . . . , kd)�.

We remark that one can use various equivalent weights ω(k) which have different approxi-
mation properties for large dimensions d, cf. [16]. Furthermore, we define the corresponding

frequency index sets IN = Id,TN , N ∈ R, N ≥ 1, T ∈ R, −∞ < T < 1, by

Id,TN :=

�
k ∈ Zd : ω− T

1−T
, 1
1−T (k) = max(1, �k�1)−

T
1−T

d�

s=1

max(1, |ks|)
1

1−T ≤ N

�
.

In the cases 0 < T < 1, the frequency index sets Id,TN are called energy-norm based hyperbolic
crosses, see [2, 3], and in the case T = 0 symmetric hyperbolic crosses. As a natural extension

for T = −∞, we define the frequency index set Id,−∞
N as the d-dimensional �1-ball of size N ,

Id,−∞
N :=

�
k ∈ Zd : max(1, �k�1) ≤ N

�
.

Figure 1.1 illustrates the frequency index sets Id,TN in the two-dimensional case for different

choices −∞ ≤ T < 1 of the parameter T . The cardinalities of the frequency index sets Id,TN

are given in Lemma 4.1, which reads for fixed d ∈ N and T := −α/β as follows

���Id,−α/β
N

��� =





Θ(Nd) for α > 0 and β = 0 (⇐⇒ T = −∞),
Θ(N

d β+α
dβ+α ) for α > 0 and β > 0 (⇐⇒ −∞ < T < 0),

Θ(N logd−1 N) for α = 0 and β > 0 (⇐⇒ T = 0),

Θ(N) for α < 0 and β > −α (⇐⇒ 0 < T < 1).

(1.2)

3



−32 0 32
−32

0

32

−32 0 32
−32

0

32

−32 0 32
−32

0

32

−32 0 32
−32

0

32

l1-ball I
2,−∞
32 index set I2,−5

32 symmetric energy-norm based

hyperbolic cross I2,032 hyperbolic cross I
2,1/2
32

Figure 1.1: Two-dimensional frequency index sets I2,T32 for T ∈ {−∞,−5, 0, 12}.
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Figure 1.2: Visualization of the admissible values of α and β in the case d = 2, such that (1.3)
and (1.4) are valid. We set the corresponding values T := −α/β.

In this setting, we obtain that the L2(Td) truncation error is bounded by

�f − S
I
d,−α/β
N

f |L2(Td)� ≤ N−(α+β) �f |Hα,β(Td)�,

see Lemma 4.4. The main result of this paper is, that for fixed dimension d ∈ N, d ≥ 2

there exists a reconstructing rank-1 lattice Λ(z,M, I
d,−α/β
N ) with generating vector z :=

(1, a, . . . , ad−1)� ∈ Zd of Korobov form and size

M =





O(Nd) for α > d
2 and β = 0,

O(Nd
(2dβ+α)(β+α)

(dβ+α)2 ) for β > 0 and α > max
�
0, (14 − β + 1

4

√
8β + 1)d

�
,

O(N2 logd−1 N) for α = 0 and β > 1,

O(N2) for α < 0 and β > 1− α,

(1.3)

such that the aliasing error is bounded by

�S
I
d,−α/β
N

f − S̃
I
d,−α/β
N

f |L2(Td)� ≤ C(d, α, β) N−(α+β) �f |Hα,β(Td)�, (1.4)

where C(d, α, β) > 0 is a constant which only depends on d, α, β. In the cases where
α ≥ 0, we obtain estimate (1.4) from Theorem 4.7 and the lower bound for the size M in
(1.3) due to (4.4) and (4.1). For α < 0, we infer estimate (1.4) from Theorem 4.10 and
the lower bound for the size M in (1.3) due to (4.5) and (4.1). Figure 1.2 visualizes the
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different cases for the admissible values of the isotropic smoothness α and the dominating
mixed smoothness β in (1.3) and (1.4) in the two-dimensional case and gives the corresponding
values of the parameter T . In Figure 1.3, the admissible values of α and β are shown for
the cases d = 2, 6, 10. Comparing the number M of sampling nodes xj in (1.3) and the

1

1

α

β

3

1

α

β

5

1

α

β

d = 2 d = 6 d = 10

Figure 1.3: Visualiziation of the admissible values of α and β in the cases d = 2, 6, 10, such
that (1.3) and (1.4) are valid.

number |Id,−α/β
N | of frequency indices in (1.2), our results yield in general an oversampling,

i.e., M > |Id,−α/β
N |. In the case α > d

2 and β = 0, where the frequency index sets Id,−∞
N are

l1-balls, the asymptotic order of M and |Id,−∞
N | in N is obviously identical. Considering the

case α < 0 and β > 1 − α, where the frequency index sets I
d,−α/β
N are energy-norm based

hyperbolic crosses, we obtain a gap between M and |Id,−α/β
N | in the asymptotic order in N .

However, this gap is necessary in order to obtain an orthogonal Fourier transform as given
by (1.1), cf. [10, Lemma 2.1]. Note that in the case α = 0, the oversampling factors M/|Id,0N |,
i.e., ratios of the rank-1 lattice sizesM and the cardinalities of the symmetric hyperbolic cross
index sets Id,0N are still moderate for reasonable problem sizes compared to the asymptotic
statement O(N) in (1.3) and (1.2), see Table 5.1.
Let us mention that sampling on (generalized) sparse grids, see [25, 1, 30, 8, 26, 2, 23, 3, 6,

21, 9, 7], is another intensively studied approach used to approximate functions of the classes

Hα,β(Td). One advantage of this method is that only |Id,−α/β
N | many samples are required.

Furthermore, for α = 0, there exists a fast algorithm for computing the approximation of the
Fourier partial sum S

Id,0N
of a function f in O(N logd N) arithmetic operations. However, the

computation may be numerically unstable in this setting, cf. [12]. Known upper bounds for
the approximation errors are discussed in Section 4.3. We stress again, that the outstanding
property of the sampling method (1.1) discussed in this paper is that the computation of

the approximated Fourier coefficients
˜̂
fk, k ∈ Id,0N , is perfectly stable and takes O(N2 logd N)

arithmetic operations, since it is mainly based on a one-dimensional fast Fourier transform
(FFT), cf. [13] and [14, Algorithm 3].
The paper is organized as follows: We discuss the exact reconstruction of trigonometric

polynomials from samples along a rank-1 lattice in Section 2 and prove the existence of a
special rank-1 lattice with certain properties. Based on these special properties, we show
general estimates for the aliasing error for general frequency index sets IN in Section 3.
Then, in Section 4, we consider the approximation error �f − S̃

I
d,−α/β
N

f |L2(Td)�. Therefor,
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we present the estimates for the truncation error in Section 4.1. In Section 4.2, we prove the
results (1.3) and (1.4). We compare these results with previously known ones in Section 4.3.
Finally, we present numerical tests in Section 5 in order to illustrate the theoretical results
and we give some concluding remarks in Section 6.

2 Approximation based on rank-1 lattice sampling

2.1 Reconstruction of trigonometric polynomials from samples

As already discussed in Section 1, we want to approximate a function f ∈ Hω(Td) using a
trigonometric polynomial p. Here, we use the following approach. For a given frequency index
set I ⊂ Zd of finite cardinality, we want to be able to exactly reconstruct the Fourier coef-
ficients p̂k, k ∈ I, of an arbitrarily chosen trigonometric polynomial p(x) :=

�
k∈I p̂k e

2πikx

with frequencies supported on I from sampling values p(xj). As sampling nodes xj , j =
0, . . . ,M − 1, we use the nodes of a rank-1 lattice Λ(z,M) with generating vector z ∈ Zd of
size M ∈ N, i.e., we set xj :=

j
M z mod 1, j = 0, . . . ,M − 1. Formally, the Fourier coefficients

p̂k are given by

p̂k :=

�

Td

p(x) e−2πikxdx

and we approximate this integral by the (rank-1) lattice rule

1

M

M−1�

j=0

p(xj)e
−2πikxj =

1

M

M−1�

j=0

p

�
j

M
z

�
e−2πijkz/M =: ˆ̃pk.

Now, we ask for the exactness of this cubature formula, i.e., when is p̂k = ˆ̃pk ∀k ∈ I. Since
we have

ˆ̃pk =
1

M

M−1�

j=0

�

k�∈I
p̂k� e2πijk

�z/Me−2πijkz/M =
�

k�∈I
p̂k�

1

M

M−1�

j=0

e2πij(k
�−k)z/M ,

we need the condition

1

M

M−1�

j=0

e2πij(k
�−k)z/M =

�
1 for k = k�

0 for k �= k�,k,k� ∈ I,
(2.1)

to be fulfilled. This is the case if and only if

(k� − k)z �≡ 0 (mod M) ∀k,k� ∈ I,k �= k�, (2.2)

⇐⇒ k · z �≡ k� · z (mod M) ∀k,k� ∈ I,k �= k�, (2.3)

see [11, Section 2]. Introducing the difference set D(I) for the index set I, D(I) := {k −
k� : k,k� ∈ I}, we can rewrite the above conditions to

mz �≡ 0 (mod M) ∀m ∈ D(I) \ {0}. (2.4)

6



2.2 Reconstructing rank-1 lattices

A rank-1 lattice Λ(z,M) which fulfills one of the (equivalent) conditions (2.1),(2.2),(2.3),(2.4)
for a given frequency index set I will be called reconstructing rank-1 lattice Λ(z,M, I). Under
mild assumptions, e.g., I ⊂ Zd ∩ (−M/2,M/2)d, there always exists a reconstructing rank-

1 lattice Λ(z,M, I) of size |D(I)|
2 ≤ M ≤ |D(I)| due to [11, Corollary 1] and Bertrand’s

postulate. We remark that we can compute the approximated Fourier coefficients
˜̂
fk, k ∈ I,

from (1.1) in O(M logM + d|I|) arithmetic operations using a single one-dimensional fast
Fourier transform of length M and by computing the scalar products kz for k ∈ I. The
generating vector z can be constructed using a component-by-component approach, see [11].

2.3 Existence of a special reconstructing rank-1 lattice

In this section, we proof a generalisation of [24, Lemma 2] and [27, Lemma 4.1]. Conceptually,
I = IN ⊂ Zd represent frequency index sets used as support for the approximation of a
function f by a trigonometric polynomial p based on sampling values f(xj). The index sets
I = IN ⊂ Zd may be considered as a superset of the difference set D(I) := {k−k� : k,k� ∈ I}.
As sampling nodes xj , we use the nodes xj :=

j
M z mod 1, j = 0, . . . ,M−1, of a reconstructing

rank-1 lattice Λ(z,M, I) with generating vector z := (1, a, . . . , ad−1)� ∈ Zd of Korobov form,
i.e., the condition mz �≡ 0 (mod M) has to be fulfilled for all m ∈ D(I) \ {0} or one of the
other (equivalent) conditions (2.1),(2.2),(2.3).

Lemma 2.1. Let a sequence of frequency index sets IN ⊂ Zd, d ∈ N, of finite cardinality
|IN | be given, which may depend on the refinement N ∈ R, N ≥ 1. For fixed refinement
N ∈ R, N ≥ 1, and arbitrarily chosen parameter κ ∈ R, κ > 0, let M ∈ N be a prime such
that

M >
d |IN |
1− 2−κ

+ 1 (2.5)

and
IN ∩ MZd = {0}. (2.6)

For an arbitrarily chosen monotonic increasing function ϕ : N ∪ {0} → [1,∞) with ϕ(0) = 1,
we define the shells Fl(N) := IN ϕ(l) \ IN ϕ(l−1), N ∈ R, N ≥ 1, l ∈ N, and for each
a ∈ {1, . . . ,M − 1} the sets

M l
a := {m ∈ Fl(N) : m1 +m2 a+ . . .+md a

d−1 ≡ 0 (mod M) and m �=Mm� ∀m� ∈ Zd}.

Then, there exists a number a ∈ {1, . . . ,M − 1}, such that

m1 +m2 a+ . . .+md a
d−1 �≡ 0 (mod M) for all m ∈ IN \ {0} (2.7)

and
|M l

a| ≤ AN
l := |Fl(N)|d2(l+1)κ(2κ − 1)−1(M − 1)−1, l ∈ N. (2.8)

Proof. This proof is a generalisation of the proofs of [24, Lemma 2] and [27, Lemma 4.1].
We remark that Fl(N) = ∅ may occur for some or all l ∈ N and then also M l

a = ∅ follows.
The idea is to prove that the number of integers a ∈ {1, . . . ,M − 1} for which the statement
of the lemma is not valid is less than M −1 and consequently, at least one a ∈ {1, . . . ,M −1}
fulfills the statement. We consider the congruence

m1 +m2 a+ . . .+md a
d−1 ≡ 0 (mod M). (2.9)
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For a fixed frequencym ∈ Zd, we denote the set of natural numbers a ∈ {1, . . . ,M −1} which
are solutions of congruence (2.9) by AM (m), i.e.,

AM (m) := {a ∈ {1, . . . ,M − 1} : m1 +m2 a+ . . .+md a
d−1 ≡ 0 (mod M)}.

Let a frequencym ∈ IN \{0} be given. Due to condition (2.6), at least one component fulfills
ms� �≡ 0 (mod M) and we can apply Lagrange’s Theorem. This yields that the congruence
(2.9) has at most d − 1 roots modulo M . Therefore, we have

|AM (m)| ≤ d − 1 < d (2.10)

for all m ∈ IN \ {0}. Next, we estimate the number of integers a ∈ {1, . . . ,M − 1} for which
the relation (2.7) is not valid for at least one m ∈ IN \ {0}. Therefore, we denote by G0 the
set of numbers a ∈ {1, . . . ,M − 1} which are solutions of congruence (2.9) for at least one
frequency m ∈ IN \ {0},

G0 =
�

m∈IN\{0}
AM (m).

Since |AM (m)| < d by (2.10) and due to (2.5), we obtain

|G0| ≤
�

m∈IN\{0}
|AM (m)| < d |IN | < (M − 1)(1− 2−κ). (2.11)

This means, for any a ∈ {1, . . . ,M − 1} \ G0, the relations (2.7) are valid and
|{1, . . . ,M − 1} \ G0| > M − 1− (M − 1)(1− 2−κ) = (M − 1)2−κ > 0.
Next, we consider the inequalities (2.8). For each l ∈ N, we estimate the number of integers
a ∈ {1, . . . ,M −1} for which |M l

a| > AN
l , i.e., for which the inequalities (2.8) are not fulfilled.

Therefor, we define the sets Gl := {a ∈ {1, . . . ,M − 1} : |M l
a| > AN

l }, l ∈ N. If Fl(N) = ∅,
then obviously |Gl| = 0. Otherwise for Fl(N) �= ∅, we have

�

a∈Gl

|M l
a| >

�

a∈Gl

AN
l = |Gl|AN

l . (2.12)

We note that estimate (2.10) is also true for all m ∈ M l
a due to Lagrange’s Theorem, i.e.,

there exist at most d−1 many numbers a ∈ {1, . . . ,M −1} satisfying (2.9) for fixedm ∈ M l
a.

Consequently, for fixed m ∈ M l
a, there exist at most d − 1 sets M l

a which contain m. Thus,
each m ∈ Fl(N) can belong to at most d − 1 different sets M l

a and therefore
�

a∈Gl

|M l
a| ≤ (d − 1) |Fl(N)| < d |Fl(N)|. (2.13)

Comparing (2.12) and (2.13), we obtain |Gl|AN
l < d |Fl(N)| and by inserting the definition

of AN
l from (2.8), we infer

|Gl| < d |Fl(N)|/AN
l = 2

−(l+1)κ(2κ − 1)(M − 1) = 2−lκ(M − 1)(1− 2−κ), l ∈ N, (2.14)

if Fl(N) �= ∅. Alltogether, relation (2.11) as well as relation (2.14) if Fl(N) �= ∅ and |Gl| = 0
if Fl(N) = ∅ yield

∞�

l=0

|Gl| <
∞�

l=0

2−lκ(M − 1)(1− 2−κ) = (M − 1)(1− 2−κ)
∞�

l=0

(2−κ)l

= (M − 1)(1− 2−κ)
1

1− 2−κ
=M − 1.
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This means that the number of integers a ∈ {1, . . . ,M − 1} for which the statement of the
lemma is not valid is less than M − 1. Since the cardinality |{1, . . . ,M − 1}| =M − 1, there
exists at least one a ∈ {1, . . . ,M − 1} for which relations (2.7) and (2.8) are valid.

3 Aliasing error for rank-1 lattice sampling and general frequency
index sets

Based on Lemma 2.1, we proof general statements for the aliasing error for arbitrary frequency
index sets I ⊂ Zd of finite cardinality. We are going to use the results of this section extensively
in Section 4. The following lemma was proven in [24], see [24, Property 2°].

Lemma 3.1. Let the dimensionality d ∈ N, d ≥ 2, a frequency index set I ⊂ Zd of finite
cardinality and a reconstructing rank-1 lattice Λ(z,M, I) with the nodes xj :=

j
M z mod 1,

j = 0, . . . ,M − 1, be given. We denote the Dirichlet kernel with frequencies supported on the
index set I by DI(x) :=

�
k∈I e

2πikx. For an arbitrary vector b := (b0, . . . , bM−1)
� ∈ CM , we

have ������
1

M

M−1�

j=0

bjDI(◦ − xj)

�����L2(T
d)

������
≤


 1

M

M−1�

j=0

|bj |2



1/2

= �b/
√
M�2. (3.1)

Additionally, for an arbitrary trigonometric polynomial p : Td → C with frequencies supported
on the index set I, p(x) :=

�
k∈I p̂k e

2πikx, p̂k ∈ C, we have S̃Ip = p.

Proof. Due to

�

Td

e2πikxdx =

�
1 for k = 0,

0 for k ∈ Zd \ {0},
we obtain

������
1

M

M−1�

j=0

bjDI(◦ − xj)

�����L2(Td)

������

2

=
1

M2

�

Td

������

M−1�

j=0

bjDI(x− xj)

������

2

dx

=
1

M2

�

0≤j,j�≤M−1

bjDI(xj� − xj)bj� .

We can rewrite this as a quadratic form of the vector b/
√
M and the matrix D =

�
Dj�,j

�M−1

j�,j=0

with elements Dj�,j :=
1
MDI(xj� − xj),

�����
1
M

M−1�
j=0

bjDI(◦ − xj)

�����L2(T
d)

�����

2

=
�

b√
M

�H
D
�

b√
M

�
.

Next, we consider the matrix D2 = D · D :=
�
(D2)j�,j

�M−1

j�,j=0
with the elements (D2)j�,j .

We obtain by using the reconstructing property (2.1) of the reconstructing rank-1 lattice

Λ(z,M, I) that (D2)j�,j =
1

M2

M−1�

ρ=0

DI(xj� −xρ)DI(xρ −xj)
(2.1)
=

1

M

�

k∈I
e2πik(xj�−xj) = Dj�,j ,

i.e., D2 = D. Furthermore, we have DH = D and therefore, D = D2 = DHD follows.
Consequently, we infer

������
1

M

M−1�

j=0

bjDI(◦ − xj)

�����L2(T
d)

������

2

≤ �D�22
���
�
b/

√
M
����

2

2
= σmax(D)2

���b/
√
M
���
2

2
,

9



where σmax(D) denotes the largest singular value of the matrix D. Last, we show σmax(D) ≤
1. Let D = UΣV H be a singular value decomposition of the matrix D, where U , V are
unitary matrices and Σ = diag ((σ1, . . . , σM )) is a diagonal matrix of the singular values
σj ≥ 0, j = 1, . . . ,M , of the matrix D. Then, we infer from UΣV H = D = D2 = DHD =
UΣ2V H that σ2

j = σj , j = 1, . . . ,M . Therefore, each singular value σj ∈ {0, 1} and we obtain
σmax(D) ≤ 1.
For p(x) =

�
k∈I p̂k e

2πikx, we infer

S̃I p(x) =
�

k∈I

1

M

M−1�

j=0

p (xj) e
−2πikxje2πikx

=
�

k∈I


�

k�∈I
p̂k�

1

M

M−1�

j=0

e2πij(k
�−k)z/M


 e2πikx (2.1)

=
�

k∈I
p̂k e

2πikx = p(x)

since we use the sampling nodes xj :=
j
M z mod 1, j = 0, . . . ,M − 1, from a reconstructing

rank-1 lattice Λ(z,M, I).

Lemma 3.2. Let the dimensionality d ∈ N, d ≥ 2, a function f ∈ C(Td) ∩ L2(Td) with
point-wise convergent Fourier series, a frequency index set I ⊂ Zd of finite cardinality and a
reconstructing rank-1 lattice Λ(z,M, I) with the nodes xj :=

j
M z mod 1, j = 0, . . . ,M − 1,

be given. Additionally, we define shells Ul ⊂ Zd, l ∈ N∪{0}, with the properties Ul� ∩Ul�� = ∅
for l� �= l�� and suppf̂ \ I ⊂ �∞

l=0 Ul, where suppf̂ := {k ∈ Zd : f̂k �= 0}. Then, we have

�S̃I (f − SIf) |L2(Td)� ≤
∞�

l=0

σl, σl :=


 1

M

M−1�

j=0

|SUl
f(xj)|2




1/2

.

Proof. By definition, we have

S̃I (f − SIf) =
�

h∈I

1

M

M−1�

j=0

(f − SIf) (xj) e
−2πihxje2πih◦

=
1

M

M−1�

j=0

Ssuppf̂\I f (xj) DI(◦ − xj)

=
1

M

M−1�

j=0


 �

k∈suppf̂\I
f̂k e

2πikxj


 DI(◦ − xj)

=
1

M

M−1�

j=0




∞�

l=0

�

k∈Ul

f̂k e
2πikxj


 DI(◦ − xj)

=

∞�

l=0

1

M

M−1�

j=0

�

k∈Ul

f̂k e
2πikxj DI(◦ − xj)

=

∞�

l=0

1

M

M−1�

j=0

SUl
f(xj) DI(◦ − xj).

10



We apply the Minkowski inequality and Lemma 3.1 with bj := SUl
f (xj). This yields

�S̃I (f − SIf) |L2(Td)� =

������

∞�

l=0

1

M

M−1�

j=0

SUl
f (xj) DI(◦ − xj)

���L2(Td)

������

≤
∞�

l=0

������
1

M

M−1�

j=0

SUl
f (xj) DI(◦ − xj)

���L2(Td)

������

(3.1)

≤
∞�

l=0


 1

M

M−1�

j=0

|SUl
f (xj)|2




1/2

=
∞�

l=0

σl

and the assertion follows.

Lemma 3.3. Let the dimensionality d ∈ N, a weight function ω : Zd → (0,∞], a smoothness
parameter ν > 0, the sequence of frequency index sets IN := {k ∈ Zd : ω(k)1/ν ≤ N} of
refinement N ∈ R, N ≥ 1, and a function f ∈ L2(Td) ∩ Hω(Td) be given. Then, the
truncation error is bounded by

�f − SIN f |L2(Td)�2 ≤ N−ν �f |Hω(Td)�.

Proof. We have

Zd \ IN = {k ∈ Zd : ω(k)1/ν > N} = {k ∈ Zd :
1

ω(k)1/ν
<
1

N
} = {k ∈ Zd :

1

ω(k)2
< N−2ν}

and this yields the assertion since

�f − SIN f |L2(Td)�2 =
�

k∈Zd\ IN

ω(k)2

ω(k)2
|f̂k|2 ≤ max

k∈Zd\ IN

1

ω(k)2

�

k∈Zd\ IN

ω(k)2|f̂k|2

≤ N−2ν
�

k∈Zd\ IN

ω(k)2|f̂k|2 ≤ N−2ν �f |Hω(Td)�2.

Theorem 3.4. Let the dimensionality d ∈ N, d ≥ 2, a function f ∈ L2(Td) ∩ Hω(Td) with
point-wise convergent Fourier series, a smoothness parameter ν > 0 and the sequence of
frequency index sets IN := {k ∈ Zd : ω(k)1/ν ≤ N} with refinement N ∈ R, N ≥ 1, be given,
where ω : Zd → (0,∞] is a weight function. Furthermore, let IN ⊂ Zd be a nested sequence
of frequency index sets with refinement N ∈ R, N ≥ 1,

IN � ⊂ IN �� for N � ≤ N ��, (3.2)

such that the inclusion IN ⊃ D(IN ) := {k − k� : k,k� ∈ IN} is valid for all N ∈ R, N ≥ 1.
For each fixed N ∈ R, N ≥ 1, let a parameter κ > 0 and a prime number M ∈ N,

M >
d |IN |
1− 2−κ

+ 1, (3.3)

11



be given. Additionally, let the inequality

|{m ∈ IN2l : ∃m� ∈ Zd such that m =Mm�}| ≤ C
|IN2l |
M

ψ(l) + 1 ∀l ∈ N (3.4)

be valid, where ψ : [0,∞) → [1,∞) and C > 0 is a constant which does not depend on N
or M . Then, there exists a reconstructing rank-1 lattice Λ(z,M, IN ) with generating vector
z := (1, a, . . . , ad−1)� ∈ Zd of Korobov form such that the aliasing error is bounded by

�SIN f − S̃IN f |L2(Td)� ≤ 2ν N−ν �f |Hω(Td)�

·
∞�

l=0

�
2 (2 + (1− 2−κ)C ψ(l + 1)) 2(l+1)(κ

2
−ν)

�
|IN2l+1 |
|IN | .

Proof. This proof is a generalisation of [24, Theorem 2]). Since inequality (3.3) is valid, we
apply Lemma 2.1 and obtain that there exists a number a ∈ {1, . . . ,M − 1} which fulfills
properties (2.7) and (2.8). Since property (2.7) is valid, the rank-1 lattice Λ(z,M) with the
generating vector z := (1, a, . . . , ad−1)� and the nodes xj :=

j
M z mod 1, j = 0, . . . ,M − 1, is

a reconstructing rank-1 lattice Λ(z,M, IN ). We use this special rank-1 lattice Λ(z,M, IN ) for

computing the approximated Fourier coefficients
˜̂
fk, k ∈ IN , from the sampling values f(xj).

Since the Fourier partial sum SIN f of the function f is a trigonometric polynomial with fre-
quencies supported on the index set IN and by applying Lemma 3.1, we obtain S̃IN (SIN f) =
SIN f . This yields SIN f − S̃IN f = S̃IN (f − SIN f). Next, we set the shells Ul := IN2l+1 \
IN2l , l = 0, 1, . . . , and consequently, the property Ul ∩ Ul� = ∅ ∀l �= l� is valid. We apply

Lemma 3.2 and we obtain �S̃IN (f − SIN f) |L2(Td)� ≤
∞�

l=0

σl, where

σl :=


 1

M

M−1�

j=0

|SUl
f(xj)|2




1/2

, l ∈ N ∪ {0}.

Next, we want to estimate

σ2
l ≤ Bl

�

k∈Ul

|f̂k|2,

with numbers Bl ≥ 0, which have to be determined. We have

σ2
l =

1

M

M−1�

j=0

������
�

k∈Ul

f̂k e
2πikxj

������

2

=
1

M

M−1�

j=0

�

k,h∈Ul

f̂kf̂he
2πi(k−h)xj =

�

k,h∈Ul

f̂kf̂h ΔM (k − h),

where

ΔM (m) :=
1

M

M−1�

j=0

e2πijmz/M =

�
1 for m1 +m2 a+ . . .+md a

d−1 ≡ 0 (mod M),

0 for m1 +m2 a+ . . .+md a
d−1 �≡ 0 (mod M).

For fixed frequency k ∈ Ul, we define the set of frequencies

θk := {h ∈ Ul : ΔM (k − h) = 1} ,

12



and by applying the Cauchy Schwarz inequality twice, we obtain

σ2
l =

�

k∈Ul

f̂k
�

h∈θk
f̂h ≤


�

k∈Ul

|f̂k|2



1/2
�

k∈Ul

������
�

h∈θk
f̂h

������

2 


1/2

≤


�

k∈Ul

|f̂k|2



1/2
�

k∈Ul


�

h∈θk
1 · |f̂h|




2 


1/2

≤


�

k∈Ul

|f̂k|2



1/2
�

k∈Ul

|θk|
�

h∈θk
|f̂h|2




1/2

.

We have k − h ∈ D(IN2l+1) ⊂ IN2l+1 for k,h ∈ Ul and this yields

|θk| ≤ |{m ∈ IN2l+1 : m1 +m2 a+ . . .+md a
d−1 ≡ 0 (mod M)}|.

We define the function ϕ(l) := 2l for l ∈ N ∪ {0}. Due to property (2.8) in Lemma 2.1, we
obtain

���{m ∈ Id,0N ϕ(l+1) : m1 +m2 a+ . . .+md a
d−1 ≡ 0 (mod M) and m �=Mm� ∀m� ∈ Zd}

���

=

������

l+1�

j=1

Fj(N)

������
≤

l+1�

j=1

AN
j .

Then, we have

|θk| ≤ Bl :=
l+1�

j=1

AN
j + C

|IN2l+1 |
M

ψ(l + 1) + 1 (3.5)

and

σ2
l ≤


�

k∈Ul

|f̂k|2



1/2
Bl

�

k∈Ul

�

h∈θk
|f̂h|2




1/2

.

For an arbitrarily chosen k ∈ Ul, let h ∈ θk. This means, we have (h−k)z ≡ 0 (mod M). If
h ∈ θk� for another k� ∈ Ul, k

� �= k, then (h− k�)z ≡ 0 (mod M) is valid and (k − k�)z ≡ 0
(mod M) follows. This yields k� ∈ θk. Especially, we have k ∈ θk. Therefore, each frequency
h� ∈ Ul is element of at most Bl many distinct sets θk. This means, we obtain

�

k∈Ul

�

h∈θk
|f̂h|2 ≤

�

k∈Ul

Bl|f̂k|2

and

σ2
l ≤


�

k∈Ul

|f̂k|2



1/2
B2

l

�

k∈Ul

|f̂k|2



1/2

= Bl

�

k∈Ul

|f̂k|2 ≤ Bl

�

k∈Zd\I
N2l

|f̂k|2

= Bl �f − SI
N2l

f |L2(Td)�2 ≤ Bl (N2
l)−2ν �f |Hω(Td)�2.

13



Next, we estimate Bl. Using the inequality
1

M−1 ≤ 2
M for M ≥ 2 as well as (3.5) and (2.8),

we infer

Bl =
l+1�

j=1

|INϕ(j) \ INϕ(j−1)|d2(j+1)κ(2κ − 1)−1(M − 1)−1 + C
|IN2l+1 |

M
ψ(l + 1) + 1

≤ d
2κ

2κ − 12
(l+1)κ 2

M

l+1�

j=1

|IN2j \ IN2j−1 |+ C ψ(l + 1) |IN2l+1 |/M + 1

(3.2)

≤ d2(l+1)κ |IN2l+1 |
M

�
2

1− 2−κ
+ C ψ(l + 1)

�
+ 1

(3.3)

≤ d2(l+1)κ |IN2l+1 |
d |IN |
1−2−κ + 1

�
2

1− 2−κ
+ C ψ(l + 1)

�
+ 1

≤ 2(l+1)κ+1 |IN2l+1 |
|IN |

�
2 + (1− 2−κ)C ψ(l + 1)

�

and this yields

σl ≤ (N2l)−ν �f |Hω(Td)�
�

Bl

≤
�
2 (2 + (1− 2−κ)C ψ(l + 1)) 2ν N−ν �f |Hω(Td)� 2(l+1)(κ

2
−ν)

�
|IN2l+1 |
|IN | .

4 Approximation error for rank-1 lattice sampling and frequency
index sets Id,T

N

Next, we apply the general results from Section 2 and Section 3. Therefor, we use the
index sets I = IN = Id,TN . In the case −∞ ≤ T ≤ 0, we set IN := Id,T

2
d−T
1−T N

1+ d
d−T

, where

IN ⊃ D(Id,TN ), see Lemma 4.2. This means, we cover the difference set D(Id,TN ) with an index

set Id,T

2
d−T
1−T N

1+ d
d−T

of larger refinement 2
d−T
1−T N1+ d

d−T . In the case 0 < T < 1, we set IN :=

D(Id,TN ). Before we estimate the truncation error �f − S
Id,TN

f |L2(Td)� and the aliasing error
�S

Id,TN
f − S̃

Id,TN
f |L2(Td)�, we show preliminary lemmata for the cardinalities and embeddings

of the frequency index sets Id,TN .

Lemma 4.1. Let the dimensionality d ∈ N, and a parameter T , −∞ ≤ T < 1, be given.
Then, the cardinalities of the frequency index sets Id,TN are

|Id,TN | =





Θ(Nd) for T = −∞,

Θ(N
T−1

T/d−1 ) for − ∞ < T < 0,

Θ(N logd−1 N) for T = 0,

Θ(N) for 0 < T < 1,

(4.1)

for fixed d ∈ N.
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Proof. The upper bounds follow from [14, Lemma 2.6] and [15, Section 3.3 Lemma 2]. There-
fore, we still have to discuss the lower bounds.

• Case T = −∞. Since the volume of an l1 ball with radius N is 2d

d!N
d (e.g. see [29]), the

lower bound |Id,−∞
N | = Ω(Nd) follows.

• Case −∞ < T < 0. First, we show Id,−∞
N

1−T
d−T

⊂ Id,TN . For arbitrary k ∈ Id,−∞
N

1−T
d−T

, we have

N
1−T
d−T ≥ max(1, �k�1) = max(1, �k�1)−

T
d−T max(1, �k�1)1+

T
d−T .

Since max(1, �k�1)d ≥ max(1, �k�∞) ≥
�d

s=1max(1, |ks|), we infer

N
1−T
d−T ≥ max(1, �k�1)−

T
d−T

d�

s=1

max(1, |ks|)
1
d
(1+ T

d−T
)

= max(1, �k�1)−
T

1−T
1−T
d−T

d�

s=1

max(1, |ks|)
1

1−T
1−T
d−T

and consequently max(1, �k�1)−
T

1−T
�d

s=1max(1, |ks|)
1

1−T ≤ N . This means, we have

k ∈ Id,TN and therefore we obtain Id,−∞
N

1−T
d−T

⊂ Id,TN . Since we have |Id,−∞
N

1−T
d−T

| ≥ c1(d)N
1−T
d−T

d,

where c1(d) is a constant which only depends on the dimensionality d, we obtain |Id,TN | =
Ω(N

T−1
T/d−1 ) due to |Id,TN | ≥ |Id,−∞

N
1−T
d−T

| ≥ c1(d)N
1−T
d−T

d = c1(d)N
T−1

T/d−1 .

• Case T = 0. For the lower bound |Id,0N | = Ω(N logd−1 N), we refer to [8, Section 5.3].

• Case 0 < T < 1. Since the frequencies on the coordinate axis from −�N� to �N� are
elements of Id,TN , we obtain |Id,TN | ≥ 2d�N�+ 1 ≥ 2d(N − 1) + 1.

These lower bounds yield the assertion.

Lemma 4.2. Let the dimensionality d ∈ N, and a parameter T , −∞ ≤ T ≤ 0, be given. We

consider the difference set D(Id,TN ) :=
�
k� − k : k,k� ∈ Id,TN

�
. Then, we have the inclusion

D(Id,TN ) ⊂ Id,T

2
d−T
1−T N

1+ d
d−T

. (4.2)

Proof. For k ∈ Id,TN , we have max(1, �k�1)−
T

1−T
�d

s=1max(1, |ks|)
1

1−T ≤ N by definition.

Consequently, for k,k� ∈ Id,TN and −∞ ≤ T < 0, we infer

max(1, �k − k��1)
d�

s=1

max(1, |ks − k�s|)−
1
T

≤
�
max(1, �k�1) + max(1, �k��1)

� d�

s=1

�
max(1, |ks|) + max(1, |k�s|)

�− 1
T

≤
�
max(1, �k�1) + max(1, �k��1)

�
2−

d
T

d�

s=1

max(1, |ks|)−
1
T max(1, |k�s|)−

1
T

≤ 2−
d
T N− 1−T

T

�
d�

s=1

max(1, |k�s|)−
1
T +

d�

s=1

max(1, |ks|)−
1
T

�
.
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Next, we estimate dominating mixed smoothness by isotropic smoothness. Since we have�d
s=1max(1, |ks|) ≤ max(1, �k�∞)d ≤ max(1, �k�1)d for k ∈ Zd, we obtain

d�

s=1

max(1, |ks|)−
1
T =

d�

s=1

max(1, |ks|)
1

d−T

d�

s=1

max(1, |ks|)−
1
T
− 1

d−T

≤ max(1, �k�1)
d

d−T

d�

s=1

max(1, |ks|)−
d

T (d−T )

=

�
max(1, �k�1)−

T
1−T

d�

s=1

max(1, |ks|)
1

1−T

�− 1−T
T

d
d−T

≤ N− 1−T
T

d
d−T

and analogously
�d

s=1max(1, |k�s|)−
1
T ≤ N− 1−T

T
d

d−T . For T = 0, we have

d�

s=1

max(1, |ks − k�s|) ≤ 2d
d�

s=1

max(1, |ks|)
d�

s=1

max(1, |k�s|) ≤ 2d N2.

These results yield

max(1, �k − k��1)−
T

1−T

d�

s=1

max(1, |ks − k�s|)
1

1−T ≤ 2
d−T
1−T N1+ d

d−T for all k,k� ∈ Id,TN

and inclusion (4.2) follows.

4.1 Truncation error

We estimate the truncation error �f − S
Id,TN

f |L2(Td)�, since this error is part of the approx-
imation error �f − S̃

Id,TN
f |L2(Td)� and since we also need the result as a prerequisite for

Theorem 3.4. First, we show Hα,β(Td) ⊂ L2(Td) for β ≥ 0 and α > −β.

Lemma 4.3. Let the parameter α, β ∈ R, β ≥ 0, α > −β be given. Then, Hα,β(Td) ⊂ L2(Td).

Proof. In the case α ≥ 0, we obviously have ωα,β(k)1 for all k ∈ Zd. In the case α < 0, due

to

d�

s=1

max(1, |ks|) ≤ max(1, �k�1)d for k ∈ Zd and β + α
d > α+ β > 0, we infer

ωα,β(k) := max(1, �k�1)α
d�

s=1

max(1, |ks|)β ≥
d�

s=1

max(1, |ks|)β+
α
d ≥ 1 for all k ∈ Zd.

Consequently, we obtain

�f |L2(Td)� =
��

k∈Zd

|f̂k|2 ≤
��

k∈Zd

ωα,β(k)2|f̂k|2 = �f |Hα,β(Td)� < ∞

for an arbitrarily chosen function f ∈ Hα,β(Td).

Next, we estimate the truncation error �f − S
Id,TN

f |L2(Td)�. The following lemma is a
special case of [14, Lemma 3.5].
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Lemma 4.4. Let the dimensionality d ∈ N, a function f ∈ Hα,β(Td) and the d-dimensional

index set Id,TN of refinement N ∈ R, N ≥ 1, be given, where β ≥ 0, α > −β and T := −α/β.
Then, the truncation error is bounded by

�f − S
Id,TN

f |L2(Td)� ≤ N−(α+β) �f |Hα,β(Td)�.

Proof. We set ω(k) := ωα,β(k), ν := α+ β and IN := Id,TN . Since T := −α/β, the conditions
β ≥ 0 and α > −β ensure that −∞ ≤ T < 1. From Lemma 4.3, we obtainHα,β(Td) ⊂ L2(Td).

Next, we apply Lemma 3.3. Due to ω(k)1/ν = max(1, �k�1)
α

α+β
�d

s=1max(1, |ks|)
β

α+β =

ω− T
1−T

, 1
1−T (k), we obtain �f − SIN f |L2(Td)� ≤ N−ν �f |Hω(Td)� = N−(α+β) �f |Hα,β(Td)�.

4.2 Aliasing error

We are going to apply Theorem 3.4 for the frequency index sets IN = Id,TN in order to estimate
the aliasing error �SIN f − S̃IN f |L2(Td)�. Therefor, we show that condition (3.4) is fulfilled
for the frequency index sets Id,TN of refinements N ∈ R, N ≥ 2, and parameters −∞ ≤ T < 1.

4.2.1 Cases −∞ ≤ T ≤ 0

Lemma 4.5. Let the dimensionality d ∈ N, d ≥ 2, a parameter T , −∞ ≤ T ≤ 0, and M ∈ N,
M ≥ 2, be given. Then, we have

|{m ∈ Id,T

N 2
(l+1)(1+ d

d−T
)
: ∃m� ∈ Zd such that m =Mm�}| ≤ CA(d, T ) |Id,T

N 2
(l+1)(1+ d

d−T
)
|/M + 1

for all refinements N ∈ R, N ≥ 1, and levels l ∈ N ∪ {0}, where CA(d, T ) ≥ 1 is a constant
which only depends on d and T .

Proof. We denote Ad,T

N 2
(l+1)(1+ d

d−T
)
:= {m ∈ Id,T

N 2
(l+1)(1+ d

d−T
)
: ∃m� ∈ Zd such that m = Mm�}

and we group the indices m ∈ Ad,T

N 2
(l+1)(1+ d

d−T
)
, where all components are zero, exactly one

component is non-zero, . . . , d−1 components are non-zero, and all d components are non-zero.
For t = 0, . . . , d, we denote

Ad,T

N 2
(l+1)(1+ d

d−T
)
,t
:=

�
m ∈ Ad,T

N 2
(l+1)(1+ d

d−T
)
: exactly t components of m are non-zero

�
.

• Case t = 0. We have Ad,T

N 2
(l+1)(1+ d

d−T
)
,0
= {0}.

• Case 1 ≤ t ≤ d. If exactly the components mi1 , . . . ,mit of m ∈ Ad,T

N 2
(l+1)(1+ d

d−T
)
are

17



non-zero, i1, . . . , it ∈ {1, . . . , d}, ij �= ij� for j �= j�, we have

ω− T
1−T

, 1
1−T (m)

= max
�
1,M(|m�

i1 |+ . . .+ |m�
it |)

�− T
1−T

t�

τ=1

max(1,M |m�
iτ |)

1
1−T

= M− T
1−T max(1, |m�

i1 |+ . . .+ |m�
it)

− T
1−T M

t
1−T

t�

τ=1

max(1,M |m�
iτ |)

1
1−T

= M
t−T
1−T ω− T

1−T
, 1
1−T (m�) ≤ N 2(l+1)(1+ d

d−T
) ⇐⇒ ω− T

1−T
, 1
1−T (m�) ≤ N 2(l+1)(1+ d

d−T
)

M
t−T
1−T

.

Since there are
�
d
t

�
choices for the non-zero components, we have

����A
d,T

N 2
(l+1)(1+ d

d−T
)
,t

���� =
�
d

t

�
·





O
��

N 2(l+1)

M

�t�
for T = −∞,

O




�
N 2

(l+1)(1+ d
d−T

)
� T−1

T/t−1

Mt


 for − ∞ < T < 0,

O
��

N 2(l+1)2

Mt

�
logt−1

�
N 2(l+1)2

Mt

��
for T = 0,

for fixed d ∈ N.

This means

• for T = −∞

|Ad,−∞
N 2l+1 | ≤ 1 +

d�

t=1

�
d

t

�
C1(d)

�
N 2(l+1)

M

�t

≤ 1 + (N 2(l+1))d

M
C1(d) (2

d − 1)

≤ 1 +
|Id,−∞
N 2l+1 |
M

C1(d)

c1(d)
(2d − 1)

due to |Id,−∞
N 2l+1 | ≥ c1(d)(N 2(l+1))d as stated in Lemma 4.1,

• for −∞ < T < 0

����A
d,T

N 2
(l+1)(1+ d

d−T
)

���� ≤ 1 +
d�

t=1

�
d

t

�
C2(d)

�
N 2(l+1)(1+ d

d−T
)

M
t−T
1−T

� T−1
T/t−1

= 1 +

d�

t=1

�
d

t

�
C2(d)

�
N 2(l+1)(1+ d

d−T
)
� t(1−T )

t−T

M t

≤ 1 + C2(d)

�
N 2(l+1)(1+ d

d−T
)
� d(1−T )

d−T

M
(2d − 1)

≤ 1 +
C2(d)

c1(d)

����I
d,T

N 2
(l+1)(1+ d

d−T
)

����
M

(2d − 1)

18



due to |Id,T
N 2

(l+1)(1+ d
d−T

)
| ≥ c1(d)

�
N 2(l+1)(1+ d

d−T
)
� T−1

T/d−1
= c1(d)

�
N 2(l+1)(1+ d

d−T
)
� d(1−T )

d−T

as stated in Lemma 4.1,

• for T = 0

���Ad,0

N 2(l+1)2

��� ≤ 1 +
d�

t=1

�
d

t

�
C3(d)

�
N 2(l+1)2

M t

�
logt−1

�
N 2(l+1)2

M t

�

≤ 1 + C3(d)
N 2(l+1)2

M
logd−1

�
N 2(l+1)2

�
(2d − 1)

≤ 1 +

���Id,0
N 2(l+1)2

���
M

C3(d)

c3(d)
(2d − 1)

due to
���Id,0
N 2(l+1)2

��� ≥ c3(d)N 2(l+1)2 logd−1
�
N 2(l+1)2

�
as stated in Lemma 4.1.

We set

CA(d, T ) := (2
d − 1) ·





C1(d)/c1(d) for T = −∞,

C2(d)/c1(d) for −∞ < T < 0,

C3(d)/c3(d) for T = 0,

and this yields the assertion.

Lemma 4.6. Let the dimensionality d ∈ N, d ≥ 2 and a function f ∈ Hα,β(Td), where
α, β ≥ 0 and α > d(12 − β). Then, the function f has an absolutely converging Fourier series,

�

k∈Zd

|f̂k| < ∞.

Proof. Applying the Cauchy-Schwarz inequality yields

�

k∈Zd

|f̂k| =
�

k∈Zd

ωα,β(k)

ωα,β(k)
|f̂k| ≤

��

k∈Zd

1

ωα,β(k)2

��

k∈Zd

ωα,β(k)2|f̂k|2

=

��

k∈Zd

1

max(1, �k�1)2α
�d

s=1max(1, |ks|)2β
�f |Hα,β(Td)�.

Due to
�d

s=1max(1, |ks|) ≤ max(1, �k�1)d for k ∈ Zd, we infer

�

k∈Zd

|f̂k| ≤

�����

k∈Zd

d�

s=1

1

max(1, |ks|)2(β+
α
d
)
�f |Hα,β(Td)�

=
�
1 + 2 ζ

�
2
�
β +

α

d

��� d
2 �f |Hα,β(Td)�,

where ζ is the Riemann zeta function. Since β ≥ 0 and α > d(12 − β), we obtain 2
�
β + α

d

�
>

2
�
β + 1

2 − β
�
= 1. Due to this and since f ∈ Hα,β(Td), we infer

�
k∈Zd |f̂k| < ∞.
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Theorem 4.7. Let the dimensionality d ∈ N, d ≥ 2, a function f ∈ Hα,β(Td) and a refinement
N ∈ R, N ≥ 2 be given, where β ≥ 0, α ≥ 0,

α+ β >

�
1 +

d

d − T

�
T − 1

T/d − 1
1

2
(4.3)

and the parameter T := −α/β. Additionally, let a prime number M ∈ N,

M >

d

����I
d,T

2
d−T
1−T N

1+ d
d−T

����
1− 2−κ

+ 1, (4.4)

be given, where we set the parameter κ := α + β − (1 + d
d−T )

T−1
T/d−1

1
2 . Then, there exists a

reconstructing rank-1 lattice Λ(z,M, Id,TN ) with generating vector z := (1, a, . . . , ad−1)� ∈ Zd

of Korobov form and nodes xj :=
j
M z mod 1, j = 0, . . . ,M − 1, such that the aliasing error

is bounded by

�S
Id,TN

f − S̃
Id,TN

f |L2(Td)� ≤ C(d, α, β) N−(α+β) �f |Hα,β(Td)�,

where C(d, α, β) > 0 is a constant which only depends on d, α, β.

Proof. We are going to apply Theorem 3.4. Therefore, we set ω(k) := ωα,β(k), ν := α+β and

IN := Id,TN . Due to d ≥ 2, α ≥ 0 and β ≥ 0, we have
�
1 + d

d−T

�
T−1
T/d−1

1
2 =

d
2
2dβ+α
dβ+α

α+β
dβ+α > 0

and consequently, ν = α + β > 0 follows from condition (4.3). From Lemma 4.3, we obtain

Hα,β(Td) ⊂ L2(Td). Furthermore, we obtain D(Id,TN ) ⊂ Id,T

2
d−T
1−T N

1+ d
d−T

from Lemma 4.2. Thus,

we set IN := Id,T

2
d−T
1−T N

1+ d
d−T

for all N ∈ R, N ≥ 1. Applying Lemma 4.5, we infer

|{m ∈ IN2l : ∃m� ∈ Zd such that m =Mm�}|
= |{m ∈ Id,T

2
d−T
1−T N

1+ d
d−T 2

l(1+ d
d−T

)
: ∃m� ∈ Zd such that m =Mm�}|

≤ CA(d, T )

����I
d,T

2
d−T
1−T N

1+ d
d−T 2

l(1+ d
d−T

)

����
M

+ 1 for all l ∈ N.

In order to apply Lemma 4.6, we first show α > d
2 − dβ. Due to (4.3), we have α + β >

d
2
2dβ+α
dβ+α

α+β
dβ+α . This is equivalent to the condition 2(dβ + α)2 > d(2dβ + α) since dβ + α ≥

α + β > 0. Due to 2dβ ≥ dβ, we obtain 2(dβ + α)2 > d(dβ + α). Consequently, we have
α > d

2 − dβ such that we can apply Lemma 4.6 and we obtain that f has an absolutely
converging Fourier series, whereby f has a point-wise convergent Fourier series.
Next, we apply Theorem 3.4 with ψ ≡ 1 and we obtain that there exists a reconstructing
rank-1 lattice Λ(z,M, IN ) with generating vector z := (1, a, . . . , ad−1)� ∈ Zd of Korobov
form, such that the aliasing error is bounded by

�SIN f − S̃IN f |L2(Td)� ≤ 2α+β N−(α+β) �f |Hα,β(Td)�

·
∞�

l=0

2(l+1)(κ
2
−(α+β))

�
|IN2l+1 |
|IN |

�
2 (2 + (1− 2−κ)CA(d, T )).
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• Case T = −∞, i.e., β = 0 and α > d
2 . Due to�

|I
N2l+1 |
|IN | =

�
|Id,−∞

2N2l+1 |
|Id,−∞

2N | ≤
�

C1(d)
c1(d)

�
2d Nd 2(l+1)d

2d Nd =
�

C1(d)
c1(d)

2(l+1) d
2 by Lemma 4.1, where

c1(d) and C1(d) are constants which only depend on d, we obtain

∞�

l=0

2(l+1)(κ
2
−α)

�
|IN2l+1 |
|IN | ≤

�
C1(d)

c1(d)

∞�

l=0

2(l+1)(−α
2
+ d

4
)

=

�
C1(d)

c1(d)

2−
α
2
+ d

4

1− 2−α
2
+ d

4

=: �C(d, α, 0).

• Case −∞ < T < 0, i.e., β > 0, α > d
�
1
4 +

1
4

√
8β + 1− β

�
. Due to

�
|IN2l+1 |
|IN | =

��������

�����I
d,T

2
d−T
1−T (N2l+1)

1+ d
d−T

�����
����I

d,T

2
d−T
1−T N

1+ d
d−T

����
≤

�
C2(d)

c1(d)

�������

�
2

d−T
1−T N1+ d

d−T 2(l+1)(1+ d
d−T

)
� T−1

T/d−1

�
2

d−T
1−T N1+ d

d−T

� T−1
T/d−1

=

�
C2(d)

c1(d)
2
(l+1)(1+ d

d−T
) T−1
T/d−1

1
2

by Lemma 4.1, where c1(d) and C2(d) are constants which only depend on d, and since
we have (−α+β

2 + 1
4(1 +

d
d−T )

T−1
T/d−1) < 0 by property (4.3), we obtain

∞�

l=0

2(l+1)(κ
2
−(α+β))

�
|IN2l+1 |
|IN | ≤

�
C2(d)

c1(d)

∞�

l=0

2
(l+1)(−α+β

2
+ 1

4
(1+ d

d−T
) T−1
T/d−1

)

=

�
C2(d)

c1(d)

2
−α+β

2
+ 1

4
(1+ d

d−T
) T−1
T/d−1

1− 2−
α+β
2

+ 1
4
(1+ d

d−T
) T−1
T/d−1

=: �C(d, α, β).

• Case T = 0, i.e., β > 1 and α = 0. Due to

�
|IN2l+1 |
|IN | ≤

�
C3(d)

c3(d)

����2d N2 22(l+1)
�
log(2d N2 22(l+1))

�d−1

2d N2 (log(2d N2))
d−1

=

�
C3(d)

c3(d)
2l+1

�
log(2d N2) + log(22(l+1))

log(2d N2)

� d−1
2

≤
�

C3(d)

c3(d)
2l+1

�
2 log(22(l+1))

� d−1
2
=

�
C3(d)

c3(d)
(2 log 2)

d−1
2 2l+1 (2l + 2)

d−1
2

by Lemma 4.1, where c3(d) and C3(d) are constants which only depend on d, we have

∞�

l=0

2(l+1)(κ
2
−(α+β))

�
|IN2l+1 |
|IN | ≤

�
C3(d)

c3(d)
(2 log 2)

d−1
2

∞�

l=0

(2l + 2)
d−1
2

2(l+1)β−1
2

.
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Since β > 1, the term
∞�

l=0

(2l + 2)
d−1
2

2(l+1)β−1
2

< ∞ and we are going to estimate this sum. The

function g : [0,∞)→ R, g(l) := (2l+2)
d−1
2

2(l+1)
β−1
2

, has its only maximum at

lmax := max(0,
d − 1

(β − 1)loge 2
− 1)

and we estimate

∞�

l=0

(2l + 2)
d−1
2

2(l+1)β−1
2

=

∞�

l=0

g(l) ≤
�lmax��

l=0

g(l) +

∞�

l=�lmax�
g(l)

≤ g(lmax) +

�lmax��

0

g(l)dl + g(lmax) +

∞�

�lmax�

g(l)dl ≤ 2 g(lmax) +

∞�

0

g(l)dl

≤ 2max

�
2

d−1
2

2
β−1
2

,

�
2(d − 1)

(β − 1) e loge 2

� d−1
2

�
+
(d − 1) ( 4

(β−1)loge 2
)
d−1
2 Γ(d−1

2 ) + 2
d+2−β

2

(β − 1)loge 2
=: �C(d, 0, β).

These estimates yield

�SIN f−S̃IN f |L2(Td)� ≤
�
2 (2 + (1− 2−κ)CA(d, T )) �C(d, α, β) 2α+β

� �� �
:=C(d,α,β)

N−(α+β) �f |Hα,β(Td)�.

4.2.2 Cases 0 < T < 1

Lemma 4.8. Let the dimensionality d ∈ N, d ≥ 2, a parameter T , 0 < T < 1, a parameter

κ > 0, and a number M ∈ N, M >
d |D(Id,TN )|
1−2−κ + 1 be given. Then, we have

|D(Id,T
N2l+1) ∩ MZd| ≤ CA(d, T )

|D(Id,T
N2l+1)|
M

(l + 1)d−1 + 1

for all refinements N ∈ R, N ≥ 1, and levels l ∈ N ∪ {0}, where CA(d, T ) ≥ 1 is a constant
which only depends on d and T .

Proof. For 0 ≤ T < 1, we denote

Ad,T
N,t := {m ∈ D(Id,TN ) ∩ MZd : exactly t components of m are non-zero}, t = 0, . . . , d.

Then, we have D(Id,TN ) ∩ MZd =
�d

t=0 A
d,T
N,t and |D(Id,TN ) ∩ MZd| = �d

t=0 |A
d,T
N,t|. Next, we

estimate |Ad,T
N,t| for t = 0, . . . , d.

• Case t = 0. Obviously, we have Ad,T
N2l+1,0

= {0} and |Ad,T
N2l+1,0

| = 1.
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• Case t = 1. |Ad,T
N2l+1,1

| ≤ d 2N2l+1

M < 2d
|Id,T

N2l+1 |
M < 2d|D(Id,T

N2l+1)|/M .

• Case 2 ≤ t ≤ d. Due to [14, Lemma 2.3] with �T := 0, we have Id,TN ⊂ Id,0

d
T

1−T N
, N ∈ R,

N ≥ 1, and consequently, we infer
�
D
�
Id,T
N2l+1

�
∩ MZd

�
⊂
�
D
�
Id,0

d
T

1−T N2l+1

�
∩ MZd

�

as well as

Ad,T
N2l+1,t

⊂ Ad,0

d
T

1−T N2l+1,t
⊂ Ad,0

2d(d
T

1−T N2l+1)2,t
= Ad,0

2dd
2T
1−T N2 22(l+1),t

,

where Ad,0
N,t :=

�
m ∈ Id,0N ∩ MZd : exactly t components of m are non-zero

�
.

From the proof of Lemma 4.5 and since |D(Id,TN )| ≥ (2N + 1)2 > N2, we obtain

���Ad,T
N2l+1,t

��� ≤
����A

d,0

2dd
2T
1−T N2 22(l+1),t

����

≤ C3(d)

�
d

t

�
2dd

2T
1−T N2 2(l+1)2

M t
logt−1

2

�
2dd

2T
1−T N2 2(l+1)2

M t

�

≤ C3(d)

�
d

t

�
2dd

2T
1−T

|D(Id,T
N2l+1)|

M M t−1
logt−1

2

�
2dd

2T
1−T

2(l+1)2

M t−1

�

≤ C3(d)

�
d

t

�
2dd

2T
1−T

|D(Id,T
N2l+1)|

M M t−1

�
log2

�
2dd

2T
1−T

�
+ log2 2

(l+1)2
�t−1

≤ C3(d)

�
d

t

�
2d+t−1d

2T
1−T logt−1

2

�
2dd

2T
1−T

� |D(Id,T
N2l+1)|
M

�
2(l + 1)

M

�t−1

≤ C3(d) 2
2d−1d

2T
1−T logd−1

2

�
2dd

2T
1−T

� |D(Id,T
N2l+1)|
M

(l + 1)d−1

�
d

t

�
.

Consequently, this yields

|D(Id,T
N2l+1) ∩ MZd| ≤ C3(d) 2

2d−1d
2T
1−T logd−1

2

�
2dd

2T
1−T

� |D(Id,T
N2l+1)|
M

(l + 1)d−1 + 1.

Lemma 4.9. Let the dimensionality d ∈ N, d ≥ 2 and a function f ∈ Hα,β(Td), where
0 > α > 1

2 − β. Then, the function f has an absolutely converging Fourier series,

�

k∈Zd

|f̂k| < ∞.

Proof. As in the proof of Lemma 4.6, we apply the Cauchy-Schwarz inequality and obtain

�

k∈Zd

|f̂k| ≤
��

k∈Zd

1

max(1, �k�1)2α
�d

s=1max(1, |ks|)2β
�f |Hα,β(Td)�.
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Due to max(1, �k�1) ≤ 2d
�d

s=1max(1, |ks|) for k ∈ Zd, we infer

�

k∈Zd

|f̂k| ≤

�����

k∈Zd

2−dα

d�

s=1

1

max(1, |ks|)2(β+α)
�f |Hα,β(Td)�

= 2−
dα
2 (1 + 2 ζ (2(α+ β)))

d
2 �f |Hα,β(Td)�.

Since we have 2(α+ β) > 1 and f ∈ Hα,β(Td), we obtain
�

k∈Zd |f̂k| < ∞.

Theorem 4.10. Let the dimensionality d ∈ N, d ≥ 2, a function f ∈ Hα,β(Td) and a
refinement N ∈ R, N ≥ 2 be given, where α < 0 and β > 1 − α. Additionally, let a prime
number M ∈ N,

M >
d |D(Id,TN )|
1− 2−κ

+ 1, (4.5)

be given, where the parameter T := −α/β and the parameter κ := α+β−1. Then, there exists
a reconstructing rank-1 lattice Λ(z,M, Id,TN ) with generating vector z := (1, a, . . . , ad−1)� ∈
Zd of Korobov form and nodes xj :=

j
M z mod 1, j = 0, . . . ,M − 1, such that the aliasing

error is bounded by

�S
Id,TN

f − S̃
Id,TN

f |L2(Td)� ≤ C(d, α, β) N−(α+β) �f |Hα,β(Td)�,

where C(d, α, β) > 0 is a constant which only depends on d, α, β.

Proof. We are going to apply Theorem 3.4. Therefore, we set ω(k) := ωα,β(k), ν := α + β,

IN := Id,TN and IN := D(Id,TN ). From Lemma 4.3, we obtain Hα,β(Td) ⊂ L2(Td). We apply
Lemma 4.8 and this yields

|{m ∈ IN2l : ∃m� ∈ Zd such that m =Mm�}| = |D(Id,T
N2l
) ∩ MZd|

≤ CA(d, T )
|D(Id,T

N2l
)|

M
ld−1 + 1 for all l ∈ N.

Furthermore, we need the property that f has a point-wise convergent Fourier series. Since
α > 1− β > 1

2 − β, we can apply Lemma 4.9 and obtain that f has an absolutely converging
Fourier series, whereby f has a point-wise convergent Fourier series.
Next, we apply Theorem 3.4 with ψ(l) := ld and we obtain

�SIN f − S̃IN f |L2(Td)�
≤ 2α+β N−(α+β) �f |Hα,β(Td)�

·
∞�

l=0

2(l+1)(κ
2
−(α+β))

�
|IN2l+1 |
|IN |

�
2 (2 + (1− 2−κ)CA(d, T ) (l + 1)d−1).

Due to |IN2l+1 | = |D(Id,T
N2l+1)| ≤

�
C4(d)N 2l+1

�2
and |IN | = |D(Id,TN )| ≥ (2N)2 > N2, where
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C4(d) is a constant which only depends on d, we infer
�

|I
N2l+1 |
|IN | ≤ C4(d) 2

l+1. Then, we obtain

∞�

l=0

2(l+1)(κ
2
−(α+β))

�
|IN2l+1 |
|IN |

�
2 (2 + (1− 2−κ)CA(d, T ) (l + 1)d−1)

<
∞�

l=0

2(l+1)(κ
2
−(α+β)) C4(d) 2

l+1
�
8CA(d, T ) (l + 1)d−1

= C4(d)
�
8CA(d, T )

∞�

l=0

2(l+1)(α+β−1
2

−(α+β)+1) (l + 1)
d−1
2

= C4(d)
�
8CA(d, T )2

− d−1
2

∞�

l=0

(2l + 2)
d−1
2

2(l+1)(α+β−1
2

)

and the term
∞�

l=0

(2l + 2)
d−1
2

2(l+1)(α+β−1
2

)
< ∞ since α+ β > 1. As in the proof of Theorem 4.7 for the

case T = 0 replacing β by α+ β, we infer

C4(d)
�
8CA(d, T ) 2

− d−1
2

�
2 (2 + (1− 2−κ)CA(d, T ))

∞�

l=0

(2l + 2)
d−1
2

2(l+1)α+β−1
2

≤ C4(d)
�
8CA(d, T ) 2

− d−1
2

�
2 (2 + (1− 2−κ)CA(d, T ))

2

�
max

�
2

d−1
2

2
α+β−1

2

,

�
2(d − 1)

(α+ β − 1) e loge 2

� d−1
2

�

+
(d − 1) ( 4

(α+β−1)loge 2
)
d−1
2 Γ(d−1

2 ) + 2
d+2−α+β

2

(α+ β − 1)loge 2




=: �C(d, α, β).

These estimates yield

�SIN f−S̃IN f |L2(Td)� ≤
�
2 (2 + (1− 2−κ)CA(d, T )) �C(d, α, β) 2α+β

� �� �
:=C(d,α,β)

N−(α+β) �f |Hα,β(Td)�.

4.3 Comparison with previous results

In [14], the truncation error �f−S
Id,TN

f |Hr,t(Td)� and aliasing error �S
Id,TN

f−S̃
Id,TN

f |Hr,t(Td)�
were considered for arbitrarily chosen reconstructing rank-1 lattices Λ(z,M, Id,TN ) and func-
tions f ∈ Hα,β+λ(Td), where r, t ∈ R, t ≥ 0, r > −t, β ≥ 0, α > −β, r + t < α+ β, λ > 1/2,
and T := −α−r

β−t . The truncation error was estimated by

�f − S
Id,TN

f |Hr,t(Td)� ≤ N−(α−r+β−t) �f |Hα,β(Td)�

in [14, Lemma 3.5] and for functions f with point-wise convergent Fourier series, the aliasing
error was estimated by

�S
Id,TN

f − S̃
Id,TN

f |Hr,t(Td)� ≤ (1 + 2ζ(2λ)) d2 N−(α−r+β−t) �f |Hα,β+λ(Td)� (4.6)
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in [14], which yields

�f − S̃
Id,TN

f |Hr,t(Td)� ≤
�
1 + (1 + 2ζ(2λ))

d
2

�
N−(α−r+β−t) �f |Hα,β+λ(Td)� (4.7)

for the approximation error, cf. [14, Corollary 3.8]. We remark that a constructive method
for obtaining a reconstructing rank-1 lattice Λ(z,M, I) for a given frequency I ⊂ Zd of finite
cardinality is described in [10]. In the present paper, we were able to improve the estimates

(4.6) and (4.7). We showed that there exists a reconstructing rank-1 lattice Λ(z,M, Id,TN )
with generating vector z := (1, a, . . . , ad−1)� of Korobov form such that we do not have the

dependence on λ for the special cases r = t = 0, α + β > (1 + d
d−(T )−

) (T )−−1
(T )−/d−1

1
2 , where

(T )− := min(0, T ), see Theorem 4.7 and 4.10. However, we do not know a constructive

method for obtaining such a reconstructing rank-1 lattice Λ(z,M, Id,TN ).

In [7], functions from the spaces of generalized mixed Sobolev smoothness

Ht,r
mix(T

d) :=

�
f :

��
k∈Zd

�d

s=1
(1 + |ks|)2t(1 + �k|∞)2r|f̂k|2 < ∞

�
.

and generalized hyperbolic cross frequency index sets I = ΓTN := {k ∈ Zd :
�d

s=1(1 + |kd|) ·
(1+ �k�∞)−T ≤ N1−T } were considered. As sampling nodes xj , the nodes of a (generalized)

sparse grid with sizeM = |ΓTN | were used. We remark that the inclusions Id,T

(N+1)2(T−d)/(1−T ) ⊂
ΓTN ⊂ Id,T

(N+1)d−T/(1−T ) are valid in the cases −∞ ≤ T ≤ 0 and Id,T

(N+1)d−T/(1−T )2−d/(1−T ) ⊂
ΓTN ⊂ Id,T

(N+1)2T/(1−T ) in the cases 0 < T < 1 for d ∈ N and arbitrary refinement N ∈ R,
N ≥ 1, cf. [14, Lemma 2.5]. Furthermore, we obtain from the proof of [14, Lemma 2.5] that
c(d, r, t)�f |Hr,t(Td)� ≤ �f |Ht,r

mix(Td)� ≤ C(d, r, t)�f |Hr,t(Td)�, where

c(d, r, t) :=

�
d−r for r ≥ 0, t ≥ 0,
2r for 0 > r > −t, t > 0,

C(d, r, t) :=

�
2r2dt for r ≥ 0, t ≥ 0,
d−r2dt for 0 > r > −t, t > 0.

For the approximation error (and the aliasing error), it was shown, cf. [7, Lemma 8], that

�f − LΓT
N
f |H0,r

mix(T
d)� � N−(t−r) (logN)d−1 �f |Ht,0

mix(T
d)�,

where LΓT
N
is the interpolation operator on the (generalized) sparse grid, 0 ≤ r < t, t > 1

2 ,

f ∈ Ht,0
mix(Td) and T := r

t . In particular in the case r = 0, the frequency index sets Γ0N are
hyperbolic crosses and the above estimate yields

�f − LΓ0
N
f |L2(Td)� � N−t (logN)d−1 �f |Ht,0

mix(T
d)�,

i.e., there is an additional factor of (logN)d−1 compared to [24, Theorem 2] and (1.4). Sim-
ilarly in [28, 21], where the case r = 0 and sparse grids sampling nodes were considered, it
was proven that the approximation error

�f − LΓ0
N
f |L2(Td)� ≤ C(d)N−β (logN)

d−1
2 �f |H0,β(Td)�,

where C(d) > 0 is a constant which only depends on d, see [21, Theorem 1]. This means,

there is an additional factor of (logN)
d−1
2 compared to [24, Theorem 2] and (1.4). However,
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the sampling schemes in [7, 28, 21] only useM = |I| = Θ(N logd−1 N) many samples, whereas
we require M = Θ(N2 logd−1 N) many samples, see (1.3). The advantage of our approach is

that the computation of the approximated Fourier coefficients
˜̂
fk, k ∈ I, using the sampling

method (1.1) is numerically perfectly stable whereas the computation using the sampling
schemes from [7, 28, 21] may be numerically unstable, cf. [12].

5 Numerical results

In practice, we do not know a method for verifying if a generating vector z :=
(1, a, . . . , ad−1)� ∈ Zd of Korobov form fulfills property (2.8) in Lemma 2.1 for a given re-
constructing rank-1 lattice Λ(z,M, I). Furthermore, we also do not know how to construct
a generating vector z fulfilling property (2.8). However, this special property is crucial for
obtaining the estimate (1.4) by Theorem 4.7 and Theorem 4.10. Consequently, we have only
the upper bounds from Section 4.3 available. Nevertheless, numerical tests performed in [14,
Section 6], which use reconstructing rank-1 lattices Λ(z,M, I) obtained from a constructive
method described in [10], showed that the approximation error �f − S̃

Id,0N
f |L2(Td)� is in

O(N−β) �f |H0,β(Td)� for the functions considered there, which is of optimal order. This
suggests that the aliasing error can also be

�S
Id,0N

f − S̃
Id,0N

f |L2(Td)� � N−β �f |H0,β(Td)�

for reconstructing rank-1 lattices Λ(z,M, I) with generating vectors z which are not neces-
sarily of Korobov form.
Here, we investigate the approximation error more closely and consider the truncation error

and the aliasing error. As in [7] and in [14, Example 6.1], we consider the function

f(x) =

d�

s=1

8
√
6
√
π√

6369π − 4096

�
4 + sgn(xs −

1

2
)
�
sin(2πxs)

3 + sin(2πxs)
4
��

, (5.1)

where �f |L2(Td)� = 1, f ∈ H0, 7
2
−�(Td), � > 0, f /∈ H0, 7

2 (Td), and the Fourier coefficients

f̂k =
d�

s=1

8
√
6
√
π√

6369π − 4096





−12
(ks−3)(ks−1)(ks+1)(ks+3)π for ks ∈ 2Z \ {0},

48i
(ks−4)(ks−2)ks(ks+2)(ks+4)π for ks odd,

4− 4
3π for ks = 0.

As frequency index sets I, we use the symmetric hyperbolic cross index sets I = Id,0N with
different refinements N and as sampling nodes xj , we use the nodes of the reconstructing

rank-1 lattices Λ(z,M, Id,0N ) from [14, Table 6.2] for each index set Id,0N . We remark that
these reconstructing rank-1 lattices do not fulfill the requirements (2.7) and (2.8) of Lemma
(2.1). Nevertheless, we observe for the lattices from [14, Table 6.2] that the truncation errors
dominate the aliasing errors, i.e., �S

Id,0N
f − S̃

Id,0N
f |L2(Td)� ≤ �f − S

Id,0N
f |L2(Td)�. Plots of

the L2(Td) approximation error �f − S̃
Id,0N

f |L2(Td)� are depicted in [14, Figure 6.1a and
6.2a], where it was observed that the approximation error decreases like ∼ N−3.45 in the one-
dimensional case and slightly slower in the multi-dimensional cases. In Figure 5.1 truncation
errors �f − S

Id,0N
f |L2(Td)� and aliasing errors �S

Id,0N
f − S̃

Id,0N
f |L2(Td)� are shown for the
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cases d = 2, . . . , 10. Here, we observe that the aliasing errors �S
Id,0N

f − S̃
Id,0N

f |L2(Td)� are
smaller than the truncation error �f − S

Id,0N
f |L2(Td)� and that the aliasing errors �S

Id,0N
f −

S̃
Id,0N

f |L2(Td)� also decrease faster. We stress the fact that the truncation errors only depend
on the frequency index set Id,0N and do not depend on the sampling sets. The truncation errors
are asymptotically of optimal order. Consequently, the aliasing errors are also of optimal order
— assuming that the trends of the plots is maintained.
In Table 5.1, oversampling factorsM/|Id,0N |, i.e., ratios of the rank-1 lattice sizesM and the

cardinalities of the symmetric hyperbolic cross index sets Id,0N , are shown. These oversampling
factors are less than 100 and still moderate compared to the asymptotic statement O(N) in
(1.3) and (1.2), which is M ∼ |Id,0N |2/ logd−1 N . However, we observe that these oversampling

factors M/|Id,0N | grow for increasing refinements N and fixed dimensionality d.

6 Conclusion

In this paper, we generalized the ideas from [24] in order to improve the estimates for the alias-
ing error �S

Id,TN
f − S̃

Id,TN
f |L2(Td)� from [14] for functions f from the Hilbert spaces Hα,β(Td)

of isotropic and dominating mixed smoothness when using the lattice rule (1.1). We proved

the existence of special reconstructing rank-1 lattices Λ(z,M, Id,TN ) with generating vectors
z := (1, a, . . . , ad−1)� ∈ Zd of Korobov form which yield that the order of the aliasing error
�S

Id,TN
f− S̃

Id,TN
f |L2(Td)� is bounded by the order of the truncation error �f−S

Id,TN
f |L2(Td)�.

The central statement of this paper is Theorem 3.4, which is a generalisation of the ideas of
V. N. Temlyakov, see [24]. We stress the fact that our theorem is quite general and applicable
to a wide range of frequency index sets IN . In order to apply Theorem 3.4 to a given sequence
of frequency index sets IN , N ∈ R, N ≥ 1, we need to choose a nested sequence of index sets
IN , see (3.2), such that the inclusion IN ⊃ D(IN ) is valid, where D(IN ) is the difference set
of IN , cf. Section 2.1. Thereby, IN has to fulfill the following properties:

• The cardinalities |IN | should be close to the cardinalities |D(IN )|. This is crucial for a
small size M of the reconstructing rank-1 lattice Λ(z,M, IN ) used as sampling set, see
(3.3).

• The upper and lower bound of the cardinalities |IN | need to be known and should be
almost of the same order, e.g., gaps of logarithmic order between the upper and lower
bound are managable as demonstrated in Section 4.2.2.

Then, the strategy to bound the aliasing error is analog to the approach in Section 4.2. We re-
mark that we dealt with the difference sets themselves in Section 4.2.2 and set IN := D(Id,TN ),

whereas we covered the difference sets D(Id,TN ) with larger index sets IN := Id,T

2
d−T
1−T N

1+ d
d−T

in

Section 4.2.1.
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Figure 5.1: Truncation errors �f −S
Id,0N

f |L2(Td)� and aliasing errors �S
Id,0N

f − S̃
Id,0N

f |L2(Td)�
of the function f from (5.1) as a function of the refinement N .
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29



d N |Id,0N | M M

|Id,0N | �f − S̃
Id,0N

f |L2(Td)�
2 64 1 377 8 451 6.1 1.1e-06
2 128 3 093 33 283 10.8 1.0e-07
2 256 6 889 132 099 19.2 9.0e-09

3 64 10 113 47 463 4.7 7.2e-06
3 128 24 869 176 603 7.1 5.0e-07
3 256 60 217 753 249 12.5 4.8e-08

4 64 61 889 475 829 7.7 2.6e-05
4 128 164 137 2 244 100 13.7 3.5e-06
4 256 426 193 10 561 497 24.8 2.5e-07

5 64 338 305 3 752 318 11.1 5.5e-05
5 128 958 345 20 645 268 21.5 8.6e-06
5 256 2 644 977 136 178 715 51.5 9.8e-07

6 64 1 709 857 31 829 977 18.6 9.5e-05
6 128 5 137 789 192 757 285 37.5 1.6e-05
6 256 14 977 209 1 400 567 254 93.5 2.3e-06

7 8 198 369 1 059 754 5.3 1.7e-02
7 16 716 985 7 798 320 10.9 3.9e-03
7 32 2 465 613 57 114 640 23.2 7.8e-04

8 8 768 609 6 027 975 7.8 2.0e-02
8 16 2 935 521 49 768 670 17.0 4.9e-03
8 32 10 665 297 359 896 131 33.7 1.0e-03

9 4 688 905 6 898 038 10.0 5.8e-02
9 8 2 910 897 34 112 281 11.7 2.3e-02
9 16 11 693 889 320 144 128 27.4 6.0e-03

10 2 452 709 4 315 343 9.5 2.1e-01
10 4 2 421 009 30 780 958 12.7 6.4e-02
10 8 10 819 089 194 144 634 17.9 2.6e-02

Table 5.1: Cardinalities |Id,0N |, rank-1 lattice sizes M , oversampling factors M

|Id,0N | and approx-

imation errors �f − S̃
Id,0N

f |L2(Td)� of the function f from (5.1) for various values

of d and N .

[2] H.-J. Bungartz and M. Griebel. A note on the complexity of solving Poisson’s equation
for spaces of bounded mixed derivatives. J. Complexity, 15:167 – 199, 1999.

[3] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147 – 269, 2004.

[4] R. Cools, F. Y. Kuo, and D. Nuyens. Constructing lattice rules based on weighted degree
of exactness and worst case error. Computing, 87:63 – 89, 2010.

[5] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-monte
carlo way. Acta Numer., 22:133 – 288, 2013.

[6] V. Gradinaru. Fourier transform on sparse grids: Code design and the time dependent
Schrödinger equation. Computing, 80:1 – 22, 2007.

30



[7] M. Griebel and J. Hamaekers. Fast discrete Fourier transform on generalized sparse
grids. Univ. Bonn, INS Preprint No. 1305, 2013.

[8] K. Hallatschek. Fouriertransformation auf dünnen Gittern mit hierarchischen Basen.
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[149] L. Grasedyck, M. Kluge, and S. Krämer. Alternating Directions Fitting (ADF) of
Hierarchical Low Rank Tensors. Preprint 149, DFG-SPP 1324, October 2013.

[150] F. Filbir, S. Kunis, and R. Seyfried. Effective discretization of direct reconstruction
schemes for photoacoustic imaging in spherical geometries. Preprint 150, DFG-
SPP 1324, November 2013.
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