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Convergence of Alternating Least Squares Optimisation for
Rank-One Approximation to High Order Tensors

Mike Espig *f Aram Khachatryan *
18th November 2014
Abstract

The approximation of tensors has important applications in various disciplines, but it remains an ex-
tremely challenging task. It is well known that tensors of higher order can fail to have best low-rank ap-
proximations, but with an important exception that best rank-one approximations always exists. The most
popular approach to low-rank approximation is the alternating least squares (ALS) method. The conver-
gence of the alternating least squares algorithm for the rank-one approximation problem is analysed in this
paper. In our analysis we are focusing on the global convergence and the rate of convergence of the ALS
algorithm. It is shown that the ALS method can converge sublinearly, Q-linearly, and even Q-superlinearly.
Our theoretical results are demonstrated on explicit examples.

Keywords: tensor format, tensor representation, tensor network, alternating least squares optimisation, or-
thogonal projection method.

1 Introduction

We consider a minimisation problem on the tensor space V = ®Z:1 RR"™+ equipped with the Euclidean inner
product (-, ). The objective function f : ¥V — R of the optimisation task is quadratic

1 |1 1
= | = — (b > —— 1
)= g7z |5 00) = (| 2 =, ™
where b € V. In our analysis, a tensor u € V is represented as a rank-one tensor. The representation of

rank-one tensors is described by the following multilinear map U

d
U:P:=XR" — VY
pn=1

d
(plv"wpd) = U(pla"‘apd) = ®p/t'
p=1

We call a d-tuple of vectors (p1,...,pq) € P a representation system of u if u = U(p1,...,pq). The
tensor b is approximated with respect to rank-one tensors, i.e. we are looking for a representation system
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(p},...,p}) € P such that for

F = foU:P—=YV—=R (2)
1 1
F(p1,...,pa) = T2 3 U1, pa). Uprs - pa)) = (0, U(prs -, pa)
we have
F(pi,...,p;)= min  F(p1,...,pd)- 3)
(p1,---,pa)EP

The range set U (P) is a closed in V, see [6]. Therefore, the approximation problem is well defined. The set of
best rank-one approximations of the tensor b is denoted by

My, :={v € U(P) : v is abest rank-one approximation of b} . @

The alternating least squares (ALS) algorithm [2, 3, 4, 7, 8, 11, 12] is recursively defined. Suppose that the
k-th iterate Bk = (ph,..., p’c}) and the first ;1 — 1 components p]fH, R pﬁﬂ of the (k + 1)-th iterate Bk“
have been determined. The basic step of the ALS algorithm is to compute the minimum norm solution

k+1 . . k+1 k+1 k k
Py = argmmq”e]RWF(p1 vee s Dt Qs Pt - - D)

Thus, in order to obtain Bk"“ from Bk’ we have to solve successively L ordinary least squares problems.

The ALS algorithm is a nonlinear Gauss-Seidel method. The locale convergence of the nonlinear Gauss-Seidel
method to a stationary point p* € P follows from the convergence of the linear Gauss-Seidel method applied
to the Hessian F”(p*) at the limit point p*. If the linear Gauss-Seidel method converges R-linear then there
exists a neighbourhood B(p*) of p* such that for every initial guess p° € B(p*) the nonlinear Gauss-Seidel
method converges R-linear with the same rate as the linear Gauss-Seidel method. We refer the reader to Ortega
and Rheinboldt for a description of nonlinear Gauss-Seidel method [10, Section 7.4] and convergence analysis
[10, Thm. 10.3.5, Thm. 10.3.4, and Thm. 10.1.3]. A representation system of a represented tensor is not
unique, since the map U is multilinear. Consequently, the matrix F”(p*) is not positive definite. Therefore,
convergence of the linear Gauss-Seidel method is in general not ensured. However, the convergence of the
ALS method is discussed in [9, 13, 15, 16]. Recently, the convergence of the ALS method was analysed by
means of Lojasiewicz gradient inequality, please see [14] for more details. The current analysis is not based
on the mathematical techniques developed for the nonlinear Gauss-Seidel method neither on the theory of
Lojasiewicz inequalities, but on the multilinearity of the map U.

Notation 1.1 (IN,,). The set IN,, of natural numbers smaller than n € IN is denoted by

N,:={jeN:1<j<n}
The precise analysis of the ALS method is a quite challenging task. Some of the difficulties of the theoretical

understanding are explained following examples.
Example 1.2. The approximation of b € V by a tensor of rank one is considered, where

T d
b= D A@bj Mz = A >0, bl =1, Q)
j=1 pn=1
bj::
B, = (bjy:1<j<r)eR™*" (1<p<d),



and B?;BH = 1d, see the example in [9, Section 4.3.5]. Let us further assume that vy, = p’f ® plg ®X...Q p§ is
already determined. Corollary 2.4 leads to the recursion

k\ 2
D
pitt = Bidiag | A2 H r (b i) BT pt (k>2), (6)

2 2
lv || [l

n=2 Jj=1,...,r

G1(ph,...pk):=

The linear map Gl(p]f, . ,pf;) € R™>*"™ describes the first micro step p’f ® p’Q‘“ ®...Q® p’; — p’f“ ®

pg ®R...® p’j in the ALS algorithm. The iteration matrix G (p’f ey pg) is independent under rescaling of
the representation system, i.e. Gy(aip1,...,aqpq) = Gi(p1,...,pq) for 1 = szl ay. Further, we can
illustrate the difficulties of the ALS iteration in higher dimensions. For d = 2, the ALS method is given by the
two power iterations

1
k41 . , .
p - 7B1dlag A5) B }p
1 [||p1| ||p2H2 ( 7)1—1,‘..,1« 1|P1

v5.

1
o . 2 T
P2 = {kHQHBQdIag (). B2
P75l

Clearly, if the global minimum by is isolated, i.e. \1 > Ao, then the ALS method converges to by provided that
(vo,b1) # 0, where vy = p? ® pg € V is the initial guess. Further, we have linear convergence

2
tan Z[by 4, k“]’ < (;\j) ‘tané[blu,pﬁ]’ (1<u<2).

Note that in this example the angle Z[by ,,, pllj] is a more natural measure of the error than the usual distance
b1, — pﬁ” For d > 3, the factor Hﬁ;; <bw,pﬁ>2 /||pﬁ||2fr0m Eq. (6) describes the behaviour of the ALS
iteration. Let 1 < j* < r. We say that a term b;- from Eq. (5) dominates at vj, = p’f ®...8 ps if

forallj e Ny :={j e N : 1<j<randj# j*}andall i € Ny. Ifbj» dominates at vy, then the recursion
formula (6) leads to

2
manENj* ()\] HZ;IQ < ]M?pu>)
(/\j* | <bj*u,p,’i>)

<1

tan Z[bye 1, < ftan 2 [t 1,941, ®)

i.e. the first component of the representation system prH is turned towards the direction of b= 1. Note that for
r = 2 the bound for the convergence rate is sharp, i.e.

2
d—1
maneNj* (/\] Hu:Q < ]}Lapu>>

‘tané[bj*l,p’f“]‘ — }tané *1,p1]‘ (r=2). ©
(Aj* Hu:Q <bj*uapﬁ>>
The inequality
d—1 E\4
2 1 (bjeps D) 2
a-2/32. <b‘*1,pk+1> _ MOTT 5w fu/ azfy2 <b-*1,pk>
VA P ogl 0 LL e VA e

<Jﬂ’pu a-2/2 <b k>2 Ry 2< k+1>2
; i1, D - Az (b 1,P
||’Uk||4 A H o5 4 AN AN



shows that bj« also dominates at the successor p’f“ ® p’j ®...Q ps. Further, we have for all j € N«

2

3 (k) i f I A I A OVl LTI
<

djg/A]z* <bj*71,p’1€+1>2 u=2 dﬂQ/)\]z* <bj*u,pﬁ>2 d?/)\?* <bj*,1,plf>2 d?/)\?* <bj*7lap]1€>2.

<1

By analogy for the following micro steps, we have
)\ d—1 b k+1 2 )\ d—1 b k 2
maXjeN;« J Hu=2 < Iy > < MaX;e N J HM:2 < j#’pu>
2 2
d—1 k+1 d—1
()‘j* H,Lzz <bj*u>pu >) (Aj* Hu=2 <bj*uapﬁ>)

Hence, the ALS iteration converges to bj.. Now it is easy to see that

2
d—1
. MaxX;e N« (/\j IT.— <bju’pﬁ>)
lim sup =0

2
Fveo (Aj* | <bj*uapﬁ>)

Therefore, the tangent tan Z[bj ,, pﬁ] converges Q-superlinearly, i.e.

tan Z[bj M,pﬁ]‘ = 0 (Q-superlinearly).

Furthermore, the ALS iteration converges faster for large d. Unfortunately, there is no guarantee that the
global minimum by dominates at vi.. However, in this example it is more likely that a chosen initial guess
dominates at the global minimum. For simplicity let us assume that r = 2 and A\ > Ao. see Eq. (5). Since the
Tucker ranks of b are all equal to 2 and the condition from Eq. (7) does not depend on the norm of the vectors
from the representation system, assume without loss of generality that for p € IN, the representation system of
every initial guess has the following form:

. s
Pulspn) = sin (9) bz + 08 () bty (0 € [0, 7] Ipulipn) | = 1)

If the global minimum dominates at the initial guess, we have for all p € Wy
d_\Q/ )‘% <blu7pu(§0u)>2 > d_\Q/ )‘% <b2u7pu(§0u)>2

A
Stan(p,) < d‘f/—l.
A2

If we define the angle 4,027 u € [O, %] such that

A
tan (gz:j;’u) = d]zl )\—;,

then every initial guess with ¢,, € [0, ¢} M) converges to the global minimum. Furthermore, we have

3

tan(go:l’M) >1 & ‘P:L/,L > 1



1,2

| Pulon) = cos(pp)bu + sin(pu)by.2
. Yu € [0, %]

buJ

Figure 1: The angle ¢ , describes the slice where the global minimum is a point of attraction. Every initial
guess located under the red line £4 will converge to the global minimum. Note that the angle ¢ ., 1s larger

then 7, but interestingly enough ¢j; , —— 7

d—o0 4

i.e. the slice where the global minimum is a point of attraction is more potent then the slice where the local
minimum A\2bs is a point of attraction, see Figure 1 for illustration. But we have for the asymptotic behavior
d—2 Al

tan (cpz’#) = — —1,

m
= Y — =
/\2 d—o0 de’“ d—oo 4’

i.e. for sufficiently large d the slices are practically equal potent.
Example 1.3. In the following example a sublinear convergence of ALS procedure for rank-one approximation
is shown. We will consider the tensor by € V given by

3
bh=Qr+ AP ¢RI+ q2pRg+qRqOp)
pn=1

for some X > 0 and p,q € R™ with ||p|| = ||q|| = 1 and (p, q) = 0. Let us first prove the following statement.
Proposition 1.4. Define v* := ®i:1 p. Then

a) M,={v'}ifA<i
b) |(My| = 2 and v* ¢ M,, if)\>%

Proof. Let vy € M. Since tensor b is symmetric, vy also has to be symmetric. Write vy = C) ®i:1 Prs
where p\ = p + )¢ (this is possible, since (b, ¢ @ ¢ &) ¢) = 0). Now the tuple (C\px, px, px) is a stationary



point of F', therefore
(Idgr @ py @ pa)" b= Cpy

for some C' € R. But
(dg» ® py @ pa)" b= (14 Aa3)p + 2Aaxg,

hence
2oy

. 10
1+)\a§\ a (10

The solutions of (10) are

Straightforward calculations show that for A > % the solutions oy = =+ ”‘Tfl lead to the same value of F’

which is smaller than f(v*). [
Now let A < % and vy = C*pk @ ph @ ... ®p§, with pﬁ = cﬁp + sﬁq, cu’kQ + s]f = 1 and some C* € R.

Define v, . := ( z”’k ) Applying Corollary 2.4, one gets after short calculations the recursion formula
H,

T
Yk+1 = C1 My g My 71k
with some C1 i, € R and
Cok  ASok
My =( & k)
H ( ASaf ACa )
Then for tq i, := 2—: it holds

)\()\ + )C2 LC1 kﬂ + \2 Sk

(11
G+ AZS3 AN+ 1)*62 kS1k CLE

t1 k41 =

Thanks to Corollary 3.16 and Proposition 1.4 we know, that limy,_, oo v* = v* for v* = ®i:1 p, therefore

Jim ¢ =1 (12)
—00
li =0 13
3 o )
for p € N3. From Eq. 12 and 11 one gets
t
limsup 22 = \2 4 A(A+ 1) limsup 52k (14)
k—o00 1,k k—oco S1k
The same way
t
lim sup 22 = )2 + AN+ 1)1imsupsg—’k (15)
k—oo 2k k—oo  S2,k
t
lim sup % = A2+ A\ + 1) limsup =~ Lkt (16)
k—o0 3,k k—o0 S3k

Furthermore, from Eq. (21) we know that

P2k+1 = C2 1Mo P11



with some C3 ;.41 € R and

My = [ 3% AS3
’ /\83’]C )\Cgk )

Simple calculations result in the relation

S2,k+1 53k
=A Clk+1 + Acs i,

S1,k+1 S1,k+1

and hence s s
limsup ~2% = \ + Alim sup —2F— (17)

k—oo Sk k—oo S1k+1
Now let A\ = % Iflim supy,_, Zf: > 1, then from Eq. (14) follows lim sup;,_, o tlt’l'“’:l > 1, hence the conver-
gence of p1 i, to p can not be Q-linearly. If lim supy,_, ., Zf—: < 1, then from Eq. (17) limsupy,_, o, 5133% >1,

so from Eq. (15) lim supy,_, o tg‘::l > 1.
Remark 1.5. ’
a) In fact for A\ = % it holds

. S2 k . S3.k . S1,k+1
limsup —= = limsup — = limsup —— = 1.

k—oo S1k k—oo 52,k k—o0 53,k

b) For \ < % ALS converges g-linearly with the convergence rate

p:%(3)\+)\2+\/(3)\+)\2)2+4)\).

c) The example can be extended to higher dimensions in the following way. Let

d d [p—-1 d
bh=QRr+1> | Reepre K q
p=1 p=1 v=1

v=p+1

with ||p|| = |lq|| and {p,q) = 0. Then v* = ®Z:1 p is the unique best rank-one approximation of by if
and only if A < ﬁ. Furthermore, ALS converges sublinear for A = ﬁ and Q-linear for \ < ﬁ.

Our new convergence results are not obtained by using conventional technics like for the analysis of nonlinear
Gauss-Seidel method or the theory of Lojasiewicz inequalities. Therefore, a detailed convergence approach is
necessary.

2 The Alternating Least Squares Algorithm

In the following section, we recall the ALS algorithm. Where the algorithmic description of the ALS method
is given in Algorithm 1.
Notation 2.1 (L(A, B), P,,,). Let A, B be two arbitrary vector spaces. The vector space of linear maps from
A to B is denoted by

L(A,B):={M :A— B : M is linear} .
Let i, v € Ny with v # u. We define

P,y =R" x - x R™ 1 x R™+ x - x R™1 x R™+ x -+« x R™.



Algorithm 1 Alternating Least Squares (ALS) Algorithm
1: Set k := 1 and choose an initial guess p, = (pi,....ph) € P, Py o =Py and vy := U(p,) # 0.
2: while Stop Condition do
3: Vg, 0 = Vg
4. forl1 < pu<ddo

5:
T
k1 k+1 k k
D b
pﬁ+1 — L@...@L@Ian”@)%@ b (18)
el e [#hea] il
k+1 k+1  k+1 _k k
Bkvlﬁ‘l (P1+ )"'apu+1apu+ 7pu+15'--7pL)
Vkut+l = U(B,WH)
6: end for
T Pppy TPy and 41 :=Ulp, )
8: kE—Ek+1
9: end while

The following map M, , from Lemma 2.2 is important for the analytical understanding of the ALS algorithm.
As Corollary 2.4 shows, the map M, , 1 describes an micro step of the ALS algorithm. Furthermore, there is
an interesting relation between the map M, ,, and rank-one best approximations of the tensor b, see Theorem
2.10.

Lemma 2.2, Let v € Ny, v # p, andp = (D1, s Pv—1Dv41s- - Pu—15Dpt1, - - -, Pd) € Py . There
exists a multilinear map M, , : P, , x 'V — L(]R”“ R™*) such that

My,u(p, b8 = (1 ©.. Py 1D DDyl @ QP @M @ pu1 @ ... @pa) b (19)

for all g, € R™. Further, we have M,, ,,(p

v’ b) = Mg:ll«(p

D, ,:b)

Proof. Follows directly form the multilinearity of the tensor product and elementary calculations. |

Example 2.3. Let p,v € Ny, v # p1, p W= (P1s- s Pv—1:Dvt1s - s Pu—1,Put1s - - -, 0d) € Py, and b be
given in a subspace decomposition, i.e.

Z ZB(“, 7'Ld)®bﬂlu (tu G]Nnu)

11=1 1g=1

A matrix representation of the linear map M, ,, is given by

t1 ty ty tq
FUREE SIS SEE S T TR | R ST

=1 d,=1  iy=1  ig=1 EEN\{p, v}
_ T
= BMF(BMN)BV ,

M, . (B,,

where Be = (be 1, . .. 7b§,t§) € R"¢*% for all ¢ € {u,v} and the entries of the matrix I'(p, u) are defined by

ty—1 tyt+1 tu—1 tu+1
C(p,, i, = Z ) DIEEEED DRI DEEEEE W Z/f(u, v LT (beiepe) -
=1 dy_1=1 dpp1=1 dya=1  dyp=1 dg=1 fE]Nd\{NvV}



Corollary 2.4. Let u € Ny, k > 2, and Pr, = (p]fH, .. ,pﬁ"'i,pu,pﬂﬂ, .. ,ps) € P form Algorithm 1.
With the matrix from Lemma 2.2, the following recursion formula holds:

1
k+1 T _k
D = ——F M M, p,, (20)
H Gk,qu,,ufl H wk Pp
where
2
’““H 1 |
k1|2 k
Gk,,u—l = py H H ’py 9
k+1 k+1 k
Myy = My, 1(pl+ ,...,p”+2,pu+1,...,pd,b).
Proof. We have with Eq. (18) and Lemma 2.2
1
k+1 k+1 k+1 k k+1
p,u+ = Gk; M,uu 1(p1+ 7"'7plu+27pu+17'"7pd7b)pu+17 (21)
» M
1
k+1 T k+1 k+1 k k
Puli = Grol ,HM‘“‘ (7" 7--~,pf2,pu+1,---,pd,b)pu- (22)

Example 2.5. Let vy, = p’f ® p’§ ®@...0 plj and

d

t t
= Z e Z Bli,...ria) ® bpaiys
pn=1

i1=1  ig=l

i.e. the tensor b is given in the Tucker decomposition. From Eq. (18) it follows

plf+1 = 2 Z Z 6(21, id) H < uluppu> by Ji1

Hu 2|| i1=1 ig=1
1 tq tg—1
M’L 7p k
- S B T bl
|| H ”de i1=114q=1 io=1 ig_1=1
1
= Bil'y . Bj g,

ey e IR

where B, = (bmH : 1<, < tu) € Rmxtu, BEBM = IdRty, and the entries of the matrix I'y j, € R xta
are defined by

to tg—1

i 7p . .
[Pl,k]il,id = Z Z B(zl, i) H #” #kH M (1 < <t,1<q < td) .

12=1 ig_1=1



Note that I'y j, is a diagonal matrix if the coefficient tensor 3 € ®i:1 R+ is super- diagonal, see Eq. (6). For
p’; it follows further

1
plé 2 Z 26’17 ,zd)H< uz,upu>bdzd: N2 yd—1 By 1]{;Blp1
H s (1" TT== 7l

and finally
1
k-+1 T pT k
pit! = I - 5 Bil'v k1'1 . By p7-
TT=1 [[2k ]

Let v* = Ap1 ® ... ® pg € M, be a rank-one best approximation of b. Without loss of generality we can
assume that

[Pl = llp2ll = -+~ = llpall = 1 and |[v*[| = A.
Further, let u, v € IN; and

BV ” (p17 co s Pv—1Pv+15- -+ s Pu—1,Pu+1; - - - 7pd) € PI/,;L-

The following two maps are of interest for our analysis:
Vgl gt 5y
(90 90) = V(90 9) =P1®  @Pr1® Gy @ Pt @+ @ Pt ® g @ Pus1 @ -+ @ pa
and
U:8™Ixsm=t —» p
(9o 90) = Ulgwgu) = (V905 9),b) V(9v, 9u),

where S"~1 = {z € R" : ||z| = 1} denotes the sphere in R".
Lemma 2.6. Let j1,v € Ny, g, € S™ ! and 9u € S™u=1 We have

~2f (U(gu,94)) = <(Mu,u<py,wb>)gu,gu> = (U (g, 9):0) = [T (g0 90)|*-
R ——

€L(Rnv R"™)

Proof. Let g, € S™~1, gu € S™u—1 and define (9, 9u) == V(gy,gu)(V(gy,gu))T. It holds U(g,,,gu) =
7(9v, g,)b and

N

F (U9 90) = 5 (U(90:90). (g0, 9)) = (U(9v: 90):b) = 5 (7*(gv, 92)b,b) — (7(gu, 9,2). b)
790, 1)) = (1 9)0,6) = =5 (g )0, B) = =3 (0 (90, ), )
5 (7200, 9000, B) = —5 ({50, 9u)0,7(00, 900) = —3 |0 (g0 )|

2
—> (Vg 90):b)° = —% (Moo, b)) 9m9u>2-

N~ N
—

[\D\»—lw\r—n
—_

10



Remark 2.7. Obviously, the minimisation problem from Eg. (3) is equivalent to the following constrained
maximisation problem: Find v = ®i:1 Py such that for all p € Ny it holds

v,b) = b bject t =1.
(@.) = max (0,b)  subject o |p,

Lagrangian method for constrained optimisation leads us to the following Lagrangian

LA((]L 7(Id):<U(Q1a"' an Z/\ ]-_HQMH )
where q, € R™ and A = (A1, -, )T € R? is the vector of Lagrange multipliers. A rank-one best
approximation v = Ap; ® - - @ pg € My with A € R and ||p,|| = 1 satisfies
0 *
%Lg*(ph oupa) = (M@ pu—1 @IdRrs @ pup @ - ®@pa)’ b— APy =
m
0 1
ox: Ly (p1,--- ,pa) = 3 (1= llpull®) =

Forv € Ny \ {u} it follows that
A= <P1 ®®pdab>a )\pu :MI/#(El”M)b)pIM )\Pu :MZH(BMN’b)pM’

where P, € P, is like in Lemma 2.2. Therefore, \ is a singular value of the matrix MV»M(BV " b) and p,, p,
are the associated singular vectors.

Proposition 2.8. Let v* = A\p; @ - - - @ pg € My, a best approximation of b with ||p1|| = --- = ||pa]| = 1. We
have
J07) = =5l P = =5 (6,0)
2 [|ol> 2 [|o]|>

Proof. Since v* € My we have that v* = I1b, where I := % Furthermore, it holds
(v*,0*) = Ib,v*) = (b, IIv*) = (b,v").
The rest follows from the definition of f, see Eq. (1). |

Remark 2.9. From Proposition 2.8 it follows instantly that the global minimum of the best approximation
problem from Eq. (3) has the largest norm among all other v € My,

Theorem 2.10. Let pi,v € Ny and v* = [|[v*||p1 @ ... @ pg € My, be a rank-one best approximation of b with
Ilp1ll = - -+ = ||pal| = 1. Then ||v*|| is the largest smgular value of My, .(p, o ,b) and p,, p, are the associated
,b).

singular vectors. Furthermore, if v* is isolated, then ||v*|| is a simple smgular value of My, ,(p, v

Proof. Let pu, v € INg. From Lemma 2.6 and Remark 2.7 it follows that ||v*|| is a singular value of
MVM(B,, u’b) and p,, p, are associated singular vectors. Assume that there is a singular value A\ of
M,u(p, u’b) and associated singular vectors ¢, € R™,q, € R™ with A\ > [[v*]. Let a € [0,1]

and B € (0,1] with o®> + 82> = 1. Define further g,(a,3) = g, = ap, + Bg € R™ and
gu(a, B) = g, == ap, + Bg, € R™. We have |lg,|> = [lgu|> = o* + 8% = 1 and with Lemma
2.6 it follows then

—2f(U(9v, 9))

<<My,ﬂ(p b) )gu,9u> << Myu(p, , >apy+5qu,apu+5qu>z
- <aHv Py + BAGy, apy + B, > ( 2”” ||+B2A)

(B#0) N . N 2 N
S0 (@@t + B = 12 = (Mo, , ) posbu) = =270,

11



Consequently, it is
F(U(gu(e, B), gu(er, £))) < f(v*) foralla € [0,1] and 3 € (0,1] with o + 5 =1,

i.e. we can finde a better approximation U (g, (cv, 3), g.(c, B)) of b which is arbitrary close to v*. This
contradicts the fact that v* € M,,.

Additionally, let v* be a isolated rank-one best approximation of b. Assume that there is a singular value A
of My,#(g}’”, b) and associated singular vectors ¢, € R", ¢, € R™* with A = ||[v*||, p,Lqy, and p,Lq,.

Almost like above, let a, 3 € [0, 1] with o + 32 = 1 and consider again g, (o, 3) = ap, + Bq, € R™,
gulo, B) = ap, + Bq, € R™. With Lemma 2.6 it follows

_ 2
“2f(0(g92)) = (20 +52)" = [P = ((Mun(p,, ,00)) Posbu) = =26,
i.e. we have

FU(gu(, B), gu(e, B))) = f(v*) forall o, B € [0,1] with o+ 5% =1.

Therefore, we can finde a approximation U(gy (v, B), gu(cv, B)) of b which is arbitrary close to v* and
F(U(guv(ev, B), gulc, B))) = f(v*). This contradicts the fact that v* is isolated. [

Remark 2.11. The proof of Theorem 2.10 shows that if we have two different best approximations of
b which differ only in two arbitrary components of the representation systems and f(v*) = f(v™),
then there is a complete path between v* and v** described by U(g,(c, ), gu(a, B)) such that

F@*) = f (U(gu(e, B), guler, B))).

3 Convergence Analysis

In the following, we are using the notations and definitions from Section 2. Our convergence analysis is mainly
based on the recursion introduced in Corollary 2.4 and the following Lemma 3.1.

Lemma 3.1. Letk € N, p € N, and vy, ,, = p]fH R ® pﬁﬂ ® pﬁ Q- ® pf}from Algorithm 1. Then

T T T
o (o) P () Moo (her)” AT (o)
I, = . 5 R ® h 5 ® Idpry ® S ® e ® k 5
1 1 1
J#] J#s] [ el

is a orthogonal projection and
Vkyut1 = Uk + b

where 1, == b — v .
Proof. Obviously, 11}, , is a orthogonal projection. Straightforward calculations show that vy , = Il vk,
and vy ;11 = Il ,b. Hence we have vy, ;, + 1Ty ,rg 0 = g b = vk piy1- |

Lemma 3.2. Letk € IN, n € IN;. We have

1(II ,
F k) = F (Orger1) = 2W 23)

12



Proof. Tt follows with Lemma 3.1 that

1 1
fhuy1) = W [2 (ke + Wi puThepuy Ok o+ Wi pu o) — (05 Vg + Hk,u”ﬁﬁ]

1 1
f(Uk) + ||b||2 [ (ke s> Wi ok ) + (kg W b ) — (B, Hk,/ﬂ"k,uﬁ

1 |1
f( ) Hb”z [ <Tk,u7Hku7"ku> <T1€7H7Hk,u7"k7u>:|

L (W ik gas Thoga)

= f(vk,u) -

2 pE
. ——
ie. f(uk,p) — fOrpt1) = %% .

Corollary 3.3. There exists o € R such that f(vy,) o
—00

Proof. Letk € IN and ¢4 € INy,. From Lemma 3.2 and Lemma 3.1 it follows that

Frp) = for) = flka) = Foro) = D F W) = F(0r 1)

IR 2
= TpR Z 1T el ” <0,
pn=0

This shows that (f(vx))rew C R is a descending sequence. The sequence of function values (f(vg))renw is
bounded from below. Therefore, there exist an o € R such that f(vy) P [
—00

Remark 3.4. From the definition of the ALS method it is already clear that (f (Vi ,)) e, ke is a descending
sequence.
Lemma 3.5. Let (vi, ) ke, ucv, C V be the sequence from Algorithm 1. We have

(01 = =757 () = =57 ol a4
forallk € N, u € IN,.
Proof. Letk € IN and px € INy. With Lemma 3.1 it follows
(Vkr Vk) = (i1, Mgy 1b) = (107, 1b,b) = (g yu—1b,b) = (g, b) -
The rest follows from the definition of f, see Eq. (1). |

Corollary 3.6. Let (vi,)rew,uen, C V be the sequence of represented tensors from the ALS algorithm.
Further, let p € Ny and k € IN. The following statements are equivalent:

(a) f(vrpus1) < foru)

(b) ||vk7u+1H2 > Hvk,NHQ

() 1> > [Ipk]I?
I . b,b
(d) cos®(prut1) = cos®(gr,p), where cos?(¢y,,,) = < Mﬁ? >



Proof. Follows direct from Lemma 3.5 and

ok = Nokall® & Gl ™17 = G

Al
where G, > 0 is defined in Corollary 2.4. |

Lemma 3.7. Let (vi)rew C V be the sequence of represented tensors from the ALS method. It holds

[vk+1 — vl —— 0.
k—o0

Proof. Let k € IN. We have

d 2 d 2 d—1
|vg41 — UkHQ = ka,u —Vku-1|] = Z VK, — vk 1| < dz VK1 — Uk,u||2 . (25)
p=1 pn=1 n=0

Since vy ;41 — Vg, = g 7k, see Lemma 3.1, it follows further with Eq. (23) and (25) that

d—1
vers = vell® < 241012 (k1) = F(0r) -
©n=0
With Corollary 3.3 we have (f(vi u+1) — f(vr,)) — 0, hence |[vp41 — vi|| —— 0. [
’ ’ k—o00 k—o00

Definition 3.8 (A(vy), critical points). Let (vi)kew C V be the sequence of represented tensors from Algo-
rithm 1. The set of accumulation points of (vi) ke is denoted by A(vy), i.e.

A(vg) :={v € V : v is an accumulation point of (v)keN } - (26)
The set M of critical points of the optimisation problem from Eq. (2) is defined as follows:
M:={veV:IpeP:v=U{p) AF(p)=0}. 27
Proposition 3.9. The sequence of parameter (p,, i.) ue ke from the ALS algorithm is bounded.
Proof. From the definition of f and Lemma 3.5 it follows that

1 1okl

_ < = <
2 = f(vk,ﬂ) 2 ||b||2 <~ Hvk,p,H — HbH7

i.e. the sequence (||v,k||)uen, kew C Range (U) is bounded. The sequence (||vy k) pew, ke is the product
of the following d sequences (||pl’j||) ren C R™. According to Corollary 3.6 the sequences (|| p]/jH) kel are
monotonically increasing. Since the product [|v,, 1 || is bounded and all sequences (||pf||) e are monotonically
increasing, it follows that all (p/’j) ke are bounded. This means the sequence (p,, ) e, ken is bounded. W

The following statements are proofed in a corresponding article about the convergence of alternating least
squares optimisation in general tensor format representations, please see [5] for more informations regarding
the proofs.

Lemma 3.10 ([5]). We have

k
max F ‘ — 0.
0<u<L—1 H “(p“) k—o0

14



Corollary 3.11 ([5]). Let (Bk)k’G]N be the sequence from Algorithm 1 and F' : P — R from Eq. (2). We have
lim F’ =
el (Bk)

Theorem 3.12 ([5]). Let (vx)rew be the sequence of represented tensors from the ALS method. Every accu-
mulation point of (vi)ren is a critical point, i.e. A(vy) C 9. Further, we have

dist (vg, M) —— 0.
k—o00

Let ¥ € 90 be a critical point and N := szl

of parameter from the ALS algorithm and R € RN~ be a matrix with RT R = Idp~-1 and span(v)+ =
Range (R), i.e. the column vectors of R build an orthonormal basis of the linear space span()*. Then the
block matrix

n, € IN. Further, let (Bk#)kelN,ue]Nd C P be the sequence

Vi=[v R]eRVYN, (v:=0/|7). (28)

is orthogonal, i.e. the columns of the matrix V' build an orthonormal basis of the tensor space V. The following
matrix Ny , € RN is imported in order to describe the rate of convergence for the ALS method:

d
1
®Id®< MkMT>® ® Id,
Gk HGk pn—1 H ok v=p+1

where the matrix WM 1k ME ;. 1s from Corollary 2.4. Further, it follows from Corollary 2.4 that for
, Tk, p— )
the ALS micro step the following equation:

Vg ut1 = Niu Uk p (29)

holds. The tensor vy, and the matrix Ny , are represented with respect to the basis V', i.e

v g
wu = VWhu=[o R]| g = m) (2
Sk,pi=

and

T T
Nk,p, — V(VTN]C’HV) VT — [ v R } |: v Nk,,uy v Nk},p,R :| [ v R ]T.

RT'Ny,v RTNp,.R

The recursion formula (29) leads to the recursion of the coefficient vector

Gt ) _ [ O Nepv o' Ny uR o\ _ [ 0 Nkt chp+ 0" Ny uR sp
k1,1 RT'Ny,v RN ,R Sk RTNy v ¢y + RN uR spp )

Without loss of generality we can assume that [|sy || # 0 and |cy | # 0. Therefore, the following terms are
well defined:

q](CS) — HRTNIWQ Chu + RTNk,uR SIWH 7
& ”Sk,uH

q,(:) _ ’v Niuv ey +v NkuR Sk,u‘
o |ck u|

15



This preconsideration gives a recursion formula for the tangent of the angle between v and vy ;1. We
have

(s>>2
tan® Z[ ] = (RR"wp i1, vkp1) IR vk ® skl (q’w e
AR T T ) (o P () (@) (crg)”
VU™ Uk it 15 Uk, 1 (T vk pg1) e pt-1 (chﬂ> (Chy)
2 2
(s) (s)
Tk, ||RTUIc,u||2 _ Dk

© tan? Z[0, vk ).

2
Q. p (QTUk,u) (<)

k,p

Remark 3.13. Obviously, if the sequence of parameter (ij)kelN C P is bounded, then the set of accumulation
points of (p, Jken is not empty. Consequently, the set A(vy) is not empty, since the map U is continuous.
Theorem 3.14 ([S]). If one accumulation point v € A(vy,) C M is isolated, then we have

v — 0.
k—o00

Furthermore, we have for the rate of convergence of an ALS micro step

[tan Z[0, vy yy1]| < qu [tan Z[0, vy ]|,

where
(s)
: Tk
qyu = limsup ©
k—o00 q L

If g = O, then the sequence (|tan Z[v, v ,.]|), o converges Q- superlinearly. If q,, < 1, then the sequence
([tan Z[0, vy u]|) e converges at least Q- linearly. If q,, > 1, then the sequence ([tan Z[v, vy ,.]|);.cy cON-
verges not Q-linearly.

Remark 3.15. The calculation from Example 1.2 shows that

(s)
q
lim sup bl forall i € INg.

k—o00 ql(:zt

Hence, the ALS algorithm converges here Q-superlinearly. Furthermore, in Example 1.3 we showed for \ < %

(s)
lim sup Gn | _ g <3)\ A2+ /(BN A2 + 4/\) <1 forall p € Ny.

k—o00 ql(CCL

Hence, we have here Q-linear convergence.
Corollary 3.16 ([5]). If the set of critical points M is discrete,' then the sequence of represented tensors
(vk) ke from the ALS method is convergent.

In the following example it will be shown, that the ordering of the indices may play an important role for the
convergence of ALS procedure.
Remark 3.17. Let b= @) _; b1y + A Q) bay, with0 < A < 1,

p € Ney. Let further v° = C ®Z:1 Y for some C € R and

bipll = [1b2ull = 1 and (b1, bay,) = 0 for

Ph = b1y + by (30)

'In topology, a set which is made up only of isolated points is called discrete.

16



forsome o, € R. Assume after each ALS micro step the parameters pﬁ are rescaled to the form (30) (obviously,
a scaling of parameters has no effect on the future behavior of the ALS method). After the first four micro steps
one gets

pi = b1 + Aagasbay
p% = bio + )\204204%()22
p% =bi13+ )\4a§a§b23
p% =bi + )\7043(121)21

So for v% = p% & p% ® p:li one gets
VP = C’(bu + )\7ag’agb21) @ (b13 + N anadbez) @ (bio + )\404%04%1)22)

with some C' € R. Now assume the order of the directions for ALS optimization is changed from (1,2, 3) to
(1,3,2), i.e. after optimizing the first component p% we optimize the third one (i.e. pzl,) ) and only then the second
one (i.e. p% ). The same number of micro steps will result in a tensor

’U% = é(bn + )\7a§’a§b21) (%9 (b13 + )\405304%623) X (b12 + )\QOé%OéngQ)
with some C' € R. Now if ag and a3 satisfy

012212063,

1
3 2 2 3
aH03 > —)\5 > aj03,

then it is not difficult to check, that v% satisfies the dominance condition from Eq. (7) for j = 1, whereas v?
satisfies the dominance condition for j = 2. Thus, with the same starting point v° ALS iteration will converge
to the global minimum ®Z:1 b1, for one ordering of the indices and to local minimum \ ®Z:1 bo,, for another
ordering. Note that vg did not fulfil the dominance conditions, but depending on the ordering of the ALS micro
steps vg leads to different dominance conditions.

4 Numerical Experiments

In this subsection, we observe the convergence behavior of the ALS method by using data from interesting
examples and more importantly from real applications. In all cases, we focus particularly on the convergence
rate.

4.1 Example1

We consider an example introduced by Mohlenkamp in [9, Section 4.3.5]. Here we have

(1) ()+ () (D)=()=(2)

erp:= €eg:=

b= by:=

see Eq. (1). The tensor b is orthogonally decomposable. Although the example is rather simple, it is of
theoretical interest. Since the ALS method converges superlinear, cf. the discussion in Section 1. The tensor

17



b has only two terms, therefore the upper bound for convergence rate from Eq. (8) is sharp, cf. Eq. (9). Let
7 > 0, we define the initial guess of the ALS algorithm by

wm=(1)e(7)e(7):
GO = (D) =

we have for 7 < % that the initial guess vo(7) dominates at by. Therefore, the ALS iteration converge to bo. If
T > %, then vo(7) dominates at b; and the sequence from the ALS method will converges to b;. In the first test
the tangents of the angle between the current iteration point and the corresponding parameter of the dominate

term b; (1 <1 < 2)is plotted, i.e.
1 — cos? oy
tangpry = [y, 31)
COS” Ykl

Since

k
where cos ¢y = <ﬁ;;|i> To illustrate the superlinear convergence of the ALS method, we present further
1
plots for the quotient
tan g1
Gkl = —————- (32)
tan (2 k,l
1.0e+000 ——
g T il
1.0e-001 N

1.0e-002 \ \

S 1.0e-003

2

E 1.0e-004

=3

5 \ \

+ 1.0e-005 \ \
1.0e-006 \ \
1.0e-007

1.0e-008

=~ uw

Figure 2: The tangents tan ¢y, o from Eq. (31) is plotted for 7 € {0.4, 0.495, 0.4999}.

4.2 Example 2

Most algorithms in ab initio electronic structure theory compute quantities in terms of one- and two-electron
integrals. In [1] we considered the low-rank approximation of the two-electron integrals. In order to demon-
strate the convergence of the ALS method on an example of practical interest, we use the order 4 tensor for the
two-electron integrals of the so called AO basis for the CH4 molecule. We refer the reader to [1] for a detailed
description our example. In this example the ALS method converges Q-linearly, see Figure 4.
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1.0e+000 ———

1.0e+000

tau=0.5001 —+— tau=0.4999 —+—

~__ tau=0.505 —+— tau=0.495 ——
% tau=0.6 ——

1.0e-001 A

T a0 ——
1.0e-001 A

\ \
1.0e-002 \ 1.0e-002 \

1.0e-003

1.0e-003 :
\ \ \ : \ \
\ \
1.0e-004 \ \ \ 1.0e-004 \
1.0e-005 \ 1.0e-005 \
\ \ \\ \ \
1.0e-006 1.0e-006 \
1.06-007 \

alpha_k,1

alpha_k,2

1.0e-007

\ \
1.0e-008 1.0e-008
1 6 7 8 1

(@) gx,1 is plotted for 7 € {0.5001, 0.505, 0.6}. Here the

(b) gr,2 is plotted for 7 € {0.4999, 0.495, 0.4}. Here the
term b1 dominates at every iteration point.

term b2 dominates at every iteration point.

Figure 3: g;,; from Eq. (32) is plotted for [ € {1, 2} and different values for 7.
4.3 Example 3

We consider the tensor ,

bh=Qr+APRI®I+q2pR¢+qRqp)
pn=1

from Ex. 1.3. The vectors p and ¢ are arbitrarily generated orthogonal vectors with norm 1. The values of

1
tan(np}f) are plotted, where <p/,1C is the angle between p/,lC and the limit point p (i.e. tan go,lg = {pi-a) , for k > 2).

)

For the case A = 0.5 the convergence is sublinearly, whereas for A = 0.2 it is Q-linearly.
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