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On the convergence analysis of the inexact linearly

implicit Euler scheme for a class of SPDEs∗

P.A. Cioica, S. Dahlke, N. Döhring, U. Friedrich, S. Kinzel,
F. Lindner, T. Raasch, K. Ritter, R.L. Schilling

Abstract This paper is concerned with the adaptive numerical
treatment of stochastic partial differential equations. Our method of
choice is Rothe’s method. We use the implicit Euler scheme for the
time discretization. Consequently, in each step, an elliptic equation
with random right-hand side has to be solved. In practice, this cannot
be performed exactly, so that efficient numerical methods are needed.
Well-established adaptive wavelet or finite-element schemes, which are
guaranteed to converge with optimal order, suggest themselves. We
investigate how the errors corresponding to the adaptive spatial dis-
cretization propagate in time, and we show how in each time step the
tolerances have to be chosen such that the resulting perturbed dis-
cretization scheme realizes the same order of convergence as the one
with exact evaluations of the elliptic subproblems.

MSC 2010: Primary: 60H15, 60H35; secondary: 65M22.
Key words: Stochastic evolution equation, stochastic partial differential
equation, Euler scheme, Rothe’s method, adaptive numerical algorithm, con-
vergence analysis.

1 Introduction

This paper is concerned with the numerical treatment of stochastic evolution
equations of the form

du(t) =
�
Au(t) + f(u(t))

�
dt+B(u(t)) dW (t), u(0) = u0, (1)

on the time interval [0, T ] in a real and separable Hilbert space U . Here,
A : D(A) ⊂ U → U is a densely defined, strictly negative definite, self-
adjoint, linear operator such that zero belongs to the resolvent set and the in-
verse A−1 is compact on U . The forcing terms f : D((−A)�) → D((−A)�−σ)

∗This work has been supported by the Deutsche Forschungsgemeinschaft (DFG, grants
DA 360/12-2, DA 360/13-2, DA 360/20-1, RI 599/4-2, SCHI 419/5-2) and a doctoral
scholarship of the Philipps-Universität Marburg.
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and B : D((−A)�) → L(�2, D((−A)�−β)) are Lipschitz continuous maps for
suitable constants �, σ and β; and finally, W = (W (t))t∈[0,T ] is a cylindrical
Wiener process on the sequence space �2 = �2(N). In practical applications,
evolution equations of the form (1) are abstract formulations of stochastic
partial differential equations (SPDEs, for short): Usually A is a differential
operator, f a linear or nonlinear forcing term and B(u(t)) dW (t) describes
additive or multiplicative noise. They are models, e.g., for reaction diffusion
processes corrupted by noise, which are frequently used for the mathemati-
cal description of biological, chemical and physical processes. Details on the
equation, the operators A, the forcing terms f and B and the initial condi-
tion u0 are given in Section 2. Usually, the exact solution of (1) cannot be
computed explicitly, so that numerical schemes for the constructive approxi-
mation of the solutions are needed. For stochastic parabolic equations, there
are two principally different approaches: the vertical method of lines and the
horizontal method of lines. The former starts with an approximation first
in space and then in time. We refer to [23–25, 27] for detailed information.
The latter starts with a discretization first in time and then in space; it is
also known as Rothe’s method. In the stochastic setting, it has been studied,
e.g., in [6, 22]. These references are indicative and by no means complete.

Very often, the vertical method of lines is preferred since, at first sight, it
seems to be a little bit simpler. Indeed, after the disretization in space is per-
formed, just an ordinary finite dimensional stochastic differential equation
(SDE, for short) in time direction has to be solved, and there exists a huge
amount of approaches for the numerical treatment of SDEs. However, there
are also certain drawbacks. In many applications, the utilization of adaptive
strategies to increase efficiency is almost unavoidable. In the context of the
vertical method of lines, the combination with spatial adaptivity is at least
not straightforward. In contrast, for the horizontal method of lines, the fol-
lowing natural approach suggests itself. Using Rothe’s method, the SPDE
can be interpreted as an abstract Cauchy problem, i.e., as a stochastic differ-
ential equation in some suitable function spaces. Then, in time direction we
might use an SDE-solver with step size control. This solver must be based
on an implicit discretization scheme since the equation under consideration
is usually stiff. Consequently, in each time step, an elliptic equation with
random right-hand side has to be solved. To this end, as a second level of
adaptivity, adaptive numerical schemes that are well-established for deter-
ministic equations, can be used. We refer to [9, 10, 15] for suitable wavelet
methods, and to [1–3,5,17–20,28,36,37] for the finite element case. As before,
these lists are not complete.

Although this combination with adaptive strategies is natural, the math-
ematical analysis of the resulting schemes seems to be still in its infancy. In
the stochastic setting, Rothe’s method with exact evaluation of the elliptic
subproblems, has been considered, e.g., in [6, 22], and explicit convergence
rates have been established, e.g., in [12, 13, 26, 35]. First results concern-
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ing the combination with adaptive space discretization methods based on
wavelets have been shown in [31].

Even for the deterministic case, not many results concerning a rigorous
convergence and complexity analysis of the overall scheme seem to be avail-
able. To our best knowledge, the most far reaching achievements have been
obtained in [7]. In this paper, it has been clarified how the tolerances for the
elliptic subproblems in each time step have to be tuned so that the overall
(perturbed) discretization scheme realizes the same order of convergence (in
time direction) as the unperturbed one. Moreover, based on concepts from
approximation theory and function space theory, respectively, a complexity
analysis of the overall scheme has been derived. It is the aim of this paper to
generalize the analysis presented in [7] to SPDEs of the form (1). We mainly
consider the case of the implicit Euler scheme, and we concentrate on the
convergence analysis. To our best knowledge, no result in this direction has
been reported yet. Complexity estimates are beyond the scope of this work
and will be presented in a forthcoming paper.

For reader’s convenience, let us briefly recall the basic approach of [7] for
the deterministic case, confined to the implicit Euler scheme. As a typical
example, let us consider the deterministic heat equation

u�(t) = Δu(t) + f(t, u(t)) on O, t ∈ (0, T ],

u = 0 on ∂O, t ∈ (0, T ],

u(0) = u0 on O,

where O ⊂ Rd, d ≥ 1, denotes a bounded Lipschitz domain. We discretize
this equation by means of a linearly implicit Euler scheme with uniform time
steps. Let K ∈ N be the number of subdivisions of the time interval [0, T ].
The step size will be denoted by τ := T/K, and the k-th point in time is
denoted by tk := τk, k ∈ {0, . . . ,K}. The linearly implicit Euler scheme,
starting at u0, is given by

uk+1 − uk
τ

= Δuk+1 + f(tk, uk),

i.e.,
(I − τΔ)uk+1 = uk + τf(tk, uk), (2)

for k = 0, . . . ,K − 1. If we assume that the elliptic problem

Lτv := (I − τΔ)v = g on O, v|∂O = 0,

can be solved exactly, then one step of the scheme (2) can be written as

uk+1 = L−1
τ Rτ,k(uk), (3)

where
Rτ,k(w) := w + τf(tk, w)
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and Lτ is a boundedly invertible operator between suitable Hilbert spaces.
In practice, the elliptic problems in (3) cannot be evaluated exactly.

Instead, we employ a ‘black box’ numerical scheme, which for any prescribed
tolerance ε > 0 yields an approximation [v]ε of v := L−1

τ Rτ,k(w), where w is
an element of a suitable Hilbert space, i.e.,

�v − [v]ε� ≤ ε,

for a proper norm �·�. What we have in mind are applications of adaptive
wavelet solvers, which are guaranteed to converge with optimal order, as de-
veloped, e.g., in [9], combined with efficient evaluations of the nonlinearities
f as they can be found, e.g., in [11, 16, 30]. In [7] we have investigated how
the error propagates within the linearly implicit Euler scheme and how the
tolerances εk in each time step have to be chosen, such that we obtain the
same order of convergence as in the case of exact evaluation of the ellip-
tic problems. We have shown that the tolerances depend on the Lipschitz
constants CLip

τ,j,k of the operators

Eτ,j,k = (L−1
τ Rτ,k−1) ◦ (L−1

τ Rτ,k−2) ◦ · · · ◦ (L−1
τ Rτ,j),

with 1 ≤ j ≤ k ≤ K, K ∈ N, via

�u(tk)− ũk� ≤ �u(tk)− uk�+
k−1�

j=0

CLip
τ,j+1,k εj ,

where ũk is the solution to the inexactly evaluated Euler scheme at time tk.
Now let us come back to SPDEs of the form (1). Once again, for the

(adaptive) numerical treatment of (1) we consider for K ∈ N and τ := T/K
the linearly implicit Euler scheme

uk+1 = (I − τA)−1
�
uk + τf(uk) +

√
τB(uk)χk

�
,

k = 0, . . . ,K − 1,

�
(4)

with

χk := χK
k :=

1√
τ

�
W

�
tKk+1

�
−W

�
tKk

��
,

where tk := τk, k = 0, . . . ,K. If we set

Rτ,k(w) := w + τf(w) +
√

τB(w)χk, k = 0, . . . ,K − 1,

L−1
τ w := (I − τA)−1w, k = 1, . . . ,K,

the operators being defined between suitable Hilbert spaces Hk and Gk, the
scheme (4) can again be rewritten as

uk+1 = L−1
τ Rτ,k(uk), k = 0, . . . ,K − 1. (5)
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We refer to Section 3 for a precise formulation of this scheme.
Once again the elliptic problems in (5) cannot be evaluated exactly.

Similar to the deterministic setting, we assume that we have at hand a
‘black box’ numerical scheme, which for any required w approximates

v := (I − τA)−1
�
w + f(w) +B(w)χk

�

with a prescribed tolerance ε > 0. What we have in mind are applications
of some deterministic solver for elliptic equations to individual realizations,
e.g., an optimal adaptive wavelet solver as developed in [9], combined with
proper evaluations of the nonlinearities f and B, see, e.g., [11, 16, 30], and
an adequate truncation of the noise. It is the aim of this paper to inves-
tigate how the error propagates within the linearly implicit inexact Euler
scheme for SPDEs (cf. Proposition 4.3) and how the tolerances εk in each
time step have to be chosen, such that we obtain the same order of conver-
gence (in time direction) for the inexact scheme as for its exact counterpart
(cf. Theorem 4.2).

Concerning the setting, we follow [35] and impose rather restrictive con-
ditions on the different parts of Eq. (1). This allows us to focus on our main
goal, i.e., the analysis of the error of the inexact counterpart of the Euler
scheme (4), without spending too much time on explaining details regarding
the underlying setting, cf. Remark 2.12. Compared with [35] we allow the
spatial regularity of the whole setting to be ‘shifted’ in terms of the addi-
tional parameter �. In concrete applications to parabolic SPDEs, this will
lead to estimates of the discretization error in terms of the numerically im-
portant energy norm, cf. Example 2.11, provided that the initial condition
u0 and the forcing terms f and B are sufficiently regular.

A different approach has been presented in [31], where additive noise is
considered, a splitting method is applied, and adaptivity is only used for
the deterministic part of the equation. We remark that the use of spatially
adaptive schemes is useful especially for stochastic equations, where singu-
larities appear naturally near the boundary due to the irregular behaviour
of the noise, cf. [8] and the references therein.

We choose the following outline. In Section 2 we present the setting and
some examples of equations that fit into this setting. In Section 3 we show
how to reformulate the linearly implicit Euler scheme as an abstract Rothe
scheme and derive convergence rates under the assumption that we can
evaluate the subproblems (5) exactly. We drop this assumption in Section 4
and focus on how to choose the tolerances for each subproblem, such that
we can achieve the same order of convergence.

2 Setting

In this section we describe the underlying setting in detail. It coincides with
the one in [35] (‘shifted’ by � ≥ 0). Furthermore we define the solution
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concept under consideration and give some examples of equations, which fit
into this setting.

We start with assumptions on the linear operator in Eq. (1).

Assumption 2.1. The operator A : D(A) ⊂ U → U is linear, densely de-
fined, strictly negative definite and self-adjoint. Zero belongs to the resolvent
set of A and the inverse A−1 : U → U is compact. There exists an α > 0
such that (−A)−α is a trace class operator on U .

To simplify notation, the separable real Hilbert space U is always as-
sumed to be infinite-dimensional. Under the assumption above, it follows
that A enjoys a spectral decomposition of the form

Av =
�

j∈N
λj�v, ej�Uej , v ∈ D(A), (6)

where (ej)j∈N is an orthonormal basis of U consisting of eigenvectors of A
with strictly negative eigenvalues (λj)j∈N such that

0 > λ1 ≥ λ2 ≥ . . . ≥ λj → −∞, j → ∞. (7)

For s ≥ 0 we set

D((−A)s) :=
�
v ∈ U :

∞�

j=1

��(−λj)
s�v, ej�U

��2 < ∞
�
, (8)

(−A)sv :=
�

j∈N
(−λj)

s�v, ej�Uej , v ∈ D((−A)s), (9)

so that D((−A)s), endowed with the norm � · �D((−A)s) := �(−A)s · �U , is a
Hilbert space; by construction this norm is equivalent to the graph norm of
(−A)s.

For s < 0 we define D((−A)s) as the completion of U with respect to the

norm � · �D((−A)s), defined on U by �v�2D((−A)s) :=
�

j∈N
��(−λj)

s�v, ej�U
��2.

Thus, D((−A)s) can be considered as a space of formal sums

v =
�

j∈N
v(j)ej , such that

�

j∈N

��(−λj)
sv(j)

��2 < ∞

with coefficients v(j) ∈ R. Generalizing (9) in the obvious way, we obtain op-
erators (−A)s, s ∈ R, which map D((−A)r) isometrically onto D((−A)r−s)
for all r ∈ R.

The trace class condition in Assumption 2.1 can now be reformulated as
the requirement that there exists an α > 0 such that

Tr(−A)−α =
�

j∈N
(−λj)

−α < ∞. (10)
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Note that any linear operator with a spectral decomposition as in (6) and
eigenvalues as in (7) and (10) fulfills Assumption 2.1. Let us consider a
prime example of such an operator. Throughout this paper, we write L2(O)
for the space of quadratically Lebesgue-integrable real-valued functions on
a Borel-measurable subset O of Rd. Furthermore, L(U1;U2) stands for the
space of bounded linear operators between two Hilbert spaces U1 and U2. If
the Hilbert spaces coincide, we simply write L(U1) instead of L(U1;U1).

Example 2.2. Let O be a bounded open subset of Rd, set U := L2(O) and
let A := ΔD

O be the Dirichlet-Laplacian on O, i.e.,

ΔD
O : D(ΔD

O) ⊆ L2(O) → L2(O)

with domain

D(ΔD
O) =

�
u ∈ H1

0 (O) : Δu :=

d�

i=1

∂2

∂x2
i

u ∈ L2(O)
�
,

where H1
0 (O) stands for the completion in the L2(O)-Sobolev space of or-

der one of the set C∞
0 (O) of infinitely differentiable functions with com-

pact support in O. Note that this definition of the domain of the Dirichlet-
Laplacian is consistent with the definition of D((−ΔD

O)
s) for s = 1 in (8),

see, e.g., [32, Remark 1.13] for details. This linear operator fulfills Assump-
tion 2.1 for all α > d/2: It is well-known that it is densely defined, self-
adjoint, and strictly negative definite. Furthermore it possesses a compact
inverse (ΔD

O)
−1 : L2(O) → L2(O), see, e.g., [21]. Moreover, Weyl’s law states

that
−λj � j2/d, j ∈ N,

see [4], implying that (10) holds for all α > d/2.

Next we state the assumptions on the forcing terms f and B.

Assumption 2.3. For certain smoothness parameters

� ≥ 0, σ < 1 and β <
1− α

2
(11)

(α as in Assumption 2.1), we have

f : D((−A)�) → D((−A)�−σ),

B : D((−A)�) → L(�2;D((−A)�−β)).

Furthermore, f and B are globally Lipschitz continuous, that is, there exist
positive constants CLip

f and CLip
B such that for all v, w ∈ D((−A)�),

�f(v)− f(w)�D((−A)�−σ) ≤ CLip
f �v − w�D((−A)�),

and

�B(v)−B(w)�L(�2;D((−A)�−β)) ≤ CLip
B �v − w�D((−A)�).
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Remark 2.4. (i) The parameters σ and β in Assumption 2.3 are allowed
to be negative.
(ii) Assumption 2.3 follows the lines of [35] (‘shifted’ by � ≥ 0). The linear
growth conditions (3.5) and (3.7) therein follow from the (global) Lipschitz
continuity of the mappings f and B.

Finally, we describe the noise and the initial condition in Eq. (1). For
the notion of a normal filtration we refer to [34].

Assumption 2.5. The noise W = (W (t))t∈[0,T ] is a cylindrical Wiener
process on �2 with respect to a normal filtration (Ft)t∈[0,T ]. The underlying
probability space (Ω,F ,P) is complete. For � as in Assumption 2.3, the
initial condition u0 in Eq. (1) satisfies

u0 ∈ L2(Ω,F0,P;D((−A)�)).

In this paper we consider a mild solution concept. To this end let (etA)t≥0

be the strongly continuous semigroup of contractions on U generated by A.

Definition 2.6. A mild solution to Eq. (1) (in D((−A)�)) is a predictable
process u : Ω× [0, T ] → D((−A)�) with

sup
t∈[0,T ]

E�u(t)�2D((−A)�) < ∞, (12)

such that for every t ∈ [0, T ] the equality

u(t) = etAu0 +

� t

0
e(t−s)Af(u(s)) ds+

� t

0
e(t−s)AB(u(s)) dW (s) (13)

holds P-almost surely in D((−A)�).

Remark 2.7. (i) Let u : Ω × [0, T ] → D((−A)�) be a predictable process
fulfilling (12). Then, the first integral in (13) is meant to be a D((−A)�)-
valued Bochner integral for P-almost every ω ∈ Ω; the second integral is a
D((−A)�)-valued stochastic integral as defined, e.g., in [14, 34]. Both inte-
grals exist due to (12) and Assumptions 2.1 and 2.3. For example, consider-
ing the stochastic integral in (13), we know that it exists as an element of
L2(Ω,Ft,P;D((−A)�)) if the integral

� t

0
E
��e(t−s)AB(u(s))

��2
LHS(�2;D((−A)�))

ds (14)

is finite, where LHS(�2;D((−A)�)) denotes the space of Hilbert-Schmidt op-
erators from �2 to D((−A)�). The integrand in (14) can be estimated from
above by

Tr(−A)−α
��(−A)β+α/2e(t−s)A

��2
L(D((−A)�))

E
��(−A)−βB(u(s))

��2
L(�2;D((−A)�))

,

and we have
��(−A)β+α/2e(t−s)A

��2
L(D((−A)�))

≤ C(t− s)−(2β+α)
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for 2β + α ∈ [0, 1). For 2β + α < 0 we have (−λj)
2β+α ≤ (−λ1)

2β+α for all
j ∈ N0, which yields

��(−A)β+α/2e(t−s)A
��2
L(D((−A)�))

≤ C.

Moreover, by the global Lipschitz continuity of the mappingB : D((−A)�) →
L(�2;D((−A)�−β)),

E
��(−A)−βB(u(s))

��2
L(�2;D((−A)�))

≤ C
�
1 + sup

r∈[0,T ]
E�u(r)�2D((−A)�)

�
.

Thus, the stochastic integral in (13) is well-defined.
(ii) For the case � = 0 existence and uniqueness of a mild solution to
Eq. (1) has been stated in [35, Proposition 3.1]. The proof consists of a
modification of the proof of Theorem 7.4 in [14]—a contraction argument in
L∞([0, T ];L2(Ω;U)). For the general case � ≥ 0 existence and uniqueness
can be proved analogously, see [29, Theorem 5.1]. Alternatively, the case
� > 0 can be traced back to the case � = 0 as described in the proof of
Proposition 2.8 below.

Proposition 2.8. Let Assumptions 2.1, 2.3 and 2.5 be fulfilled. Then, Eq. (1)
has a unique (up to modifications) mild solution in D((−A)�).

Proof. If Assumptions 2.1, 2.3 and 2.5 are fulfilled for � = 0, Eq. (1) fits
into the setting of [35] (the Hilbert space U is denoted by H there). By
Proposition 3.1 therein there exists a unique mild solution u to Eq. (1). Now
suppose that Assumptions 2.1, 2.3 and 2.5 hold for some � > 0. Set

Û := D((−A)�), D(Â) := D((−A)�+1)

and consider the unbounded operator Â on Û given by

Â : D(Â) ⊂ Û → Û, v �→ Âv := Av.

Note that Â fulfills Assumption 2.1 with A, D(A) and U replaced by Â,
D(Â) and Û , respectively. Defining the spaces D((−Â)s) analogously to the
spaces D((−A)s), we have D((−A)�+s) = D((−Â)s), s ∈ R, so that Assump-
tions 2.3 and 2.5 can be reformulated with �, D((−A)�), D((−A)�−σ) and
D((−A)�−β) replaced by �̂ := 0, D((−Â)�̂), D((−Â)�̂−σ) and D((−Â)�̂−β),
respectively. Thus, the equation

du(t) =
�
Âu(t) + f(u(t))

�
dt+B(u(t)) dW (t), u(0) = u0, (15)

fits into the setting of [35] (now Û corresponds to the space H there), so that,
by [35, Proposition 3.1], there exists a unique mild solution u to Eq. (15).

Since the operators etA ∈ L(U) and etÂ ∈ L(Û) coincide on Û ⊂ U , it is
clear that any mild solution to Eq. (15) is a mild solution to Eq. (1) and
vice versa.
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Remark 2.9. If the initial condition u0 belongs to Lp(Ω,F0,P;D((−A)�))
⊂ L2(Ω,F0,P;D((−A)�)) for some p > 2, the solution u even satisfies
supt∈[0,T ] E�u(t)�pD((−A)�) < ∞. This is a consequence of the Burkholder-

Davis-Gundy inequality, cf. [14, Theorem 7.4] or [35, Proposition 3.1]. Anal-
ogous improvements are valid for the estimates in Propositions 3.2 and 4.3
below.

We finish this section with concrete examples for stochastic PDEs that
fit into our setting.

Example 2.10. Let O be an open and bounded subset of Rd, U := L2(O),
and let A = ΔD

O be the Dirichlet-Laplacian onO as described in Example 2.2.
We consider examples for stochastic PDEs in dimension d = 1 and d ≥ 2.

First, let O ⊂ R1 be one-dimensional and consider the problem

du(t, x) = Δxu(t, x) dt+ g(u(t, x)) dt+ h(u(t, x)) dW1(t, x),

(t, x) ∈ [0, T ]×O,

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂O,

u(0, x) = u0(x), x ∈ O,





(16)

where u0 ∈ L2(O), g : R → R and h : R → R are globally Lipschitz
continuous, and W1 = (W1(t))t∈[0,T ] is a Wiener process (with respect to a
normal filtration on a complete probability space) whose Cameron–Martin
space is some space of functions on O that is continuously embedded in
L∞(O), e.g., W1 is a Wiener process with Cameron–Martin space Hs(O)
for some s > 1/2. Let (ψk)k∈N be an arbitrary orthonormal basis of the
Cameron–Martin space of W1 and define f and B as the Nemytskii type
operators

f(v)(x) := g(v(x)), v ∈ L2(O), x ∈ O,
�
B(v)a

�
(x) := h(v(x))

�

k∈N
akψk(x), v ∈ L2(O), a = (ak)k∈N ∈ �2, x ∈ O.

(17)
Then, Eq. (1) is an abstract version of problem (16), and the mappings f
and B are globally Lipschitz continuous (and thus linearly growing) from
D((−A)0) = L2(O) to L2(O) and from D((−A)0) to L(�2;L2(O)), respec-
tively. For B this follows from the estimate

�B(v1)a−B(v2)a�L2(O) =
���
�
h(v1)− h(v2)

��

k∈N
akψk

���
L2(O)

≤ �h(v1)− h(v2)�L2(O)

���
�

k∈N
akψk

���
L∞(O)

≤ C�v1 − v2�L2(O)�a��2 ,

where the last step is due to the Lipschitz property of h and the assumption
that the Cameron–Martin space of W1 is continuously embedded in L∞(O).
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It follows that Assumptions 2.1, 2.3 and 2.5 are fulfilled for 1/2 < α < 1
(compare Example 2.2) and � = σ = β = 0.

Now let O ⊂ Rd be d-dimensional, d ≥ 2, and consider the problem (16)
where u0 ∈ L2(O), g : R → R is globally Lipschitz continuous, h : R → R
is constant (additive noise), and W1 = (W1(t))t∈[0,T ] is a Wiener process
whose Cameron–Martin space is some space of functions on O that is con-
tinuously embedded in D((−A)−β) for some β < 1/2− d/4. One easily sees
that the mappings f and B, defined as in (17), are globally Lipschitz con-
tinuous (and thus linearly growing) from D((−A)0) = L2(O) to L2(O) and
from D((−A)0) to L(�2;D((−A)−β)), respectively. It follows that Assump-
tions 2.1, 2.3 and 2.5 are fulfilled for β < 1/2 − d/4, d/2 < α < 1 − 2β,
and � = σ = 0. Alternatively, we could assume h to be sufficiently smooth
and replace h(u(t, x)) in problem (16) by, e.g., h

� �
O k(x, y)u(t, y) dy

�
with

a sufficiently smooth kernel k : O ×O → R.
Example 2.11. As in Examples 2.2 and 2.10, let A = ΔD

O be the Dirichlet-
Laplacian on an open and bounded domain O ⊂ Rd. From the numerical
point of view, we are especially interested in stochastic PDEs of type (1)
with � = 1/2. In this case the solution process takes values in the space
D((−A)1/2) = H1

0 (O), and, as we will see later in Proposition 3.2 and The-
orem 4.2, we obtain estimates for the approximation error in terms of the
energy norm

�v�D((−ΔD
O)1/2) = �∇v,∇v�1/2L2(O), v ∈ H1

0 (O).

The energy norm is crucial because error estimates for numerical solvers of
elliptic problems (which we want to apply in each time step) are usually
expressed in terms of this norm, compare [7, Section 4], where adaptive
wavelet solvers with optimal convergence rates are considered.

First, let O ⊂ R1 be one-dimensional, and consider the problem (16)
where u0 ∈ H1

0 (O), g : R → R is globally Lipschitz continuous, h : R → R
is linear or constant, and W1 = (W1(t))t∈[0,T ] is a Wiener process whose
Cameron–Martin space is some space of functions on O that is continuously
embedded in D((−A)1/2−β) for some nonnegative β < 1/4, so that W1

takes values in a bigger Hilbert space, say, in D((−A)−1/4). (The embed-
ding D((−A)1/2−β) �→ D((−A)−1/4) is Hilbert–Schmidt since (10) is fulfilled
for α > 1/2, compare Example 2.2.) Take an arbitrary orthonormal basis
(ψk)k∈N of the Cameron–Martin space of W1, and define f(v) and B(v) for
v ∈ H1

0 (O) analogously to (17). Then, Eq. (1) is an abstract version of prob-
lem (16), and the mappings f and B are globally Lipschitz continuous (and
thus linearly growing) from D((−A)1/2) = H1

0 (O) to D((−A)0) = L2(O)
and from D((−A)1/2) to L(�2;D((−A)1/2−β)), respectively. The mapping
properties of B follow from the fact that the Cameron–Martin space of W1

is continuously embedded in D((−A)1/2−β) and the inequality

�vw�D((−A)1/2−β) ≤ C�v�H1
0 (O)�w�D((−A)1/2−β).

11



The latter is due to the inequalities �vw�L2(O) ≤ �v�H1
0 (O)�w�L2(O) together

with �vw�H1
0 (O) ≤ C�v�H1

0 (O)�w�H1
0 (O) (a consequence of the Sobolev em-

bedding H1(O) �→ L∞(O) in dimension 1) and interpolation since

D((−A)1/2−β) = [L2(O), D((−A)1/2)]1−2β .

Thus, Assumptions 2.1, 2.3 and 2.5 are fulfilled for � = σ = 1/2, 0 ≤ β < 1/4
and 1/2 < α < 1− 2β.

Now let O ⊂ Rd be d-dimensional and consider problem (16) where
u0 ∈ H1

0 (O), g : R → R is globally Lipschitz continuous, h : R → R is con-
stant, and W1 = (W1(t))t∈[0,T ] is a Wiener process whose Cameron–Martin

space is continuously embedded in D((−A)1/2−β) for some β < 1/2 − d/4.
Then, the mappings f and B, defined analogously to the one dimensional
case, are globally Lipschitz continuous (and thus linearly growing) from
D((−A)1/2) = H1

0 (O) to D((−A)0) = L2(O) and from D((−A)1/2) to
L(�2;D((−A)1/2−β)) respectively. It follows that Assumptions 2.1, 2.3 and
2.5 are fulfilled for � = σ = 1/2, β < 1/2−d/4 and 1 < α < 1−2β. As in Ex-
ample 2.10 we could alternatively assume h : R → R to be sufficiently smooth
and replace h(u(t, x)) in problem (16) by, e.g., h

� �
O k(x, y)u(t, y) dy

�
with

a sufficiently smooth kernel k : O ×O → R.
Remark 2.12. The reader familiar with SPDEs of the form (1) might won-
der about the rather restrictive conditions in the examples above, especially
on the noise terms therein. These restrictions are due to the fact that we
basically adopt the setting from [35]. This allows us to focus on our main
goal, i.e., the analysis of the error of the inexact counterpart of the Euler
scheme (4), without spending too much time on explaining details regard-
ing the underlying setting. However, it is worth mentioning that much more
general equations of the type (1) have been considered in the literature,
see, e.g., the recent results concerning the maximal Lp-regularity of SPDEs
in [33]. Also, the convergence of the linearly implicit Euler scheme has been
considered under weaker assumptions, see, e.g., [12, 13].

3 Exact Euler scheme

In this section we use the linearly implicit Euler scheme to obtain a semidis-
cretization of Eq. (1) in time. We present a corresponding convergence result
as a slight modification of [35, Theorem 3.2]. Since no spatial discretization
is involved, we speak of the exact Euler scheme in contrast to the inexact
perturbed scheme considered in the forthcoming section. From now on, let
Assumptions 2.1, 2.3 and 2.5 be fulfilled.

For K ∈ N and τ := T/K we consider discretizations (uk)
K
k=0 given by

the linearly implicit Euler scheme (4), i.e.,

uk+1 := (I − τA)−1
�
uk + τf(uk) +

√
τB(uk)χk

�
, k = 0, . . . ,K − 1.

12



We use the abbreviation

χk := χK
k :=

1√
τ

�
W

�
tKk+1

�
−W

�
tKk

��

with
tk := τk, k = 0, . . . ,K.

Note that each χk, k = 0, . . . ,K−1, is an Ftk+1
-measurable Gaussian white

noise on �2, i.e., a linear isometry from �2 to L2(Ω,Ftk+1
,P) such that for

each a ∈ �2 the real valued random variable χk(a) is centered Gaussian with
variance �a�2�2 . Moreover, for each k = 0, . . . ,K − 1, the sub-σ-field of F
generated by {χk(a) : a ∈ �2} is independent of Ftk .

We explain in which way the scheme (4) has to be understood. Let G
be a separable real Hilbert space such that D((−A)�−β) is embedded into
G via a Hilbert–Schmidt embedding. Then, for all k = 0, . . . ,K − 1 and for
all Ftk -measurable, D((−A)�)-valued, square integrable random variables
v ∈ L2(Ω,Ftk ,P;D((−A)�)), the term B(v)χk can be interpreted as an
Ftk+1

-measurable, square integrable, G-valued random variable in the sense

B(v)χk := L2(Ω,Ftk+1
,P;G)- lim

J→∞

J�

j=1

χk(bj)B(v)bj , (18)

where (bj)j∈N is an orthonormal basis of �2. This definition does not de-
pend on the specific choice of the orthonormal basis (bj)j∈N. Note that the
stochastic independence of {χk(a) : a ∈ �2} and Ftk is important at this
point. We have

E�B(v)χk�2G = E�B(v)�2LHS(�2;G), (19)

the last term being finite due to the Lipschitz continuity of B by Assump-
tion 2.3 (see also Remark 2.4) and the fact that the embedding

D((−A)�−β) �→ G

is Hilbert–Schmidt. Let us explicitly choose the space G in such a way that
the terms uk + τf(uk) +

√
τB(uk)χk on the right hand side of (4) can be

considered as a G-valued random variable and the application of (I− τA)−1

to elements of G makes sense. Our choice of G, which we keep throughout
this paper, is

G := D((−A)�−max(0,σ,β+α/2)). (20)

Note that the condition Tr(−A)−α < ∞ in Assumption 2.1 yields that the
embedding D((−A)�−β) �→ D((−A)�−β−α/2) is Hilbert–Schmidt, and the
embedding D((−A)�−β−α/2) �→ D((−A)�−max(0,σ,β+α/2)) is clearly continu-
ous. Thus, we have indeed a Hilbert–Schmidt embedding D((−A)�−β) �→ G.

13



For all k = 0, . . . ,K − 1 and v ∈ L2(Ω,Ftk ,P;D((−A)�)) we consider the
term B(v)χk as an element in the space

L2(Ω,Ftk+1
,P;G) = L2

�
Ω,Ftk+1

,P;D((−A)�−max(0,σ,β+α/2))
�
.

Next, due to the Lipschitz continuity of f by Assumption 2.3 (see also
Remark 2.4), we also know that for all v ∈ L2(Ω,Ftk ,P;D((−A)�)) the
term f(v) is an element in L2(Ω,Ftk ,P;G). Finally, as a consequence of
Lemma 3.1 below and the fact that max(0, σ, β + α/2) < max(σ, 1/2) < 1
due to (11), the operator

(I − τA)−1 : G → D((−A)�)

is continuous. It follows that the discretizations (uk)
K
k=0 are uniquely deter-

mined by (4) and for all k = 0, . . . ,K we have

uk ∈ L2(Ω,Ftk ,P;D((−A)�)).

Now we prove the lemma we just used to show the boundedness of the
resolvents (I − τA)−1 of A in the right spaces. It will also be employed to
prove Proposition 4.4 in the next section.

Lemma 3.1. Let τ > 0 and r ∈ R. The operator I−τA is a homeomorphism
from D((−A)r) to D((−A)r−1). For n ∈ N we have the following operator
norm estimates for (I− τA)−n, considered as an operator from D((−A)r−s)
to D((−A)r), s ≤ 1:

�(I − τA)−n�L(D((−A)r−s),D((−A)r)) ≤





ss
�
1− s

n

�(n−s)
(nτ)−s , 0 < s ≤ 1

(−λ1)
s(1− τλ1)

−n , s ≤ 0.

Proof. The bijectivity of I − τA : D((−A)r) → D((−A)r−1) is almost obvi-
ous. Its proof is left to the reader. The bicontinuity follows from the conti-
nuity of the inverse as shown below (case s = 1) and the bounded inverse
theorem. Concerning the operator norm estimates, we use Parseval’s identity
and the spectral properties of A to obtain

sup
�v�D((−A)r−s)=1

�(I − τA)−nv�2D((−A)r)

= sup
�w�U=1

�(I − τA)−n(−A)s−rw�2D((−A)r)

= sup
�w�U=1

�(−A)r(I − τA)−n(−A)s−rw�2U

= sup
�w�U=1

�

k∈N

��(−λk)
s(1− τλk)

−n
�
w, ek

�
U

��2 .
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If s ≤ 0, the last expression is equal to (−λ1)
2s(1 − τλ1)

−2n. If 0 < s ≤ 1,
an upper bound is given by the square of

sup
x>0

xs

(1 + τx)n
= ss

�
1− s

n

�(n−s)
(nτ)−s.

After these preparations we present an extension of the error estimate
in [35].

Proposition 3.2. Let Assumptions 2.1, 2.3 and 2.5 be fulfilled. Let (uk)
K
k=0

be the time discretization of the mild solution (u(t))t∈[0,T ] in D((−A)�) to
Eq. (1), given by the scheme (4). Then, for every

δ < min(1− σ, (1− α)/2− β),

we have for all 1 ≤ k ≤ K

�
E�u(tk)− uk�2D((−A)�)

�1/2
≤ C

�
τ δ +

1

k

�
E�u0�2D((−A)�)

�1/2
�

,

where the constant C > 0 depends only on δ, A, B, f , α, β, σ and T .

Proof. We argue as in the proof of Proposition 2.8 and consider the equation

du(t) =
�
Âu(t) + f(u(t))

�
dt+B(u(t)) dW (t), u(0) = u0, (21)

where the operator Â : D(Â) ⊂ Û → Û is defined by Û := D((−A)�),
D(Â) := D((−A)�+1), and Âv := Av, v ∈ D(Â). Eq. (21) fits into the
setting of [35], and its mild solution u = (u(t))t∈[0,T ] coincides with the mild
solution to Eq. (1), compare the proof of Proposition 2.8. For K ∈ N let
(ûk)

K
k=0 be given by the linearly implicit Euler scheme

û0 = u0,

ûk+1 = (I − τÂ)−1
�
ûk + τf(ûk) +

√
τB(ûk)χk

�
, k = 0, . . . ,K − 1.

By Theorem 3.2 in [35] we have, for all δ < min(1− σ, (1− α)/2− β),

�
E�u(tk)− ûk�2Û

�1/2
≤ C

�
τ δ +

1

k

�
E�u0�2Û

�1/2
�

,

1 ≤ k ≤ K. The proof in [35] reveals that the constant C > 0 depends
only on δ, Â, B, f , α, β, σ and T . The assertion of Proposition 3.2 follows
from the fact that the natural extensions and restrictions of the operators
(I − τÂ)−1 and (I − τA)−1 to the spaces D((−Â)s) = D((−A)s+�), s ∈ R,
coincide, so that ûk = uk for all 0 ≤ k ≤ K, K ∈ N.
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Remark 3.3. (i) If k ≥ Kδ (δ > 0), then 1/k ≤ T−δτ δ, and we obtain

�
E�u(tk)− uk�2D((−A)�)

�1/2
≤ C τ δ (22)

with a constant C > 0 that depends only on δ, u0, A, B, f , α, β, σ and T .
Since δ is always smaller than 1, it follows in particular that (22) holds for
k = K, i.e., �

E�u(T )− uK�2D((−A)�)

�1/2
≤ C τ δ.

(ii) The proof of Proposition 3.2 is based on an application of Theorem 3.2 in
[35] to Eq. (15). The reader might have observed that therein the parameter
s, which corresponds to our parameter σ, is assumed to be positive. However,
a closer look at the estimates in the proof of Theorem 3.2 in [35] reveals
that the result can be extended to negative values of σ and s, respectively.
Alternatively, one can argue that if σ ≤ 0 then D((−Â)−σ) is continuously
embedded into, say, D((−Â)−1/2), so that Eq. (15) fits into the setting of [35]
if f is considered as a mapping from Û = D((−Â)0) to D((−Â)−1/2). We
refer to [13] where the Euler scheme for stochastic evolution equations is
considered in a more general setting than in [35].

4 Error control for the inexact scheme

So far we have verified the existence and uniqueness of a mild solution to
Eq. (1) as well as the convergence of the exactly evaluated linearly implicit
Euler scheme (4) with rate δ < min(1 − σ, (1 − α)/2 − β). We now turn to
the corresponding inexact scheme. We assume that we have at hand a ‘black
box’ numerical scheme, which for any element w ∈ L2(Ω,Ftk ,P;D((−A)�)
approximates

v := (I − τA)−1
�
w + f(w) +B(w)χk

�

with a prescribed tolerance ε > 0, the error being measured with respect to
the L2(Ω,Ftk+1

,P;D((−A)�)-norm. What we have in mind are ω-wise ap-
plications of some deterministic solver for elliptic equations, e.g., an optimal
adaptive wavelet solver as developed in [9], combined with proper evalua-
tions of the nonlinearities f and B, see, e.g., [11, 16, 30], and an adequate
truncation of the noise B(w)χk. We start with the initial condition u0 and
in each time step, we apply this ‘black box’ method to the approximation
we have obtained in the step before. Our main goal is to prove that the
tolerances in the different time steps can be chosen in such a way that the
inexact scheme achieves the same convergence rate (in time direction) as
its exact counterpart (Theorem 4.2). To this end we also analyze the error
propagation of the inexact scheme (Proposition 4.3).
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Our strategy relies on the ideas presented in [7]. Therein, Rothe’s method
for deterministic parabolic equations is analyzed by putting it into an ab-
stract framework, cf. in particular [7, Section 2]. We proceed similarly. There-
fore, we first of all reformulate the exact linearly implicit Euler scheme (4)
in the following way. We set

Hk := L2(Ω,Ftk ,P;D((−A)�)), k = 0, . . . ,K,

Gk := L2(Ω,Ftk ,P;G), k = 1, . . . ,K,

Rτ,k : Hk → Gk+1

v �→ Rτ,k(v) := v + τf(v) +
√

τB(v)χk, k = 0, . . . ,K − 1,

L−1
τ : Gk → Hk

v �→ L−1
τ v := (I − τA)−1v, k = 1, . . . ,K.





(23)

Recall that G = D((−A)�−max(0,σ,β+α/2)) has been introduced in (20). With
these definitions at hand, we can rewrite the scheme (4) as

uk+1 := L−1
τ Rτ,k(uk), k = 0, . . . ,K − 1. (24)

Remark 4.1. Without additional assumptions on B or a truncation of the
noise expansion (18), the operator Rτ,k cannot easily be traced back to a
family of operators

Rτ,k,ω : D((−A)�) → G, ω ∈ Ω,

in the sense that for v ∈ Hk = L2(Ω,Ftk ,P;D((−A)�)) the image Rτ,k(v)
is determined by

(Rτ,k(v))(ω) = Rτ,k,ω(v(ω)) for P-almost all ω ∈ Ω. (25)

However, this is possible, for instance, if for all v ∈ D((−A)�) the oper-
ator B(v) : �2 → D((−A)�−β) has a continuous extension B(v) : U0 →
D((−A)�−β) to a bigger Hilbert space U0 such that �2 is embedded into U0

via a Hilbert–Schmidt embedding. Another instance where a representation
of the form (25) is possible is the case where the mapping B : D((−A)�) →
L(�2;D((−A)�−β)) is constant, i.e., the case of additive noise. We take a
closer look at the latter case, writing B ∈ L(�2;D((−A)�−β)) for short. We
fix a version of each of the P-almost surely determined, G-valued random
variables Bχk = BχK

k , k = 0, . . . ,K − 1, K ∈ N, and set

Rτ,k,ω(v) := v + f(v) + (Bχk)(ω), ω ∈ Ω, v ∈ D((−A)�).
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It is clear that (25) holds for all v ∈ L2(Ω,Ftk ,P;D((−A)�)). Thus, in the
case of additive noise, by setting

Hk := D((−A)�)),

Gk := G = D((−A)�−max(0,σ,β+α/2)),

Rτ,k,ω : Hk → Gk+1

v �→ Rτ,k,ω(v) := v + τf(v) +
√

τ(Bχk)(ω),

L−1
τ : Gk → Hk

v �→ L−1
τ v := (I − τA)−1v,





(26)

k = 0, . . . ,K − 1, we can rewrite the scheme (4) in an ω-wise sense as

uk+1(ω) := L−1
τ Rτ,k,ω(uk(ω)), k = 0, . . . ,K − 1.

In this section we are focusing on the inexact counterpart of the scheme
(4), which we introduce now. We assume that we have a numerical scheme
which, for any k = 0, . . . ,K − 1, any w ∈ Hk, and any prescribed tolerance
ε > 0, provides an approximation [v]ε of

v = L−1
τ Rτ,k(w),

such that

�v − [v]ε�Hk+1
=

�
E�v − [v]ε�2D((−A)�)

�1/2
≤ ε.

Given prescribed tolerances εk, k = 0, . . . ,K − 1, for the spatial approxima-
tion errors in each time step, we consider the inexact linearly implicit Euler
scheme, defined as follows:

ũ0 := u0,

ũk+1 := [L−1
τ Rτ,k(ũk)]εk , k = 0, . . . ,K − 1.

�
(27)

Note that the errors at each time step accumulate due to the iterated appli-
cation of the numerical method [·]ε.

Next we present the main result of this paper. It describes a way how
to choose the tolerances in the different time steps so that the inexact
scheme (27) has the same convergence rate as its exact counterpart (24).

Theorem 4.2. Let Assumptions 2.1, 2.3 and 2.5 be fulfilled, (u(t))t∈[0,T ] be
the unique mild solution in D((−A)�) to Eq. (1) and let

δ < min(1− σ, (1− α)/2− β).

If one chooses
εk ≤ τ1+δ
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for all k = 0, . . . ,K − 1, K ∈ N, then the output ũK of the inexact linearly
implicit Euler scheme (27) converges to u(T ) with rate δ, i.e., we have

�
E�u(T )− ũK�2D((−A)�)

�1/2
≤ Cτ δ

with a constant C depending only on u0, δ, A, B, f , α, β, σ and T .

Our strategy for proving this theorem relies on two auxiliary results,
which we prove first. We start with Proposition 4.3, which states that the
error propagation of the inexact linearly implicit Euler scheme can be de-
scribed in terms of the Lipschitz constants CLip

τ,j,k of the operators

Eτ,j,k = (L−1
τ Rτ,k−1) ◦ (L−1

τ Rτ,k−2) ◦ · · · ◦ (L−1
τ Rτ,j) : Hj → Hk, (28)

1 ≤ j ≤ k ≤ K, K ∈ N. Afterwards, we prove that these Lipschitz constants
are bounded from above uniformly in 1 ≤ j, k ≤ K, K ∈ N, see Proposi-
tion 4.4. Finally, at the end of this section, we draw the proof of the main
Theorem 4.2.

Proposition 4.3. Let Assumptions 2.1, 2.3 and 2.5 be fulfilled. Let (u(t))t∈[0,T ]

be the unique mild solution in D((−A)�) to Eq. (1). Let (ũk)
K
k=0 be the dis-

cretization of (u(t))t∈[0,T ] in time and space given by the inexact linearly
implicit Euler scheme (27), where εk, k = 0, . . . ,K− 1, are prescribed toler-
ances for the spatial approximation errors in each time step. Then, for every
1 ≤ k ≤ K, K ∈ N, and for every

δ < min(1− σ, (1− α)/2− β)

we have

�
E�u(tk)− ũk�2D((−A)�)

�1/2
≤ C

�
τ δ +

1

k

�
E�u0�2D((−A)�)

�1/2
�

+
k−1�

j=0

CLip
τ,j+1,kεj

with a constant C that depends only on δ, A, B, f , α, β, σ and T .

Proof. We argue following the lines of the proof of [7, Theorem 2.16]. To
this end, we introduce the operators

Ẽτ,k,k+1 : Hk → Hk+1

v �→ Ẽτ,k,k+1(v) := [L−1
τ Rτ,k(v)]εk

for k = 0, . . . ,K − 1, and for 0 ≤ j ≤ k we set

Ẽτ,j,k :=

�
Ẽτ,k−1,k ◦ . . . ◦ Ẽτ,j,j+1, j < k

I, j = k.
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Note that, in order to define the operators Eτ,j,k and Ẽτ,j,k properly, we
have to consider the measurability of the elements in their domains and
in the corresponding image spaces, cf. our remarks concerning the right
understanding of the scheme (4) at the beginning of Section 3. Therefore, in
contrast to the situation in [7, Section 2], these Hilbert spaces depend on the
indexes j and k. Nevertheless, with the right changes, we can argue along
the lines of [7, Theorem 2.16]: We rewrite the difference uk − ũk between
the output of the exact and inexact scheme at time tk as an appropriate
telescopic sum, so that by consecutive applications of the triangle inequality
in Hk we obtain:

�u(tk)− ũk�Hk
≤ �u(tk)− uk�Hk

+ �uk − ũk�Hk

≤ �u(tk)− uk�Hk

+
k−1�

j=0

��Eτ,j,kẼτ,0,j(u0)− Eτ,j+1,kẼτ,0,j+1(u0)
��
Hk

.

Note that CLip
τ,j,k < ∞ for all 1 ≤ j ≤ k ≤ K, K ∈ N, because of Assump-

tion 2.3 on the Lipschitz continuity of the free terms f and B and because
of Lemma 3.1 on the boundedness of the resolvents of A. Thus, each term
in the sum on the right hand side can be estimated as follows

��Eτ,j,kẼτ,0,j(u0)−Eτ,j+1,kẼτ,0,j+1(u0)
��
Hk

=
��Eτ,j+1,kEτ,j,j+1Ẽτ,0,j(u0)− Eτ,j+1,kẼτ,0,j+1(u0)

��
Hk

≤ CLip
τ,j+1,k

��Eτ,j,j+1Ẽτ,0,j(u0)− Ẽτ,0,j+1(u0)
��
Hj+1

.

Since ũj = Ẽτ,0,j(u0), we obtain

��Eτ,j,j+1Ẽτ,0,j(u0)−Ẽτ,0,j+1(u0)
��
Hj+1

=
��Eτ,j,j+1(ũj)− Ẽτ,j,j+1(ũj)

��
Hj+1

≤ εj .

Putting these estimates together yields:

�u(tk)− ũk�Hk
≤ �u(tk)− uk�Hk

+

k−1�

j=0

CLip
τ,j+1,kεj .

The error of the exact Euler scheme at time tk appearing on the right hand
side can be estimated by using Proposition 3.2, which yields the assertion.

In order to prove the main Theorem 4.2, it remains to verify the uni-
form boundedness of the Lipschitz constants CLip

τ,j,k of the operators Eτ,j,k

introduced in (28). The proof is based on a Gronwall argument.
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Proposition 4.4. Let Assumptions 2.1, 2.3 and 2.5 be fulfilled. There exists
a finite constant C > 0, depending only on A, B, f , α, β, σ and T , such
that the Lipschitz constants CLip

τ,j,k of the operators Eτ,j,k introduced in (28)
satisfy:

CLip
τ,j,k ≤ C for all 1 ≤ j ≤ k ≤ K, K ∈ N.

Proof. Fix 1 ≤ j ≤ k ≤ K and observe that, by induction over k,

Eτ,j,k(v) = L−(k−j)
τ v

+

k−j−1�

i=0

L−(k−j)+i
τ

�
τf

�
Eτ,j,j+i(v)

�
+
√

τB
�
Eτ,j,j+i(v)

�
χj+i

�

for all v ∈ Hj , where we set Ej,j = I. Therefore, for all v, w ∈ Hj , we have

�Eτ,j,k(v)− Eτ,j,k(w)�Hk

≤ �L−(k−j)
τ v − L−(k−j)

τ w�Hk

+

k−j−1�

i=0

τ
���L−(k−j)+i

τ

�
f
�
Eτ,j,j+i(v)

�
− f

�
Eτ,j,j+i(w)

�����
Hk

+

�����

k−j−1�

i=0

√
τL−(k−j)+i

τ

�
B
�
Eτ,j,j+i(v)

�
−B

�
Eτ,j,j+i(w)

��
χj+i

�����
Hk

=: (I) + (II) + (III). (29)

We estimate each of the terms (I), (II) and (III) separately.
By Lemma 3.1 and the trivial fact that �v − w�Hk

= �v − w�Hj for all
v, w ∈ Hj , we have

(I) ≤
��L−1

τ

��k−j

L(D((−A)�))
�v − w�Hk

≤ (1− τλ1)
−(k−j)�v − w�Hk

≤ �v − w�Hj .

(30)

Concerning the term (II) in (29), let us first concentrate on the case
σ ∈ (0, 1). We use the Lipschitz condition on f in Assumption 2.3 and
Lemma 3.1 to obtain

(II) ≤
k−j−1�

i=0

τ
��L−(k−j)+i

τ (−A)σ
��
L(D((−A)�))

× CLip
f

��Eτ,j,j+i(v)− Eτ,j,j+i(w)
��
Hj+i

≤
k−j−1�

i=0

τ
σσ

(τ(k − j − i))σ
CLip
f CLip

τ,j,j+i �v − w�Hj

≤ CLip
f

k−j−1�

i=0

τ

(τ(k − j − i))σ
CLip
τ,j,j+i �v − w�Hj

.

(31)
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For the case that σ ≤ 0 we get with similar arguments

(II) ≤ CLip
f

k−j−1�

i=0

τ(−λ1)
σ

(1− τλ1)n
CLip
τ,j,j+i �v − w�Hj

≤ CLip
f (−λ1)

σ
k−j−1�

i=0

τCLip
τ,j,j+i �v − w�Hj

.

(32)

Let us now look at the term (III) in (29). Using the independence of the
stochastic increments χj+i and the equality in (19), we get

(III)2=

k−j−1�

i=0

τE
���L−(k−j)+i

τ

�
B
�
Eτ,j,j+i(v)

�
−B

�
Eτ,j,j+i(w)

��
χj+i

���
2

D((−A)�)

≤
k−j−1�

i=0

τ
��L−(k−j)+i

τ

��2
L(D((−A)�−β−α/2),D((−A)�))

× E
���
�
B
�
Eτ,j,j+i(v)

�
−B

�
Eτ,j,j+i(w)

��
χj+i

���
2

D((−A)�−β−α/2)

≤
k−j−1�

i=0

τ
��L−(k−j)+i

τ

��2
L(D((−A)�−β−α/2),D((−A)�))

× E
��B

�
Eτ,j,j+i(v)

�
−B

�
Eτ,j,j+i(w)

���2
LHS(�2;D((−A)�−β−α/2))

.

Concentrating first on the case β + α/2 > 0, we continue by using the
Lipschitz condition on B in Assumption 2.3 and Lemma 3.1 to obtain

(III)2 ≤
k−j−1�

i=0

τ
(β + α/2)2β+α

(τ(k − j − i))2β+α
Tr(−A)−α

× (CLip
B )2 E �Eτ,j,j+i(v)− Eτ,j,j+i(w)�2D((−A)�)

≤ (CLip
B )2Tr(−A)−α

×
k−j−1�

i=0

τ

(τ(k − j − i))2β+α
(CLip

τ,j,j+i)
2�v − w�2Hj

.

(33)

In the case β + α/2 ≤ 0 the same arguments lead to

(III)2 ≤
k−j−1�

i=0

τ
(−λ1)

2β+α

(1− τλ1)2n
Tr(−A)−α

× (CLip
B )2E �Eτ,j,j+i(v)− Eτ,j,j+i(w)�2D((−A)�)

≤ (CLip
B )2Tr(−A)−α(−λ1)

2β+α
k−j−1�

i=0

τ(CLip
τ,j,j+i)

2�v − w�2Hj
.

(34)
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Now we have to consider four different cases.
Case 1. σ ∈ (0, 1) and β + α/2 ∈ (0, 1/2). The combination of (29),

(30), (31) and (33) yields

CLip
τ,j,k ≤ 1 + CLip

f

k−j−1�

i=0

τ

(τ(k − j − i))σ
CLip
τ,j,j+i

+ CLip
B (Tr(−A)−α)1/2

�
k−j−1�

i=0

τ

(τ(k − j − i))2β+α
(CLip

τ,j,j+i)
2

�1/2

.

(35)
Next, we estimate the two sums over i on the right hand side of (35) via
Hölder’s inequality. Set

q :=
1

min(1− σ, (1− α)/2− β)
+ 2 > 2.

Hölder’s inequality with exponents q/(q − 1) and q yields

k−j−1�

i=0

τ

(τ(k − j − i))σ
CLip
τ,j,j+i

≤
�

k−j−1�

i=0

τ

(τ(k − j − i))
σq
q−1

� q−1
q

�
k−j−1�

i=0

τ(CLip
τ,j,j+i)

q

� 1
q

≤
�

K�

i=1

τ

(τi)
σq
q−1

� q−1
q

�
k−j−1�

i=0

τ(CLip
τ,j,j+i)

q

� 1
q

≤
�� T

0
t
− σq

q−1 dt

� q−1
q

�
k−j−1�

i=0

τ(CLip
τ,j,j+i)

q

� 1
q

,

(36)

where the integral in the last line is finite since σq
q−1 = σ

1−1/q < σ
1−(1−σ) = 1.

Similarly, applying Hölder’s inequality with exponents q/(q − 2) and q/2,

k−j−1�

i=0

τ

(τ(k − j − i))2β+α
(CLip

τ,j,j+i)
2

≤




k−j−1�

i=0

τ

(τ(k − j − i))
(2β+α)q

q−2




q−2
q �

k−j−1�

i=0

τ(CLip
τ,j,j+i)

q

� 2
q

≤
�� T

0
t
− (2β+α)q

q−2 dt

� q−2
q

�
k−j−1�

i=0

τ(CLip
τ,j,j+i)

q

� 2
q

.

(37)

The integral in the last line is finite since (2β+α)q
q−2 = (2β+α)

1−2/q < (2β+α)
1−(1−α−2β)= 1.
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Combining (35), (36), (37) and using the equivalence of norms in R3, we
obtain

(CLip
τ,j,k)

q ≤ C0

�
1 +

k−j−1�

i=0

τ(CLip
τ,j,j+i)

q

�
, (38)

with a constant C0 that depends only on A, f , B, α, β, σ and T . Since (38)
holds for arbitrary K ∈ N and 1 ≤ j ≤ k ≤ K, we can apply a discrete
version of Gronwall’s lemma and obtain

(CLip
τ,j,k)

q ≤ e(k−j)τC0C0 ≤ eTC0C0.

for all 1 ≤ j ≤ k ≤ K, K ∈ N and τ = T/K. It follows that the assertion of
the proposition holds in this first case with

C := (eTC0C0)
1/q.

Case 2. σ ≤ 0 and β + α/2 ≤ 0. A combination of (29) with (30), (32),
and (34) leads to

CLip
τ,j,k ≤ 1 + CLip

f (−λ1)
σ
k−j−1�

i=0

τCLip
τ,j,j+i

+ CLip
B (Tr(−A)−α)1/2(−λ1)

β+α/2
� k−j−1�

i=0

τ(CLip
τ,j,j+i)

2
�1/2

.

Applying Hölder’s inequality with exponent q2 := 2 to estimate the first sum
over i on the right hand side, we get

CLip
τ,j,k ≤ 1 + CLip

f (−λ1)
σT 1/2

� k−j−1�

i=0

τ(CLip
τ,j,j+i)

2
�1/2

+ CLip
B (Tr(−A)−α)1/2(−λ1)

β+α/2
� k−j−1�

i=0

τ(CLip
τ,j,j+i)

2
�1/2

,

which leads to

(CLip
τ,j,k)

2 ≤ C
�
1 +

k−j−1�

i=0

τ(CLip
τ,j,j+i)

2
�
,

where the constant C ∈ (0,∞) depends only on A, f , B, α, β, σ and T . As
in Case 1, an application of Gronwall’s lemma proves the assertion in this
second case.

Case 3. σ ∈ (0, 1) and β + α/2 ≤ 0. In this situation, we combine (29)
with (30), (31) and (34) to get

CLip
τ,j,k ≤ 1 + CLip

f

k−j−1�

i=0

τ

(τ(k − j − i))σ
CLip
τ,j,j+i

+ CLip
B (Tr(−A)−α)1/2(−λ1)

β+α/2
� k−j−1�

i=0

τ(CLip
τ,j,j+i)

2
�1/2

.
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Setting

q3 :=
1

1− σ
+ 2

and following the line of argumentation from the first case with q3 instead
of q we reach our goal also in this situation.

Case 4. σ ≤ 0 and β+α/2 ∈ (0, 1/2). Combine (29), (30), (32) and (33)
to get

CLip
τ,j,k ≤ 1 + CLip

f (−λ1)
σ
k−j−1�

i=0

τCLip
τ,j,j+i

+ CLip
B (Tr(−A)−α)1/2

�
k−j−1�

i=0

τ

(τ(k − j − i))2β+α
(CLip

τ,j,j+i)
2

�1/2

.

Arguing as in the third case with

q4 :=
1

1/2− (β + α/2)
+ 2

instead of q3, we get the estimate we need to finish the proof.

We conclude with the proof of our main result.

Proof of Theorem 4.2. The assertion follows from Proposition 4.3 combined
with Proposition 4.4 by using the elementary estimates

1

K
≤ 1

Kδ
= T−δτ δ and

K−1�

j=0

εk ≤ Tτ δ.
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[67] E. Novak and H. Woźniakowski. On the Power of Function Values for the Ap-
proximation Problem in Various Settings. Preprint 67, DFG-SPP 1324, November
2010.
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