Domain Decomposition Strategies for the Stochastic Heat Equation

Erich Carelli, Alexander Müller, Andreas Prohl

University of Tübingen

August 27, 2009

4 17 18

- ④ 骨 ≯ ④ 手 ≯ ④ 手 ≯

Contents

[Introduction: The problem](#page-2-0)

[Space-time discretization and known results](#page-3-0)

[Tool: Domain Decomposition for deterministic problems](#page-5-0)

[Method: Domain Decomposition for stochastic equations](#page-14-0)

 2990

イロト イ母 トイヨ トイヨ トー

Problem setting

▶ Stochastic heat equation on an open bounded polygonal domain $\mathcal{D} \subset \mathbb{R}^d$

$$
dX(t) - \Delta X(t)dt = Q^{1/2}dW(t), \quad 0 < t < T
$$

$$
X(0) = X_0
$$

- ► $X_0 \in L^2(\Omega; L^2(\mathcal{D}))$, W cylindrical Wiener process on $L^2(\mathcal{D})$
- $\blacktriangleright~ Q$ linear, nonnegative, symmetric, bounded from $L^2(\mathcal{D})$ into $D(\Delta^\beta)$

Then we have:

- \triangleright Existence and uniqueness of mild solutions
- ▶ Regularity: $\sup_{t \in [0,T]} (\mathbb{E} ||X(t)||_{H^1}^2)^{1/2} \leq C(T, ||X_0||_{H^1})$

イロメ マタメ マモメ マモメー

Backward Euler scheme: Known results

- $\blacktriangleright N > 0$ temporal mesh, $\tau = T/N$, $h > 0$ spatial mesh
- \blacktriangleright Continuous finite elements $S^h_0(\mathcal{D})$
- $\blacktriangleright Y_h^n \in L^2(\Omega; S_0^h(\mathcal{D}))$ solves

$$
(Y_h^n - Y_h^{n-1}, v_h) + \tau(\nabla Y_h^n, \nabla v_h) = (\sqrt{\tau} Q^{1/2} \chi^{n-1}, v_h)
$$

$$
(Y_h^0, v_h) = (X_0, v_h),
$$

for all $v_h \in S_0^h(\mathcal{D})$.

- \blacktriangleright Existence and uniqueness of discrete solution $\{Y_h^n\}$
- \triangleright Stability: Energy estimate
- \blacktriangleright For Tr(ΔQ) < ∞

$$
\max_{0\leq n\leq N}\mathbb{E}\|Y_h^n-Y_h^{n-1}\|_{L^2}^2\leq C\tau
$$

スタンスミンスミン ミ

Convergence properties of backward Euler

▶ Strong convergence (Yan, 2005)

 $\max_{0 \le n \le N} (\mathbb{E} ||Y_h^n - X(t_n)||_{L^2}^2)^{1/2} \le C(\tau^{1/2} + h)$

▶ Weak convergence (Debussche, Printems, 2007)

 $\max_{0 \leq n \leq N} |\mathbb{E} [\phi(Y_h^n) - \phi(X(t_n))]| \leq C(\tau^{\gamma} + h^{2\gamma})$

for $0 < \gamma < 1 - d/2 + \beta$, where $Q \in L(L^2(\mathcal{D}), D(\Delta^{\beta})).$

Solution of linear system of dimension $O(h^{-d})$ STRATEGY: domain decomposition methods

イロメ イ何メ イヨメ イヨメー ヨ

Problem setting for Scheme A

▶ (Blum, Lisky, Rannacher, 1992) Consider

 $\partial_t X(t) + AX(t) = f(t), \quad 0 < t < T, \quad X(0) = X_0$

4 17 18

 $\mathcal{A} \oplus \mathcal{B}$ \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B}

 $2Q$

Domain Decomposition: Description of the method

Given $X_h^0, X_h^1, \ldots, X_h^{n-1} \in S_h^0(\mathcal{D})$.

- ▶ Compute boundary conditions on each subdomain (from the previous iterates)
- \blacktriangleright Compute new solution $X^n_{h,i}$ on each subdomain \mathcal{D}_i
- \triangleright Assemble the global solution

Method converges with rate $O(\tau^2)$

イロメ イ何メ イヨメ イヨメー ヨ

Main tools in the proof

- ▶ Boundary error: Exponential decay in the interior of the subdomain
- \blacktriangleright Induction: splitting of the error
	- 1. Stability of discrete solutions
	- 2. Convergence properties of Euler scheme
	- 3. Estimates for extrapolation

→ (何) > → (目) → → (目) >

Main tools in the proof

- ▶ Boundary error: Exponential decay in the interior of the subdomain
- \blacktriangleright Induction: splitting of the error
	- 1. Stability of discrete solutions
	- 2. Convergence properties of Euler scheme
	- 3. Estimates for extrapolation

Advantage of Scheme A: stable, convergent, less computational effort, parallelizable

Restrictions for Stochastic Problems:

▶ Non-optimal weak convergence since Wiener process not differentiable (need of $\partial_{tt}X(t)\in L^2([0,T]\times \mathcal{D})$ in the analyis for the deterministic problem)

イロメ イ押メ イヨメ イヨメー

Problem setting for Scheme B

▶ Schwarz iteration: Iterative strategy to solve elliptic BVP.

 \triangleright Motivation: parabolic problem after time discretization.

 QQ

The Contract The

Idea of the Schwarz iteration

- **► Example:** $-\Delta u = f$ on \mathcal{D} , $u = 0$ on $\partial \mathcal{D}$
- ▶ Iteration:

$$
u_{h,0}^2 = 0
$$

\n
$$
(\nabla u_{h,l}^1, \nabla v_h) = (f, v_h) \text{ on } \mathcal{D}_1^{\delta},
$$

\n
$$
u_{h,l}^1 = 0 \text{ on } \partial \mathcal{D}_1^{\delta} \cap \partial \mathcal{D},
$$

\n
$$
u_{h,l}^1 = u_{l-1,h}^2 \text{ on } \partial \mathcal{D}_1^{\delta} \cap \partial \mathcal{D}_2^{\delta}
$$

\n
$$
(\nabla u_{h,l}^2, \nabla v_h) = (f, v_h) \text{ on } \mathcal{D}_2^{\delta},
$$

From this itera[tio](#page-9-0)[n](#page-4-0) we get a gl[o](#page-11-0)bal solution u^{l}_{h} on ${\cal D}$ [.](#page-14-0)

 2990

 $u_{h,l}^2 = 0 \text{ on } \partial \mathcal{D}_2^{\delta} \cap \partial \mathcal{D},$ $u_{h,l}^2 = u_{l,h}^1$ on $\partial \mathcal{D}_2^{\delta} \cap \partial \mathcal{D}_1^{\delta}$

Solution of the Schwarz iteration

 \blacktriangleright $\mathcal{D} = (0, 1), \mathcal{D}_1^{\delta} = (0, 2/3), \mathcal{D}_1^{\delta} = (1/3, 1), \delta = 1/6.$

イロメ イ母メ イヨメ イヨメー

 2990

重

Error w.r.t number of iterations

Erich Carelli, Alexander Müller, Andreas Prohl Domain Decomposition Strategies for the Stochastic Heat Equat

つくへ

∍

Sketch of the proof

▶ Representation of the error $e_l = u_h - u_h^l$

$$
e_l = E e_{l-1} := (I - P_1)(I - P_2)e_{l-1}
$$

where $P_i:S_h^0(\mathcal{D})\rightarrow S_h^0(\mathcal{D}_i^{\delta})$ is the Ritz-projection

- \triangleright Show that the operator E is a contraction
- \triangleright Generalization for more subdomains: Bramble, Pasciak, Wang, Xu (1991).

→ (何) → (日) → (日) → 日

Scheme A

Given $X_h^0 \in S_h^0(\mathcal{D})$. Let $n \geq 1$.

- 1. Compute new boundary conditions $X_{h,*}^n = \mathcal{E}(\{X_h^\mu\})$ $_{h}^{\mu}$ $\}$ _{μ} $\langle n$ \rangle .
- 2. Find solution on each subdomain

$$
(X_{h,i}^n - X_{h,i}^{n-1}, v_h) + \tau(\nabla X_{h,i}^n, \nabla v_h) = (Q^{1/2}\Delta W_{t_n}, v_h) \text{ on } \mathcal{D}_i^{\delta}
$$

$$
X_{h,i}^n = X_{h,i,*}^n \text{ on } \partial \mathcal{D}_i^{\delta}
$$

3. Assemble the global solution $X_h^n = \mathcal{C}(\{X_{h,i}^n\}_i) \in S_h^0(\mathcal{D})$. Set $n \to n + 1$.

→ イラン イヨン イヨン

Main result I

- 1. Overlap $\delta = C_0 h$,
- 2. $X \in L^2(\Omega; H^1(\mathcal{D}))$

Then solutions X^n of Algorithm A satisfy

$$
\max_{0 \le n \le N} \left(\mathbb{E} \| X^n - X_{t_n} \|^2_{L^2} \right)^{1/2} \le C(\tau^{1/2} + h).
$$

We couldn't obtain better results for weak convergence.

4 17 18

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Main tools in the proof

▶

▶ Boundary error (between solution of Euler step with global and local BC)

$$
E^{n} := \mathbb{E} \|X_{h}^{n} - Y^{n}\|_{L^{2}}^{2} \leq C_{1} \sum_{i=i}^{M} \mathbb{E} \|X_{*}^{n} - \tilde{Y}^{n}\|_{L^{2}(\mathcal{D}_{i}^{\delta})}
$$

$$
+ C_{2} \mathbb{E} \|Y^{n} - \tilde{Y}^{n}\|_{L^{2}}^{2}
$$

$$
\leq C_{3} \mathbb{E} \|\mathcal{E}\{X_{h}^{n} - Y^{n}\|_{L^{2}}^{2}
$$

$$
+ C_{4} \mathbb{E} \|\mathcal{E}\{Y^{n}\} - Y^{n}\|_{L^{2}}^{2}
$$

$$
+ C_{5} \mathbb{E} \|Y^{n} - \tilde{Y}^{n}\|_{L^{2}}^{2}
$$

Estimation: $red = E^{n-1}$, $blue \leq C\tau$, $green \leq C E^{n-1}$

 2990

∢ ロ ⊁ (何) (ミ) (ミ) (ニ

Scheme B

- ▶ MOTIVATION: Obtain optimal rate of weak convergence.
- ► Given $X_h^0 \in S_h^0(\mathcal{D})$. Let $n \geq 1$.
	- 1. Perform L iterations on the problem

$$
(X_h^n - X_h^{n-1}, v_h) + \tau(\nabla X_h^n, \nabla v_h) = (\sqrt{\tau} Q^{1/2} \chi^n, v_h) \text{ on } \mathcal{D}
$$

to obtain local solutions $X^n_{h,i,L}$.

2. Assemble the global solution $X_h^n = \mathcal{C}(\{X_{h,i,L}^n\}_i) \in S_h^0(\mathcal{D}).$ Set $n \to n + 1$ until $n = N$.

→ イラン イミン イランド

Main result II

1. L : number of iterations

2.
$$
X \in L^{2}(\Omega; C([0, T]; L^{2}(\Omega)))
$$

3.
$$
\left(1 - \frac{C_{\delta}^{2}}{C_{0}}\right)^{L/2} \leq \tau^{\alpha_{L}}
$$

Then for the solution $Xⁿ$ of Algorithm-B holds

$$
\max_{0 \le n \le N} \sqrt{\mathbb{E} \|X^n - X_{t_n}\|_{L^2(\Omega; L^2(\mathcal{D}))}} \le C(C_1 \tau^{\alpha_L - 1} + \tau^{1/2} + h).
$$

If moreover $\phi\in C^2_b$, then we have

$$
\max_{0 \le n \le N} \|\mathbb{E} [\phi(X^n) - \phi(X_{t_n})] \| \le C(C_1 \tau^{\alpha_L - 1} + \tau^{\gamma_w} + h^{2\gamma_w}).
$$

and in

メタト メミト メミト

Convergence results

▶ Conclusion: balance DD-error (τ^{α_L-1}) with discretization error $(\tau^{\gamma_w}).$

4 0 8

- 4母 ト 4 ヨ ト 4 ヨ ト

 QQ

Dependence on the number of iterations

Figure: Rate of weak convergence

a mills

任 \sim

 \sim

 QQ

Accumulation of error perturbation in time

▶ Idea of the proof:

Erich Carelli, Alexander Müller, Andreas Prohl Domain Decomposition Strategies for the Stochastic Heat Equat

Sketch of the proof

 $X_h^{(r)s}$ $h^{(r)s}$, $r \leq s$ solution computed by Algorithm-B until time-step r , the BE until time-step s .

We only have to show

$$
\max_{0 \le n \le N} \mathbb{E} \|X^{(n)n_h} - X_h^n\|_{L^2}^2 \le C\tau^{\alpha_L - 1}
$$

Recall that

$$
\left(1 - \frac{C_{\delta}^2}{C_0}\right)^{L/2} \le \tau^{\alpha_L}
$$

▶
$$
s_n := \mathbb{E} \|X_h^{(n)k} - X_h^k\|_{L^2}^2 \le Cn\tau^{\alpha_L} \exp(n\tau^{\alpha_L})
$$

\n▶ $B^{(n)} := \mathbb{E} \|X_h^{(n)k} - X_h^k\|_{L^2}^2 \le C\tau^{\alpha_L}$

→ (何) > → (目) → → (目) >

Summary

- ▶ Scheme A
	- ▶ Optimal strong convergence
	- ▶ Suboptimal weak convergence
- ▶ Scheme B
	- ▶ Optimal strong and weak convergence

4 17 18

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Thank You for Your attention.

Erich Carelli, Alexander Müller, Andreas Prohl Domain Decomposition Strategies for the Stochastic Heat Equat

and in

→ イ母 ト イヨ ト イヨ ト

 QQ