Domain Decomposition Strategies for the Stochastic Heat Equation

Erich Carelli, Alexander Müller, Andreas Prohl

University of Tübingen

August 27, 2009

Contents

Introduction: The problem

Space-time discretization and known results

Tool: Domain Decomposition for deterministic problems

Method: Domain Decomposition for stochastic equations

Problem setting

lacktriangle Stochastic heat equation on an open bounded polygonal domain $\mathcal{D}\subset\mathbb{R}^d$

$$dX(t) - \Delta X(t)dt = Q^{1/2}dW(t), \quad 0 < t < T$$

$$X(0) = X_0$$

- $X_0 \in L^2(\Omega; L^2(\mathcal{D}))$, W cylindrical Wiener process on $L^2(\mathcal{D})$
- $\blacktriangleright Q$ linear, nonnegative, symmetric, bounded from $L^2(\mathcal{D})$ into $D(\Delta^\beta)$

Then we have:

- Existence and uniqueness of mild solutions
- ▶ Regularity: $\sup_{t \in [0,T]} \left(\mathbb{E} \|X(t)\|_{H^1}^2 \right)^{1/2} \le C(T, \|X_0\|_{H^1})$

Backward Euler scheme: Known results

- ▶ N>0 temporal mesh, $\tau=T/N$, h>0 spatial mesh
- ► Continuous finite elements $S_0^h(\mathcal{D})$
- $Y_h^n \in L^2(\Omega; S_0^h(\mathcal{D}))$ solves

$$(Y_h^n - Y_h^{n-1}, v_h) + \tau(\nabla Y_h^n, \nabla v_h) = (\sqrt{\tau} Q^{1/2} \chi^{n-1}, v_h)$$

$$(Y_h^0, v_h) = (X_0, v_h),$$

for all
$$v_h \in S_0^h(\mathcal{D})$$
.

- **Existence** and uniqueness of discrete solution $\{Y_h^n\}$
- Stability: Energy estimate
- ▶ For $Tr(\Delta Q) < \infty$

$$\max_{0 \le n \le N} \mathbb{E} \|Y_h^n - Y_h^{n-1}\|_{L^2}^2 \le C\tau$$

Convergence properties of backward Euler

Strong convergence (Yan, 2005)

$$\max_{0 \le n \le N} \left(\mathbb{E} \| Y_h^n - X(t_n) \|_{L^2}^2 \right)^{1/2} \le C(\tau^{1/2} + h)$$

Weak convergence (Debussche, Printems, 2007)

$$\max_{0 \le n \le N} |\mathbb{E} \left[\phi(Y_h^n) - \phi(X(t_n)) \right] | \le C(\tau^{\gamma} + h^{2\gamma})$$

for
$$0 < \gamma < 1 - d/2 + \beta$$
, where $Q \in L(L^2(\mathcal{D}), D(\Delta^{\beta}))$.

Solution of linear system of dimension $O(h^{-d})$ STRATEGY: domain decomposition methods

Problem setting for Scheme A

▶ (Blum, Lisky, Rannacher, 1992) Consider

$$\partial_t X(t) + AX(t) = f(t), \quad 0 < t < T, \quad X(0) = X_0$$

Domain Decomposition: Description of the method

Given
$$X_h^0, X_h^1, \dots, X_h^{n-1} \in S_h^0(\mathcal{D})$$
.

- Compute boundary conditions on each subdomain (from the previous iterates)
- ▶ Compute new solution $X_{h,i}^n$ on each subdomain \mathcal{D}_i
- Assemble the global solution

Method converges with rate $O(\tau^2)$

Main tools in the proof

- Boundary error: Exponential decay in the interior of the subdomain
- ▶ Induction: splitting of the error
 - 1. Stability of discrete solutions
 - 2. Convergence properties of Euler scheme
 - 3. Estimates for extrapolation

Main tools in the proof

- Boundary error: Exponential decay in the interior of the subdomain
- Induction: splitting of the error
 - 1. Stability of discrete solutions
 - 2. Convergence properties of Euler scheme
 - 3. Estimates for extrapolation

Advantage of Scheme A: stable, convergent, less computational effort, parallelizable

Restrictions for Stochastic Problems:

Non-optimal weak convergence since Wiener process not differentiable (need of $\partial_{tt}X(t) \in L^2([0,T] \times \mathcal{D})$ in the analyis for the deterministic problem)

Problem setting for Scheme B

Schwarz iteration: Iterative strategy to solve elliptic BVP.

Motivation: parabolic problem after time discretization.

Idea of the Schwarz iteration

- ▶ Example: $-\Delta u = f$ on \mathcal{D} , u = 0 on $\partial \mathcal{D}$
- Iteration:

$$u_{h,0}^{2} = 0$$

$$(\nabla u_{h,l}^{1}, \nabla v_{h}) = (f, v_{h}) \text{ on } \mathcal{D}_{1}^{\delta},$$

$$u_{h,l}^{1} = 0 \text{ on } \partial \mathcal{D}_{1}^{\delta} \cap \partial \mathcal{D},$$

$$u_{h,l}^{1} = u_{l-1,h}^{2} \text{ on } \partial \mathcal{D}_{1}^{\delta} \cap \partial \mathcal{D}_{2}^{\delta}$$

$$(\nabla u_{h,l}^{2}, \nabla v_{h}) = (f, v_{h}) \text{ on } \mathcal{D}_{2}^{\delta},$$

$$u_{h,l}^{2} = 0 \text{ on } \partial \mathcal{D}_{2}^{\delta} \cap \partial \mathcal{D},$$

$$u_{h,l}^{2} = u_{l,h}^{1} \text{ on } \partial \mathcal{D}_{2}^{\delta} \cap \partial \mathcal{D}_{1}^{\delta}$$

From this iteration we get a global solution u_h^l on \mathcal{D} .

Solution of the Schwarz iteration

$$\mathcal{D} = (0,1), \ \mathcal{D}_1^{\delta} = (0,2/3), \ \mathcal{D}_1^{\delta} = (1/3,1), \ \delta = 1/6.$$

Error w.r.t number of iterations

Sketch of the proof

▶ Representation of the error $e_l = u_h - u_h^l$

$$e_l = Ee_{l-1} := (I - P_1)(I - P_2)e_{l-1}$$

where $P_i:S_h^0(\mathcal{D}) o S_h^0(\mathcal{D}_i^\delta)$ is the Ritz-projection

- Show that the operator E is a contraction
- Generalization for more subdomains: Bramble, Pasciak, Wang, Xu (1991).

Scheme A

Given $X_h^0 \in S_h^0(\mathcal{D})$. Let $n \geq 1$.

- 1. Compute new boundary conditions $X_{h,*}^n = \mathcal{E}(\{X_h^{\mu}\}_{\mu < n})$.
- 2. Find solution on each subdomain

$$(X_{h,i}^n - X_{h,i}^{n-1}, v_h) + \tau(\nabla X_{h,i}^n, \nabla v_h) = (Q^{1/2} \Delta W_{t_n}, v_h) \text{ on } \mathcal{D}_i^{\delta}$$
$$X_{h,i}^n = X_{h,i,*}^n \text{ on } \partial \mathcal{D}_i^{\delta}$$

3. Assemble the global solution $X_h^n=\mathcal{C}(\{X_{h,i}^n\}_i)\in S_h^0(\mathcal{D}).$ Set $n\to n+1.$

Main result I

- 1. Overlap $\delta = C_0 h$,
- 2. $X \in L^2(\Omega; H^1(\mathcal{D}))$

Then solutions X^n of Algorithm A satisfy

$$\max_{0 \le n \le N} \left(\mathbb{E} \|X^n - X_{t_n}\|_{L^2}^2 \right)^{1/2} \le C(\tau^{1/2} + h).$$

We couldn't obtain better results for weak convergence.

Main tools in the proof

 Boundary error (between solution of Euler step with global and local BC)

$$\begin{split} E^{n} &:= \mathbb{E} \|X_{h}^{n} - Y^{n}\|_{L^{2}}^{2} &\leq C_{1} \sum_{i=i}^{M} \mathbb{E} \|X_{*}^{n} - \tilde{Y}^{n}\|_{L^{2}(\mathcal{D}_{i}^{\delta})} \\ &+ C_{2} \mathbb{E} \|Y^{n} - \tilde{Y}^{n}\|_{L^{2}}^{2} \\ &\leq C_{3} \mathbb{E} \|\mathcal{E}\{X_{h}^{n} - Y^{n}\}\|_{L^{2}}^{2} \\ &+ C_{4} \mathbb{E} \|\mathcal{E}\{Y^{n}\} - Y^{n}\|_{L^{2}}^{2} \\ &+ C_{5} \mathbb{E} \|Y^{n} - \tilde{Y}^{n}\|_{L^{2}}^{2} \end{split}$$

Estimation: $red = E^{n-1}$, $blue \le C\tau$, $green \le CE^{n-1}$

Scheme B

- MOTIVATION: Obtain optimal rate of weak convergence.
- ▶ Given $X_h^0 \in S_h^0(\mathcal{D})$. Let $n \ge 1$.
 - 1. Perform L iterations on the problem

$$(X_h^n - X_h^{n-1}, v_h) + \tau(\nabla X_h^n, \nabla v_h) = (\sqrt{\tau}Q^{1/2}\chi^n, v_h)$$
 on \mathcal{D}

to obtain local solutions $X_{h,i,L}^n$.

2. Assemble the global solution $X_h^n = \mathcal{C}(\{X_{h,i,L}^n\}_i) \in S_h^0(\mathcal{D})$. Set $n \to n+1$ until n=N.

Main result II

- 1. L: number of iterations
- 2. $X \in L^2(\Omega; C([0,T]; L^2(\Omega)))$

$$3. \left(1 - \frac{C_\delta^2}{C_0}\right)^{L/2} \le \tau^{\alpha_L}$$

Then for the solution X^n of Algorithm-B holds

$$\max_{0 \le n \le N} \sqrt{\mathbb{E} \|X^n - X_{t_n}\|_{L^2(\Omega; L^2(\mathcal{D}))}} \le C(C_1 \tau^{\alpha_L - 1} + \tau^{1/2} + h).$$

If moreover $\phi \in C_b^2$, then we have

$$\max_{0 \le n \le N} \| \mathbb{E} \left[\phi(X^n) - \phi(X_{t_n}) \right] \| \le C(C_1 \tau^{\alpha_L - 1} + \tau^{\gamma_w} + h^{2\gamma_w}).$$

Convergence results

► Conclusion: balance DD-error (τ^{α_L-1}) with discretization error (τ^{γ_w}) .

Dependence on the number of iterations

Figure: Rate of weak convergence

Accumulation of error perturbation in time

Idea of the proof:

Sketch of the proof

 $X_h^{(r)s}$, $r \leq s$ solution computed by Algorithm-B until time-step r, the BE until time-step s.

We only have to show

$$\max_{0 \le n \le N} \mathbb{E} \|X^{(n)n_h} - X_h^n\|_{L^2}^2 \le C\tau^{\alpha_L - 1}$$

Recall that

$$\left(1 - \frac{C_\delta^2}{C_0}\right)^{L/2} \le \tau^{\alpha_L}$$

- $s_n := \mathbb{E} \|X_h^{(n)k} X_h^k\|_{L^2}^2 \le Cn\tau^{\alpha_L} \exp(n\tau^{\alpha_L})$
- $B^{(n)} := \mathbb{E} \|X_h^{(n)k} X_h^k\|_{L^2}^2 \le C\tau^{\alpha_L}$

Summary

- Scheme A
 - Optimal strong convergence
 - Suboptimal weak convergence
- Scheme B
 - Optimal strong and weak convergence

Introduction: The problem Space-time discretization and known results Tool: Domain Decomposition for deterministic problems Method: Domain Decomposition for stochastic equations

Thank You for Your attention.