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Problem setting

▶ Stochastic heat equation on an open bounded polygonal
domain D ⊂ ℝd

dX(t)−ΔX(t)dt = Q1/2dW (t), 0 < t < T

X(0) = X0

▶ X0 ∈ L2(Ω;L2(D)), W cylindrical Wiener process on L2(D)

▶ Q linear, nonnegative, symmetric, bounded from L2(D) into
D(Δ�)

Then we have:

▶ Existence and uniqueness of mild solutions

▶ Regularity: supt∈[0,T ]

(
E∥X(t)∥2H1

)1/2 ≤ C(T, ∥X0∥H1)
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Backward Euler scheme: Known results

▶ N > 0 temporal mesh, � = T/N , ℎ > 0 spatial mesh

▶ Continuous finite elements Sℎ0 (D)

▶ Y n
ℎ ∈ L2(Ω;Sℎ0 (D)) solves

(Y n
ℎ − Y n−1

ℎ , vℎ) + �(∇Y n
ℎ ,∇vℎ) = (

√
�Q1/2�n−1, vℎ)

(Y 0
ℎ , vℎ) = (X0, vℎ),

for all vℎ ∈ Sℎ0 (D).

▶ Existence and uniqueness of discrete solution {Y n
ℎ }

▶ Stability: Energy estimate

▶ For Tr(ΔQ) <∞

max
0≤n≤N

E∥Y n
ℎ − Y n−1

ℎ ∥2L2 ≤ C�
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Convergence properties of backward Euler

▶ Strong convergence (Yan, 2005)

max
0≤n≤N

(
E∥Y n

ℎ −X(tn)∥2L2

)1/2 ≤ C(�1/2 + ℎ)

▶ Weak convergence (Debussche, Printems, 2007)

max
0≤n≤N

∣E [�(Y n
ℎ )− �(X(tn))] ∣ ≤ C(� + ℎ2)

for 0 <  < 1− d/2 + �, where Q ∈ L(L2(D), D(Δ�)).

Solution of linear system of dimension O(ℎ−d)
STRATEGY: domain decomposition methods
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Problem setting for Scheme A

▶ (Blum, Lisky, Rannacher, 1992) Consider

∂tX(t) +AX(t) = f(t), 0 < t < T, X(0) = X0
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Domain Decomposition: Description of the method

Given X0
ℎ, X

1
ℎ, . . . , X

n−1
ℎ ∈ S0

ℎ(D).

▶ Compute boundary conditions on each subdomain (from the
previous iterates)

▶ Compute new solution Xn
ℎ,i on each subdomain Di

▶ Assemble the global solution

Method converges with rate O(�2)
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Main tools in the proof

▶ Boundary error: Exponential decay in the interior of the
subdomain

▶ Induction: splitting of the error

1. Stability of discrete solutions
2. Convergence properties of Euler scheme
3. Estimates for extrapolation

Advantage of Scheme A: stable, convergent, less computational
effort, parallelizable
Restrictions for Stochastic Problems:

▶ Non-optimal weak convergence since Wiener process not
differentiable (need of ∂ttX(t) ∈ L2([0, T ]×D) in the analyis
for the deterministic problem)
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Problem setting for Scheme B

▶ Schwarz iteration: Iterative strategy to solve elliptic BVP.

▶ Motivation: parabolic problem after time discretization.
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Idea of the Schwarz iteration

▶ Example: −Δu = f on D, u = 0 on ∂D
▶ Iteration:

u2
ℎ,0 = 0

(∇u1
ℎ,l,∇vℎ) = (f, vℎ) on D�1,

u1
ℎ,l = 0 on ∂D�1 ∩ ∂D,
u1
ℎ,l = u2

l−1,ℎ on ∂D�1 ∩ ∂D�2

(∇u2
ℎ,l,∇vℎ) = (f, vℎ) on D�2,

u2
ℎ,l = 0 on ∂D�2 ∩ ∂D,
u2
ℎ,l = u1

l,ℎ on ∂D�2 ∩ ∂D�1

From this iteration we get a global solution ulℎ on D.

Erich Carelli, Alexander Müller, Andreas Prohl Domain Decomposition Strategies for the Stochastic Heat Equation



Introduction: The problem
Space-time discretization and known results

Tool: Domain Decomposition for deterministic problems
Method: Domain Decomposition for stochastic equations

Solution of the Schwarz iteration

▶ D = (0, 1), D�1 = (0, 2/3), D�1 = (1/3, 1), � = 1/6.
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Error w.r.t number of iterations
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Sketch of the proof

▶ Representation of the error el = uℎ − ulℎ

el = Eel−1 := (I − P1)(I − P2)el−1

where Pi : S0
ℎ(D)→ S0

ℎ(D�i ) is the Ritz-projection

▶ Show that the operator E is a contraction

▶ Generalization for more subdomains: Bramble, Pasciak,
Wang, Xu (1991).
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Scheme A

Given X0
ℎ ∈ S0

ℎ(D). Let n ≥ 1.

1. Compute new boundary conditions Xn
ℎ,∗ = ℰ({X�

ℎ}�<n).

2. Find solution on each subdomain

(Xn
ℎ,i −Xn−1

ℎ,i , vℎ) + �(∇Xn
ℎ,i,∇vℎ) = (Q1/2ΔWtn , vℎ) on D�i

Xn
ℎ,i = Xn

ℎ,i,∗ on ∂D�i

3. Assemble the global solution Xn
ℎ = C({Xn

ℎ,i}i) ∈ S0
ℎ(D). Set

n→ n+ 1.
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Main result I

1. Overlap � = C0ℎ,

2. X ∈ L2(Ω;H1(D))

Then solutions Xn of Algorithm A satisfy

max
0≤n≤N

(
E∥Xn −Xtn∥2L2

)1/2 ≤ C(�1/2 + ℎ).

We couldn’t obtain better results for weak convergence.
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Main tools in the proof

▶ Boundary error (between solution of Euler step with global
and local BC)

▶

En := E∥Xn
ℎ − Y n∥2L2 ≤ C1

M∑
i=i

E∥Xn
∗ − Ỹ n∥L2(D�i )

+C2E∥Y n − Ỹ n∥2L2

≤ C3E∥ℰ{Xn
ℎ − Y n}∥2L2

+C4E∥ℰ{Y n} − Y n∥2L2

+C5E∥Y n − Ỹ n∥2L2

Estimation: red = En−1, blue ≤ C� , green ≤ CEn−1
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Scheme B

▶ MOTIVATION: Obtain optimal rate of weak convergence.
▶ Given X0

ℎ ∈ S0
ℎ(D). Let n ≥ 1.

1. Perform L iterations on the problem

(Xn
ℎ −Xn−1

ℎ , vℎ) + �(∇Xn
ℎ ,∇vℎ) = (

√
�Q1/2�n, vℎ) on D

to obtain local solutions Xn
ℎ,i,L.

2. Assemble the global solution Xn
ℎ = C({Xn

ℎ,i,L}i) ∈ S0
ℎ(D). Set

n→ n+ 1 until n = N .
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Main result II

1. L: number of iterations

2. X ∈ L2(Ω;C([0, T ];L2(Ω)))

3.
(

1− C2
�

C0

)L/2
≤ ��L

Then for the solution Xn of Algorithm-B holds

max
0≤n≤N

√
E∥Xn −Xtn∥L2(Ω;L2(D)) ≤ C(C1�

�L−1 + �1/2 + ℎ).

If moreover � ∈ C2
b , then we have

max
0≤n≤N

∥E [�(Xn)− �(Xtn)] ∥ ≤ C(C1�
�L−1 + �w + ℎ2w).
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Convergence results

▶ Conclusion: balance DD-error (��L−1) with discretization
error (�w).
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Dependence on the number of iterations

Figure: Rate of weak convergence
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Accumulation of error perturbation in time

▶ Idea of the proof:
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Sketch of the proof

X
(r)s
ℎ , r ≤ s solution computed by Algorithm-B until time-step r,

the BE until time-step s.
We only have to show

max
0≤n≤N

E∥X(n)nℎ −Xn
ℎ∥2L2 ≤ C��L−1

Recall that (
1−

C2
�

C0

)L/2
≤ ��L

▶ sn := E∥X(n)k
ℎ −Xk

ℎ∥2L2 ≤ Cn��Lexp(n��L)

▶ B(n) := E∥X(n)k
ℎ −Xk

ℎ∥2L2 ≤ C��L
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Summary

▶ Scheme A
▶ Optimal strong convergence
▶ Suboptimal weak convergence

▶ Scheme B
▶ Optimal strong and weak convergence
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Thank You for Your attention.
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