T:A:L:K:S

close this window
title:
Die multivariate periodische Wavelet-Transformation
name:
Bergmann
first name:
Ronny
location/conference:
NOKO11
abstract:
Für periodische Wavelets im eindimensionalen Fall ist seit Mitte der 1990er Jahre eine umfassende Theorie bekannt. Dieser Vortrag stellt die multivariate Verallgemeinerung vor. Ausgehend von anisotropen gleichmäßigen Mustern auf dem $d$-dimensionalen Torus wird eine diskrete Fourier-Transformation definiert. Dies führt zu diskreten Frequenzmengen – die erzeugende Gruppe –, die bestimmte Richtungen bevorzugen und trotzdem schnelle Algorithmen ermöglichen. Dazu ist es notwendig, eine bestimmte Anordnung der Musterpunkte, sowie der erzeugenden Gruppe, zu finden. Die darauf aufbauende Wavelet-Zerlegung wird für den Spezialfall einer dyadischen Zerlegung präsentiert. Sie zerlegt einen Raum von Translaten in zwei zueinander orthogonale Unterräume mit jeweils halber Dimension des Ursprungsraumes. Auch hier ist eine schnelle Implementierung möglich, wenn man für die Elemente der erzeugenden Gruppe eine entsprechende Anordnung wählt.