T:A:L:K:S

close this window
title:
Metropolis-Hastings MCMC in Function Space for Bayesian Inverse Problems
name:
Sprungk
first name:
Björn
location/conference:
SPP-JT14
PRESENTATION-link:
http://www.dfg-spp1324.de/nuhagtools/event_NEW/dateien/SPP-JT14/slides/sprungk_fc14.pdf
abstract:
We consider Markov Chain Monte Carlo methods adapted to a Hilbert space setting. Such algorithms occur in Bayesian inverse problems where the solution is a probability measure on a function space according to which one would like to integrate or sample. We focus on Metropolis-Hastings algorithms and, in particular, we introduce and analyze a generalization of the existing pCN-proposal. This new proposal allows to exploit the geometry or anisotropy of the target measure which in turn might improve the statistical efficiency of the corresponding MCMC method. Numerical experiments for a real-world problem confirm the improvement.